1
|
Schoellerman J, Lord B, Bhattacharya A, Stenne B, Wall JL, Rech J, Letavic M, Bonaventure P, Balana B. Characterization of tritiated JNJ-GluN2B-5 (3-[ 3H] 1-(azetidin-1-yl)-2-(6-(4-fluoro-3-methyl-phenyl)pyrrolo[3,2-b]pyridin-1-yl)ethanone), a high affinity GluN2B radioligand with selectivity over sigma receptors. J Neurochem 2024; 168:2654-2670. [PMID: 38770633 DOI: 10.1111/jnc.16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
Here, we describe the characterization of a radioligand selective for GluN2B-containing NMDA receptors, 3-[3H] 1-(azetidin-1-yl)-2-(6-(4-fluoro-3-methyl-phenyl)pyrrolo[3,2-b]pyridin-1-yl)ethanone ([3H]-JNJ- GluN2B-5). In rat cortical membranes, the compound bound to a single site, and the following kinetic parameters were measured; association rate constant Kon = 0.0066 ± 0.0006 min-1 nM-1, dissociation rate constant Koff = 0.0210 ± 0.0001 min-1 indicating calculated KD = Koff/Kon = 3.3 ± 0.4 nM, (mean ± SEM, n = 3). The equilibrium dissociation constant determined from saturation binding experiments in rat cortex was KD of 2.6 ± 0.3 nM (mean ± SEM, n = 3). In contrast to the widely used GluN2B radioligand [3H]-Ro 25-6981, whose affinity Ki for sigma 1 and sigma 2 receptors are 2 and 189 nM, respectively, [3H]-JNJ-GluN2B-5 exhibits no measurable affinity for sigma 1 and sigma 2 receptors (Ki > 10 μM for both) providing distinct selectivity advantages. Anatomical distribution of [3H]-JNJ-GluN2B-5 binding sites in rat, mouse, dog, monkey, and human brain tissue was studied using in vitro autoradiography, which showed high specific binding in the hippocampus and cortex and negligible binding in the cerebellum. Enhanced selectivity for GluN2B-containing receptors translated to a good signal-to-noise ratio in both in vitro radioligand binding and in vitro autoradiography assays. In conclusion, [3H]-JNJ-GluN2B-5 is a high-affinity GluN2B radioligand with excellent signal-to-noise ratio and unprecedented selectivity.
Collapse
Affiliation(s)
- Jeffrey Schoellerman
- Neuroscience Discovery, Janssen Research & Development, LLC, La Jolla, California, USA
| | - Brian Lord
- Neuroscience Discovery, Janssen Research & Development, LLC, La Jolla, California, USA
| | - Anindya Bhattacharya
- Neuroscience Discovery, Janssen Research & Development, LLC, La Jolla, California, USA
| | - Brice Stenne
- Neuroscience Discovery, Janssen Research & Development, LLC, La Jolla, California, USA
| | - Jessica L Wall
- Neuroscience Discovery, Janssen Research & Development, LLC, La Jolla, California, USA
| | - Jason Rech
- Neuroscience Discovery, Janssen Research & Development, LLC, La Jolla, California, USA
| | - Michael Letavic
- Neuroscience Discovery, Janssen Research & Development, LLC, La Jolla, California, USA
| | - Pascal Bonaventure
- Neuroscience Discovery, Janssen Research & Development, LLC, La Jolla, California, USA
| | - Bartosz Balana
- Neuroscience Discovery, Janssen Research & Development, LLC, La Jolla, California, USA
| |
Collapse
|
2
|
Martin SL, Uribe C, Strafella AP. PET imaging of synaptic density in Parkinsonian disorders. J Neurosci Res 2024; 102:e25253. [PMID: 37814917 DOI: 10.1002/jnr.25253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
Synaptic dysfunction and altered synaptic pruning are present in people with Parkinsonian disorders. Dopamine loss and alpha-synuclein accumulation, two hallmarks of Parkinson's disease (PD) pathology, contribute to synaptic dysfunction and reduced synaptic density in PD. Atypical Parkinsonian disorders are likely to have unique spatiotemporal patterns of synaptic density, differentiating them from PD. Therefore, quantification of synaptic density has the potential to support diagnoses, monitor disease progression, and treatment efficacy. Novel radiotracers for positron emission tomography which target the presynaptic vesicle protein SV2A have been developed to quantify presynaptic density. The radiotracers have successfully investigated synaptic density in preclinical models of PD and people with Parkinsonian disorders. Therefore, this review will summarize the preclinical and clinical utilization of SV2A radiotracers in people with Parkinsonian disorders. We will evaluate how SV2A abundance is associated with other imaging modalities and the considerations for interpreting SV2A in Parkinsonian pathology.
Collapse
Affiliation(s)
- Sarah L Martin
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Carme Uribe
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Unitat de Psicologia Medica, Departament de Medicina, Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
| | - Antonio P Strafella
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Edmond J. Safra Parkinson Disease Program, Neurology Division, Toronto Western Hospital & Krembil Brain Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Ahmed H, Wallimann R, Gisler L, Elghazawy NH, Gruber S, Keller C, Liang SH, Sippl W, Haider A, Ametamey SM. Characterization of ( R)- and ( S)-[ 18F]OF-NB1 in Rodents as Positron Emission Tomography Probes for Imaging GluN2B Subunit-Containing N-Methyl-d-Aspartate Receptors. ACS Chem Neurosci 2023; 14:4323-4334. [PMID: 38060344 DOI: 10.1021/acschemneuro.3c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) subtype 2B (GluN1/2B) is implicated in various neuropathologies. Given the lack of a validated radiofluorinated positron emission tomography (PET) probe for the imaging of GluN1/2B receptors, we comprehensively investigated the enantiomers of [18F]OF-NB1 in rodents. Particularly, the (R)- and (S)- enantiomers were evaluated using in silico docking, in vitro autoradiography, in vivo PET imaging, and ex vivo biodistribution studies. A select panel of GluN1/2B antagonists (CP-101,606, CERC-301, and eliprodil) and the off-target sigma-1 receptor ligands (fluspidine and SA4503) were used to determine the specificity and selectivity of the tested enantiomers. Additionally, a nonmetal-mediated radiofluorination strategy was devised that harnesses the potential of diaryliodoniums in the nucleophilic radiofluorination of nonactivated aromatic compounds. Both enantiomers exhibited known GluN1/2B binding patterns; however, the R-enantiomer showed higher GluN1/2B-specific accumulation in rodent autoradiography and higher brain uptake in PET imaging experiments compared to the S-enantiomer. Molecular simulation studies provided further insights with respect to the difference in binding, whereby a reduced ligand-receptor interaction was observed for the S-enantiomer. Nonetheless, both enantiomers showed dose dependency when two different doses (1 and 5 mg/kg) of the GluN1/2B antagonist, CP-101,606, were used in the PET imaging study. Taken together, (R)-[18F]OF-NB1 appears to exhibit the characteristics of a suitable PET probe for imaging of GluN2B-containing NMDARs in clinical studies.
Collapse
Affiliation(s)
- Hazem Ahmed
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Rahel Wallimann
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Livio Gisler
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Nehal H Elghazawy
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - Stefan Gruber
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Claudia Keller
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Wolfgang Sippl
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - Achi Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| |
Collapse
|
4
|
Cai L, Liow JS, Morse CL, Telu S, Davies R, Manly LS, Zoghbi SS, Chin FT, Innis RB, Pike VW. Candidate 3-benzazepine-1-ol type GluN2B receptor radioligands ( 11C-NR2B-Me enantiomers) have high binding in cerebellum but not to σ1 receptors. EJNMMI Res 2023; 13:28. [PMID: 37017827 PMCID: PMC10076467 DOI: 10.1186/s13550-023-00975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/12/2023] [Indexed: 04/06/2023] Open
Abstract
INTRODUCTION We recently reported 11C-NR2B-SMe ([S-methyl-11C](R,S)-7-thiomethoxy-3-(4-(4-methyl-phenyl)butyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepin-1-ol) and its enantiomers as candidate radioligands for imaging the GluN2B subunit within rat N-methyl-D-aspartate receptors. However, these radioligands gave unexpectedly high and displaceable binding in rat cerebellum, possibly due to cross-reactivity with sigma-1 (σ1) receptors. This study investigated 11C-labeled enantiomers of a close analogue (7-methoxy-3-(4-(p-tolyl)butyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepin-1-ol; NR2B-Me) of 11C-NR2B-SMe as new candidate GluN2B radioligands. PET was used to evaluate these radioligands in rats and to assess potential cross-reactivity to σ1 receptors. METHODS NR2B-Me was assayed for binding affinity and selectivity to GluN2B in vitro. 11C-NR2B-Me and its enantiomers were prepared by Pd-mediated treatment of boronic ester precursors with 11C-iodomethane. Brain PET scans were conducted after radioligand intravenous injection into rats. Various ligands for GluN2B receptors or σ1 receptors were administered at set doses in pre-blocking or displacement experiments to assess their impact on imaging data. 18F-FTC146 and enantiomers of 11C-NR2B-SMe were used for comparison. Radiometabolites from brain and plasma were measured ex vivo and in vitro. RESULTS NR2B-Me enantiomers showed high GluN2B affinity and selectivity in vitro. 11C-NR2B-Me enantiomers gave high early whole rat brain uptake of radioactivity, including high uptake in cerebellum, followed by slower decline. Radioactivity in brain at 30 min ex vivo was virtually all unchanged radioligand. Only less lipophilic radiometabolites appeared in plasma. When 11C-(R)-NR2B-Me was used, three high-affinity GluN2B ligands-NR2B-SMe, Ro25-6981, and CO101,244-showed increasing pre-block of whole brain radioactivity retention with increasing dose. Two σ1 receptor antagonists, FTC146 and BD1407, were ineffective pre-blocking agents. Together, these results strongly resemble those obtained with 11C-NR2B-SMe enantiomers, except that 11C-NR2B-Me enantiomers showed faster reversibility of binding. When 18F-FTC146 was used as a radioligand, FTC146 and BD1407 showed strong pre-blocking effects whereas GluN2B ligands showed only weak blocking effects. CONCLUSION 11C-NR2B-Me enantiomers showed specific binding to GluN2B receptors in rat brain in vivo. High unexpected specific binding in cerebellum was not due to σ1 receptors. Additional investigation is needed to identify the source of the high specific binding.
Collapse
Affiliation(s)
- Lisheng Cai
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA.
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| | - Riley Davies
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| | - Lester S Manly
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| | - Frederick T Chin
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 1201 Welch Road, Rm. PS049, Stanford, CA, 94305-584, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, Bldg 10, Room B3 C346, Bethesda, MD, 20892, USA
| |
Collapse
|
5
|
Ahmed H, Zheng MQ, Smart K, Fang H, Zhang L, Emery PR, Gao H, Ropchan J, Haider A, Tamagnan G, Carson RE, Ametamey SM, Huang Y. Evaluation of ( rac)-, ( R)-, and ( S)- 18F-OF-NB1 for Imaging GluN2B Subunit-Containing N-Methyl-d-Aspartate Receptors in Nonhuman Primates. J Nucl Med 2022; 63:1912-1918. [PMID: 35710735 PMCID: PMC9730915 DOI: 10.2967/jnumed.122.263977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/07/2022] [Indexed: 01/11/2023] Open
Abstract
Despite 2 decades of research, no N-methyl-d-aspartate (NMDA) glutamate receptor (GluN) subtype 2B (GluN1/2B) radioligand is yet clinically validated. Previously, we reported on (rac)-18F-OF-NB1 as a promising GluN1/2B PET probe in rodents and its successful application for the visualization of GluN2B-containing NMDA receptors in postmortem brain tissues of patients with amyotrophic lateral sclerosis. In the current work, we report on the in vivo characterization of (rac)-, (R)-, and (S)-18F-OF-NB1 in nonhuman primates. Methods: PET scans were performed on rhesus monkeys. Plasma profiling was used to obtain the arterial input function. Regional brain time-activity curves were generated and fitted with the 1- and 2-tissue-compartment models and the multilinear analysis 1 method, and the corresponding regional volumes of distribution were calculated. Blocking studies with the GluN1/2B ligand Co 101244 (0.25 mg/kg) were performed for the enantiopure radiotracers. Receptor occupancy, nonspecific volume of distribution, and regional binding potential (BP ND) were obtained. Potential off-target binding toward σ1 receptors was assessed for (S)-18F-OF-NB1 using the σ1 receptor ligand FTC-146. Results: Free plasma fraction was moderate, ranging from 12% to 16%. All radiotracers showed high and heterogeneous brain uptake, with the highest levels in the cortex. (R)-18F-OF-NB1 showed the highest uptake and slowest washout kinetics of all tracers. The 1-tissue-compartment model and multilinear analysis 1 method fitted the regional time-activity curves well for all tracers and produced reliable regional volumes of distribution, which were higher for (R)- than (S)-18F-OF-NB1. Receptor occupancy by Co 101244 was 85% and 96% for (S)-18F-OF-NB1 and (R)-18F-OF-NB1, respectively. Pretreatment with FTC-146 at both a low (0.027 mg/kg) and high (0.125 mg/kg) dose led to a similar reduction (48% and 49%, respectively) in specific binding of (S)-18F-OF-NB1. Further, pretreatment with both Co 101244 and FTC-146 did not result in a further reduction in specific binding compared with Co 101244 alone in the same monkey (82% vs. 81%, respectively). Regional BP ND values ranged from 1.3 in the semiovale to 3.4 in the cingulate cortex for (S)-18F-OF-NB1. Conclusion: Both (R)- and (S)-18F-OF-NB1 exhibited high binding specificity to GluN2B subunit-containing NMDA receptors. The fast washout kinetics, good regional BP ND values, and high plasma free fraction render (S)-18F-OF-NB1 an attractive radiotracer for clinical translation.
Collapse
Affiliation(s)
- Hazem Ahmed
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- PET Center, Yale University, New Haven, Connecticut; and
| | | | - Kelly Smart
- PET Center, Yale University, New Haven, Connecticut; and
| | - Hanyi Fang
- PET Center, Yale University, New Haven, Connecticut; and
- Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- PET Center, Yale University, New Haven, Connecticut; and
| | - Paul R Emery
- PET Center, Yale University, New Haven, Connecticut; and
| | - Hong Gao
- PET Center, Yale University, New Haven, Connecticut; and
| | - Jim Ropchan
- PET Center, Yale University, New Haven, Connecticut; and
| | - Achi Haider
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | | | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland;
| | - Yiyun Huang
- PET Center, Yale University, New Haven, Connecticut; and
| |
Collapse
|
6
|
Ramesh M, Govindaraju T. Multipronged diagnostic and therapeutic strategies for Alzheimer's disease. Chem Sci 2022; 13:13657-13689. [PMID: 36544728 PMCID: PMC9710308 DOI: 10.1039/d2sc03932j] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and a major contributor to dementia cases worldwide. AD is clinically characterized by learning, memory, and cognitive deficits. The accumulation of extracellular amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs) of tau are the pathological hallmarks of AD and are explored as targets for clinical diagnosis and therapy. AD pathology is poorly understood and there are no fully approved diagnosis and treatments. Notwithstanding the gap, decades of research in understanding disease mechanisms have revealed the multifactorial nature of AD. As a result, multipronged and holistic approaches are pertinent to targeting multiple biomarkers and targets for developing effective diagnosis and therapeutics. In this perspective, recent developments in Aβ and tau targeted diagnostic and therapeutic tools are discussed. Novel indirect, combination, and circulating biomarkers as potential diagnostic targets are highlighted. We underline the importance of multiplexing and multimodal detection of multiple biomarkers to generate biomarker fingerprints as a reliable diagnostic strategy. The classical therapeutics targeting Aβ and tau aggregation pathways are described with bottlenecks in the strategy. Drug discovery efforts targeting multifaceted toxicity involving protein aggregation, metal toxicity, oxidative stress, mitochondrial damage, and neuroinflammation are highlighted. Recent efforts focused on multipronged strategies to rationally design multifunctional modulators targeting multiple pathological factors are presented as future drug development strategies to discover potential therapeutics for AD.
Collapse
Affiliation(s)
- Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| |
Collapse
|
7
|
Smart K, Zheng MQ, Ahmed H, Fang H, Xu Y, Cai L, Holden D, Kapinos M, Haider A, Felchner Z, Ropchan JR, Tamagnan G, Innis RB, Pike VW, Ametamey SM, Huang Y, Carson RE. Comparison of three novel radiotracers for GluN2B-containing NMDA receptors in non-human primates: (R)-[ 11C]NR2B-Me, (R)-[ 18F]of-Me-NB1, and (S)-[ 18F]of-NB1. J Cereb Blood Flow Metab 2022; 42:1398-1409. [PMID: 35209743 PMCID: PMC9274863 DOI: 10.1177/0271678x221084416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022]
Abstract
The NMDA receptor GluN2B subunit is a target of interest in neuropsychiatric disorders but to date there is no selective radiotracer available to quantify its availability in vivo. Here we report direct comparisons in non-human primates of three GluN2B-targeting radioligands: (R)-[11C]NR2B-Me, (R)-[18F]OF-Me-NB1, and (S)-[18F]OF-NB1. Plasma free fraction, metabolism, tissue distribution and kinetics, and quantitative kinetic modeling methods and parameters were evaluated in two adult rhesus macaques. Free fraction in plasma was <2% for (R)-[11C]NR2B-Me and (R)-[18F]OF-Me-NB1 and higher for (S)-[18F]OF-NB1 (15%). All radiotracers showed good brain uptake and distribution throughout grey matter, with substantial (>68%) blockade across the brain by the GluN2B-targeting drug Co-101,244 (0.25 mg/kg), including in the cerebellum. Time-activity curves were well-fitted by the one-tissue compartment model, with volume of distribution values of 20-40 mL/cm3 for (R)-[11C]NR2B-Me, 8-16 mL/cm3 for (R)-[18F]OF-Me-NB1, and 15-35 mL/cm3 for (S)-[18F]OF-NB1. Estimates of regional non-displaceable binding potential were in the range of 2-3 for (R)-[11C]NR2B-Me and (S)-[18F]-OF-NB1, and 0.5-1 for (R)-[18F]OF-Me-NB1. Altogether, each radiotracer showed an acceptable profile for quantitative imaging of GluN2B. (S)-[18F]OF-NB1 has particularly promising imaging characteristics for potential translation into humans. However, the source of unexpected displaceable binding in the cerebellum for each of these compounds requires further investigation.
Collapse
Affiliation(s)
- Kelly Smart
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Ming-Qiang Zheng
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Hazem Ahmed
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
- Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Hanyi Fang
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
- Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuping Xu
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
- Jiangsu Institute of Nuclear Medicine, Jiangsu, China
| | - Lisheng Cai
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Daniel Holden
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Michael Kapinos
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Ahmed Haider
- Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Zachary Felchner
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Jim R Ropchan
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Gilles Tamagnan
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Simon M Ametamey
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Yiyun Huang
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Richard E Carson
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| |
Collapse
|
8
|
Zheng M, Ahmed H, Smart K, Xu Y, Holden D, Kapinos M, Felchner Z, Haider A, Tamagnan G, Carson RE, Huang Y, Ametamey SM. Characterization in nonhuman primates of (R)-[ 18F]OF-Me-NB1 and (S)-[ 18F]OF-Me-NB1 for imaging the GluN2B subunits of the NMDA receptor. Eur J Nucl Med Mol Imaging 2022; 49:2153-2162. [PMID: 35107627 PMCID: PMC9165293 DOI: 10.1007/s00259-022-05698-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/19/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE GluN2B containing N-methyl-D-aspartate receptors (NMDARs) play an essential role in neurotransmission and are a potential treatment target for multiple neurological and neurodegenerative diseases, including stroke, Alzheimer's disease, and Parkinson's disease. (R)-[18F]OF-Me-NB1 was reported to be more specific and selective than (S)-[18F]OF-Me-NB1 for the GluN2B subunits of the NMDAR based on their binding affinity to GluN2B and sigma-1 receptors. Here we report a comprehensive evaluation of (R)-[18F]OF-Me-NB1 and (S)-[18F]OF-Me-NB1 in nonhuman primates. METHODS The radiosynthesis of (R)-[18F]OF-Me-NB1 and (S)-[18F]OF-Me-NB1 started from 18F-fluorination of the boronic ester precursor, followed by removal of the acetyl protecting group. PET scans in two rhesus monkeys were conducted on the Focus 220 scanner. Blocking studies were performed after treatment of the animals with the GluN2B antagonist Co101,244 or the sigma-1 receptor antagonist FTC-146. One-tissue compartment (1TC) model and multilinear analysis-1 (MA1) method with arterial input function were used to obtain the regional volume of distribution (VT, mL/cm3). Occupancy values by the two blockers were obtained by the Lassen plot. Regional non-displaceable binding potential (BPND) was calculated from the corresponding baseline VT and the VND derived from the occupancy plot of the Co101,244 blocking scans. RESULTS (R)- and (S)-[18F]OF-Me-NB1 were produced in > 99% radiochemical and enantiomeric purity, with molar activity of 224.22 ± 161.69 MBq/nmol at the end of synthesis (n = 10). Metabolism was moderate, with ~ 30% parent compound remaining for (R)-[18F]OF-Me-NB1 and 20% for (S)-[18F]OF-Me-NB1 at 30 min postinjection. Plasma free fraction was 1-2%. In brain regions, both (R)- and (S)-[18F]OF-Me-NB1 displayed fast uptake with slower clearance for the (R)- than (S)-enantiomer. For (R)-[18F]OF-Me-NB1, both the 1TC model and MA1 method gave reliable estimates of regional VT values, with MA1 VT (mL/cm3) values ranging from 8.9 in the cerebellum to 12.8 in the cingulate cortex. Blocking with 0.25 mg/kg of Co101,244 greatly reduced the uptake of (R)-[18F]OF-Me-NB1 across all brain regions, resulting in occupancy of 77% and VND of 6.36, while 0.027 mg/kg of FTC-146 reduced specific binding by 30%. Regional BPND, as a measure of specific binding signals, ranged from 0.40 in the cerebellum to 1.01 in the cingulate cortex. CONCLUSIONS In rhesus monkeys, (R)-[18F]OF-Me-NB1 exhibited fast kinetics and heterogeneous uptake across brain regions, while the (S)-enantiomer displayed a narrower dynamic range of uptake across regions. A Blocking study with a GluN2B antagonist indicated binding specificity. The value of BPND was > 0.5 in most brain regions, suggesting good in vivo specific binding signals. Taken together, results from the current study demonstrated the potential of (R)-[18F]OF-Me-NB1 as a useful radiotracer for imaging the GluN2B receptors.
Collapse
Affiliation(s)
| | - Hazem Ahmed
- PET Center, Yale University, New Haven, CT, USA
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Kelly Smart
- PET Center, Yale University, New Haven, CT, USA
| | - Yuping Xu
- PET Center, Yale University, New Haven, CT, USA
- Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | | | | | | | - Achi Haider
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | | | - Yiyun Huang
- PET Center, Yale University, New Haven, CT, USA.
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Zheng C, Holden D, Zheng MQ, Pracitto R, Wilcox KC, Lindemann M, Felchner Z, Zhang L, Tong J, Fowles K, Finnema SJ, Nabulsi N, Carson RE, Huang Y, Cai Z. A metabolically stable PET tracer for imaging synaptic vesicle protein 2A: synthesis and preclinical characterization of [ 18F]SDM-16. Eur J Nucl Med Mol Imaging 2022; 49:1482-1496. [PMID: 34761284 PMCID: PMC8940841 DOI: 10.1007/s00259-021-05597-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/17/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE To quantify the synaptic vesicle glycoprotein 2A (SV2A) changes in the whole central nervous system (CNS) under pathophysiological conditions, a high affinity SV2A PET radiotracer with improved in vivo stability is desirable to minimize the potential confounding effect of radiometabolites. The aim of this study was to develop such a PET tracer based on the molecular scaffold of UCB-A, and evaluate its pharmacokinetics, in vivo stability, specific binding, and nonspecific binding signals in nonhuman primate brains, in comparison with [11C]UCB-A, [11C]UCB-J, and [18F]SynVesT-1. METHODS The racemic SDM-16 (4-(3,5-difluorophenyl)-1-((2-methyl-1H-imidazol-1-yl)methyl)pyrrolidin-2-one) and its two enantiomers were synthesized and assayed for in vitro binding affinities to human SV2A. We synthesized the enantiopure [18F]SDM-16 using the corresponding enantiopure arylstannane precursor. Nonhuman primate brain PET scans were performed on FOCUS 220 scanners. Arterial blood was drawn for the measurement of plasma free fraction (fP), radiometabolite analysis, and construction of the plasma input function. Regional time-activity curves (TACs) were fitted with the one-tissue compartment (1TC) model to obtain the volume of distribution (VT). Nondisplaceable binding potential (BPND) was calculated using either the nondisplaceable volume of distribution (VND) or the centrum semiovale (CS) as the reference region. RESULTS SDM-16 was synthesized in 3 steps with 44% overall yield and has the highest affinity (Ki = 0.9 nM) to human SV2A among all reported SV2A ligands. [18F]SDM-16 was prepared in about 20% decay-corrected radiochemical yield within 90 min, with greater than 99% radiochemical and enantiomeric purity. This radiotracer displayed high specific binding in monkey brains and was metabolically more stable than the other SV2A PET tracers. The fP of [18F]SDM-16 was 69%, which was higher than those of [11C]UCB-J (46%), [18F]SynVesT-1 (43%), [18F]SynVesT-2 (41%), and [18F]UCB-H (43%). The TACs were well described with the 1TC. The averaged test-retest variability (TRV) was 7 ± 3%, and averaged absolute TRV (aTRV) was 14 ± 7% for the analyzed brain regions. CONCLUSION We have successfully synthesized a novel SV2A PET tracer [18F]SDM-16, which has the highest SV2A binding affinity and metabolical stability among published SV2A PET tracers. The [18F]SDM-16 brain PET images showed superb contrast between gray matter and white matter. Moreover, [18F]SDM-16 showed high specific and reversible binding in the NHP brains, allowing for the reliable and sensitive quantification of SV2A, and has potential applications in the visualization and quantification of SV2A beyond the brain.
Collapse
Affiliation(s)
- Chao Zheng
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Daniel Holden
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Ming-Qiang Zheng
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Richard Pracitto
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Kyle C Wilcox
- Translational Imaging, AbbVie Inc, North Chicago, IL, 60064, USA
| | - Marcel Lindemann
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Zachary Felchner
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Li Zhang
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Jie Tong
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Krista Fowles
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Sjoerd J Finnema
- Translational Imaging, AbbVie Inc, North Chicago, IL, 60064, USA
| | - Nabeel Nabulsi
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Richard E Carson
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Zhengxin Cai
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
10
|
NRM 2021 Abstract Booklet. J Cereb Blood Flow Metab 2021; 41:11-309. [PMID: 34905986 PMCID: PMC8851538 DOI: 10.1177/0271678x211061050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Zhao S, Cheng WJ, Liu X, Li Z, Li HZ, Shi N, Wang XL. Effects of Dexmedetomidine and Oxycodone on Neurocognitive and Inflammatory Response After Tourniquet-Induced Ischemia-Reperfusion Injury. Neurochem Res 2021; 47:461-469. [PMID: 34625874 DOI: 10.1007/s11064-021-03461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/13/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022]
Abstract
To evaluate the effects of dexmedetomidine (Dex) and oxycodone (Oxy) on neurocognitive and inflammatory response after tourniquet-induced ischemia-reperfusion (I/R) injury. C57/BL6 mice were used to construct the mouse model of tourniquet-induced I/R injury. Mice (n = 48) were randomly divided into sham, I/R, Dex or Oxy group. Morris water maze test was performed to assess the spatial learning and memory function. The expression of NF-κB, TLR4, NR2B, M1 (CD68 and TNF-α) and M2 (CD206 and IL-10) polarization markers in mice hippocampus were detected by western blot or immunofluorescent staining. Spontaneous excitatory post-synaptic currents (sEPSCs) were recorded by electrophysiology. Dex treatment alleviated I/R-induced declines in learning and memory (p < 0.05), while Oxy had no significant effect on it. Compared with I/R group, Dex and Oxy treatment down-regulated the expression of NF-κB, TLR4, TNF-α and CD68 (all p < 0.05), while no significantly different was found in CD206 and IL-10. In addition, Dex treatment down-regulated the expression of NR2B and reduced the frequency and amplitude of sEPSCs in I/R model mice (all p < 0.05), while Oxy had no significant effect on them. Tourniquet-induced I/R could impair the neurocognitive function of mice. Dex treatment could alleviate I/R-induced neurocognitive disorder by inhibiting abnormal synaptic transmission in hippocampal neurons. Both Dex and Oxy could alleviate the inflammatory response likely by inhibiting the polarization of microglia toward M1 phenotype via TLR4/NF-κB pathway. Future studies are needed to further examine the effects of Dex on neurocognitive disorder after tourniquet-induced I/R injury and investigate the exact mechanism.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, No.139, Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, Hebei, China
| | - Wen-Jie Cheng
- Department of Anesthesiology, Tianjin Hospital, Tianjin, China
| | - Xin Liu
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, No.139, Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, Hebei, China
| | - Zhao Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, No.139, Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, Hebei, China
| | - Hui-Zhou Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, No.139, Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, Hebei, China
| | - Na Shi
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, No.139, Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, Hebei, China
| | - Xiu-Li Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, No.139, Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
12
|
Sun JY, Kumata K, Chen Z, Zhang YD, Chen JH, Hatori A, Fu HL, Rong J, Deng XY, Yamasaki T, Xie L, Hu K, Fujinaga M, Yu QZ, Shao T, Collier TL, Josephson L, Shao YH, Du YF, Wang L, Xu H, Zhang MR, Liang SH. Synthesis and preliminary evaluation of novel 11C-labeled GluN2B-selective NMDA receptor negative allosteric modulators. Acta Pharmacol Sin 2021; 42:491-498. [PMID: 32661351 PMCID: PMC8027431 DOI: 10.1038/s41401-020-0456-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/03/2020] [Indexed: 12/30/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play critical roles in the physiological function of the mammalian central nervous system (CNS), including learning, memory, and synaptic plasticity, through modulating excitatory neurotransmission. Attributed to etiopathology of various CNS disorders and neurodegenerative diseases, GluN2B is one of the most well-studied subtypes in preclinical and clinical studies on NMDARs. Herein, we report the synthesis and preclinical evaluation of two 11C-labeled GluN2B-selective negative allosteric modulators (NAMs) containing N,N-dimethyl-2-(1H-pyrrolo[3,2-b]pyridin-1-yl)acetamides for positron emission tomography (PET) imaging. Two PET ligands, namely [11C]31 and [11C]37 (also called N2B-1810 and N2B-1903, respectively) were labeled with [11C]CH3I in good radiochemical yields (decay-corrected 28% and 32% relative to starting [11C]CO2, respectively), high radiochemical purity (>99%) and high molar activity (>74 GBq/μmol). In particular, PET ligand [11C]31 demonstrated moderate specific binding to GluN2B subtype by in vitro autoradiography studies. However, because in vivo PET imaging studies showed limited brain uptake of [11C]31 (up to 0.5 SUV), further medicinal chemistry and ADME optimization are necessary for this chemotype attributed to low binding specificity and rapid metabolism in vivo.
Collapse
Affiliation(s)
- Ji-Yun Sun
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Zhen Chen
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Yi-Ding Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Jia-Hui Chen
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Akiko Hatori
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Hua-Long Fu
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Jian Rong
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Xiao-Yun Deng
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Lin Xie
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Qing-Zhen Yu
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Tuo Shao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Thomas Lee Collier
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Lee Josephson
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Yi-Han Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Yun-Fei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan.
| | - Steven H Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
13
|
Ahmed H, Wallimann R, Haider A, Hosseini V, Gruber S, Robledo M, Nguyen TAN, Herde AM, Iten I, Keller C, Vogel V, Schibli R, Wünsch B, Mu L, Ametamey SM. Preclinical Development of 18F-OF-NB1 for Imaging GluN2B-Containing N-Methyl-d-Aspartate Receptors and Its Utility as a Biomarker for Amyotrophic Lateral Sclerosis. J Nucl Med 2021; 62:259-265. [PMID: 32737247 DOI: 10.2967/jnumed.120.246785] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/26/2020] [Indexed: 01/05/2023] Open
Abstract
As part of our continuous efforts to develop a suitable 18F-labeled PET radioligand with improved characteristics for imaging the N-methyl-d-aspartate receptors (NMDARs) subtype 2B (GluN1/2B), we investigated in the current work ortho-fluorinated (OF) and meta-fluorinated (MF) analogs of 18F-para-fluorinated (PF)-NB1, a 3-benzazepine-based radiofluorinated probe. Methods: OF-NB1 and MF-NB1 were prepared using a multistep synthesis, and their binding affinities toward GluN2B subunits and selectivity over σ1 receptors (σ1Rs) were determined via competitive binding assays. 18F-OF-NB1 was synthesized via copper-mediated radiofluorination and was evaluated in Wistar rats by in vitro autoradiography, PET imaging, ex vivo biodistribution, metabolite experiments, and receptor occupancy studies using CP-101,606, an established GluN2B antagonist. To determine in vivo selectivity, 18F-OF-NB1 was validated in wild-type and σ1R knock-out mice. Translational relevance was assessed in autoradiographic studies using postmortem human brain tissues from healthy individuals and ALS patients, the results of which were corroborated by immunohistochemistry. Results: The binding affinity values for OF-NB1 and MF-NB1 toward the GluN2B subunits were 10.4 ± 4.7 and 590 ± 36 nM, respectively. For σ1R binding, OF-NB1 and MF-NB1 exhibited inhibition constants of 410 and 2,700 nM, respectively. OF-NB1, which outperformed MF-NB1, was radiolabeled with 18F to afford 18F-OF-NB1 in more than 95% radiochemical purity and molar activities of 192 ± 33 GBq/μmol. In autoradiography experiments, 18F-OF-NB1 displayed a heterogeneous and specific binding in GluN2B subunit-rich brain regions such as the cortex, striatum, hypothalamus, and hippocampus. PET imaging studies in Wistar rats showed a similar heterogeneous uptake, and no brain radiometabolites were detected. A dose-dependent blocking effect was observed with CP-101,606 (0.5-15 mg/kg) and resulted in a 50% receptor occupancy of 8.1 μmol/kg. Postmortem autoradiography results revealed lower expression of the GluN2B subunits in ALS brain tissue sections than in healthy controls, in line with immunohistochemistry results. Conclusion:18F-OF-NB1 is a highly promising PET probe for imaging the GluN2B subunits of the N-methyl-d-aspartate receptor. It possesses utility for receptor occupancy studies and has potential for PET imaging studies in ALS patients and possibly other brain disorders.
Collapse
Affiliation(s)
- Hazem Ahmed
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Rahel Wallimann
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Achi Haider
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Vahid Hosseini
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Stefan Gruber
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Marvin Robledo
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Thi A N Nguyen
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Irina Iten
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Claudia Keller
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Roger Schibli
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland; and
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Linjing Mu
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland; and
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Cumming P, Abi-Dargham A, Gründer G. Molecular imaging of schizophrenia: Neurochemical findings in a heterogeneous and evolving disorder. Behav Brain Res 2020; 398:113004. [PMID: 33197459 DOI: 10.1016/j.bbr.2020.113004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
Abstract
The past four decades have seen enormous efforts placed on a search for molecular markers of schizophrenia using positron emission tomography (PET) and single photon emission computed tomography (SPECT). In this narrative review, we cast a broad net to define and summarize what researchers have learned about schizophrenia from molecular imaging studies. Some PET studies of brain energy metabolism with the glucose analogue FDGhave have shown a hypofrontality defect in patients with schizophrenia, but more generally indicate a loss of metabolic coherence between different brain regions. An early finding of significantly increased striatal trapping of the dopamine synthesis tracer FDOPA has survived a meta-analysis of many replications, but the increase is not pathognomonic of the disorder, since one half of patients have entirely normal dopamine synthesis capacity. Similarly, competition SPECT studies show greater basal and amphetamine-evoked dopamine occupancy at post-synaptic dopamine D2/3 receptors in patients with schizophrenia, but the difference is likewise not pathognomonic. We thus propose that molecular imaging studies of brain dopamine indicate neurochemical heterogeneity within the diagnostic entity of schizophrenia. Occupancy studies have established the relevant target engagement by antipsychotic medications at dopamine D2/3 receptors in living brain. There is evidence for elevated frontal cortical dopamine D1 receptors, especially in relation to cognitive deficits in schizophrenia. There is a general lack of consistent findings of abnormalities in serotonin markers, but some evidence for decreased levels of nicotinic receptors in patients. There are sparse and somewhat inconsistent findings of reduced binding of muscarinic, glutamate, and opioid receptors ligands, inconsistent findings of microglial activation, and very recently, evidence of globally reduced levels of synaptic proteins in brain of patients. One study reports a decline in histone acetylase binding that is confined to the dorsolateral prefrontal cortex. In most contexts, the phase of the disease and effects of past or present medication can obscure or confound PET and SPECT findings in schizophrenia.
Collapse
Affiliation(s)
- Paul Cumming
- Department of Nuclear Medicine, Inselspital, Bern University, Bern, Switzerland; School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia.
| | - Anissa Abi-Dargham
- Stony Brook University, Renaissance School of Medicine, Stony Brook, New York, USA
| | - Gerhard Gründer
- Central Institute of Mental Health, Department of Molecular Neuroimaging, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
15
|
Kim JH, Marton J, Ametamey SM, Cumming P. A Review of Molecular Imaging of Glutamate Receptors. Molecules 2020; 25:molecules25204749. [PMID: 33081223 PMCID: PMC7587586 DOI: 10.3390/molecules25204749] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Molecular imaging with positron emission tomography (PET) and single photon emission computed tomography (SPECT) is a well-established and important in vivo technique to evaluate fundamental biological processes and unravel the role of neurotransmitter receptors in various neuropsychiatric disorders. Specific ligands are available for PET/SPECT studies of dopamine, serotonin, and opiate receptors, but corresponding development of radiotracers for receptors of glutamate, the main excitatory neurotransmitter in mammalian brain, has lagged behind. This state of affairs has persisted despite the central importance of glutamate neurotransmission in brain physiology and in disorders such as stroke, epilepsy, schizophrenia, and neurodegenerative diseases. Recent years have seen extensive efforts to develop useful ligands for molecular imaging of subtypes of the ionotropic (N-methyl-D-aspartate (NMDA), kainate, and AMPA/quisqualate receptors) and metabotropic glutamate receptors (types I, II, and III mGluRs). We now review the state of development of radioligands for glutamate receptor imaging, placing main emphasis on the suitability of available ligands for reliable in vivo applications. We give a brief account of the radiosynthetic approach for selected molecules. In general, with the exception of ligands for the GluN2B subunit of NMDA receptors, there has been little success in developing radiotracers for imaging ionotropic glutamate receptors; failure of ligands for the PCP/MK801 binding site in vivo doubtless relates their dependence on the open, unblocked state of the ion channel. Many AMPA and kainite receptor ligands with good binding properties in vitro have failed to give measurable specific binding in the living brain. This may reflect the challenge of developing brain-penetrating ligands for amino acid receptors, compounded by conformational differences in vivo. The situation is better with respect to mGluR imaging, particularly for the mGluR5 subtype. Several successful PET ligands serve for investigations of mGluRs in conditions such as schizophrenia, depression, substance abuse and aging. Considering the centrality and diversity of glutamatergic signaling in brain function, we have relatively few selective and sensitive tools for molecular imaging of ionotropic and metabotropic glutamate receptors. Further radiopharmaceutical research targeting specific subtypes and subunits of the glutamate receptors may yet open up new investigational vistas with broad applications in basic and clinical research.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
- Gachon Advanced Institute for Health Science and Technology, Graduate School, Incheon 21565, Korea
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Gachon University, Incheon 21565, Korea
- Correspondence: (J.-H.K.); (P.C.); Tel.: +41-31-664-0498 (P.C.); Fax: +41-31-632-7663 (P.C.)
| | - János Marton
- ABX Advanced Biochemical Compounds, Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Strasse 10-14, D-1454 Radeberg, Germany;
| | - Simon Mensah Ametamey
- Centre for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland;
| | - Paul Cumming
- Department of Nuclear Medicine, University of Bern, Inselspital, Freiburgstrasse 18, CH-3010 Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane QLD 4059, Australia
- Correspondence: (J.-H.K.); (P.C.); Tel.: +41-31-664-0498 (P.C.); Fax: +41-31-632-7663 (P.C.)
| |
Collapse
|