1
|
Abdel-Aty H, Hujairi N, Murray I, Yogeswaran Y, van As N, James N. The quantitative impact of prostate-specific membrane antigen (PSMA) PET/CT staging in newly diagnosed metastatic prostate cancer and treatment-decision implications. BJR Open 2024; 6:tzae040. [PMID: 39606160 PMCID: PMC11601884 DOI: 10.1093/bjro/tzae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/18/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Objectives To quantify the stage-shift with prostate-specific membrane antigen (PSMA) PET/CT imaging in metastatic prostate cancer and explore treatment implications. Methods Single-centre, retrospective analysis of patients with newly diagnosed [18F]PSMA-1007 or [68Ga]Ga-PSMA-11 PET/CT-detected metastatic prostate cancer who had baseline bone scintigraphy between January 2015 and May 2021. Patients were subclassified into oligometastatic and polymetastatic disease utilizing the STAMPEDE2 trial (ISRCTN66357938/NCT06320067) definition. Patient, tumour, and treatment characteristics were collected. PSMA PET/CT concordance with conventional imaging (bone scintigraphy and low-dose CT of PET) was identified by number and site of metastases, and subgroup assigned. Spearman's rank correlation and linear regression modelling determined the association between the imaging modalities. Results We analysed 62 patients with a median age was 72 years (range 48-86). On PSMA PET/CT, 31/62 (50%) patients had oligometastatic disease, and 31/62 (50%) had polymetastatic disease. Prostate radiotherapy was delivered in 20/31 (65%) patients with oligometastatic disease and 17/31 (55%) with polymetastatic disease. 23/62 (37%) patients were reclassified as M0 on conventional imaging. PSMA PET/CT had a 2.9-fold increase in detecting bone metastases. Bone metastases concordance was found in 10/50 (20%) by number and 30/33 (91%) by site. PSMA PET/CT had a 2.2-fold increase in detecting nodal metastases. Nodal metastases concordance was found in 5/46 (11%) by number and 25/26 (96%) by site. There was significant positive correlation between PSMA PET/CT and conventional imaging for detecting bone [R 2 = 0.25 (P < 0.001)] and nodal metastases [R 2 = 0.19 (P < 0.001)]. 16/31 (52%) had oligometastatic disease concordance. Conclusion The magnitude of PSMA PET/CT-driven stage-shift is highly variable and unpredictable with implications on treatment decisions, future trial design, and potentially clinical outcomes. Advances in knowledge The magnitude of "frame-shift" with PSMA PET/CT imaging is highly variable and unpredictable which may unreliably change treatment decisions dependent on image-defined disease extent. Prospective randomized trials are required to determine the relationship between PSMA PET/CT-guided treatment choices and outcomes.
Collapse
Affiliation(s)
- Hoda Abdel-Aty
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, SW3 6JB, United Kingdom
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London, SW3 6JJ, United Kingdom
| | - Nabil Hujairi
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, SW3 6JB, United Kingdom
- Department of Radiology and Nuclear Medicine, Royal Marsden NHS Foundation Trust, London, SM2 5PT, United Kingdom
| | - Iain Murray
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, SW3 6JB, United Kingdom
- Department of Radiology and Nuclear Medicine, Royal Marsden NHS Foundation Trust, London, SM2 5PT, United Kingdom
| | - Yathushan Yogeswaran
- MRC Clinical Trials Unit, Institute of Clinical Trials & Methodology, University College London, London, WC1V 6LJ, United Kingdom
| | - Nicholas van As
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, SW3 6JB, United Kingdom
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London, SW3 6JJ, United Kingdom
| | - Nicholas James
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, SW3 6JB, United Kingdom
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London, SW3 6JJ, United Kingdom
| |
Collapse
|
2
|
Zanoni L, Bezzi D, Nanni C, Paccagnella A, Farina A, Broccoli A, Casadei B, Zinzani PL, Fanti S. PET/CT in Non-Hodgkin Lymphoma: An Update. Semin Nucl Med 2023; 53:320-351. [PMID: 36522191 DOI: 10.1053/j.semnuclmed.2022.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022]
Abstract
Non-Hodgkin lymphomas represents a heterogeneous group of lymphoproliferative disorders characterized by different clinical courses, varying from indolent to highly aggressive. 18F-FDG-PET/CT is the current state-of-the-art diagnostic imaging, for the staging, restaging and evaluation of response to treatment in lymphomas with avidity for 18F-FDG, despite it is not routinely recommended for surveillance. PET-based response criteria (using five-point Deauville Score) are nowadays uniformly applied in FDG-avid lymphomas. In this review, a comprehensive overview of the role of 18F-FDG-PET in Non-Hodgkin lymphomas is provided, at each relevant point of patient management, particularly focusing on recent advances on diffuse large B-cell lymphoma and follicular lymphoma, with brief updates also on other histotypes (such as marginal zone, mantle cell, primary mediastinal- B cell lymphoma and T cell lymphoma). PET-derived semiquantitative factors useful for patient stratification and prognostication and emerging radiomics research are also presented.
Collapse
Affiliation(s)
- Lucia Zanoni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Davide Bezzi
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Cristina Nanni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Paccagnella
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy; Nuclear Medicine Unit, AUSL Romagna, Cesena, Italy
| | - Arianna Farina
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Alessandro Broccoli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Beatrice Casadei
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Nanni C, Kobe C, Baeßler B, Baues C, Boellaard R, Borchmann P, Buck A, Buvat I, Chapuy B, Cheson BD, Chrzan R, Cottereau AS, Dührsen U, Eikenes L, Hutchings M, Jurczak W, Kraeber-Bodéré F, Lopci E, Luminari S, MacLennan S, Mikhaeel NG, Nijland M, Rodríguez-Otero P, Treglia G, Withofs N, Zamagni E, Zinzani PL, Zijlstra JM, Herrmann K, Kunikowska J. European Association of Nuclear Medicine (EANM) Focus 4 consensus recommendations: molecular imaging and therapy in haematological tumours. Lancet Haematol 2023; 10:e367-e381. [PMID: 37142345 DOI: 10.1016/s2352-3026(23)00030-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/23/2022] [Accepted: 01/18/2023] [Indexed: 05/06/2023]
Abstract
Given the paucity of high-certainty evidence, and differences in opinion on the use of nuclear medicine for hematological malignancies, we embarked on a consensus process involving key experts in this area. We aimed to assess consensus within a panel of experts on issues related to patient eligibility, imaging techniques, staging and response assessment, follow-up, and treatment decision-making, and to provide interim guidance by our expert consensus. We used a three-stage consensus process. First, we systematically reviewed and appraised the quality of existing evidence. Second, we generated a list of 153 statements based on the literature review to be agreed or disagreed with, with an additional statement added after the first round. Third, the 154 statements were scored by a panel of 26 experts purposively sampled from authors of published research on haematological tumours on a 1 (strongly disagree) to 9 (strongly agree) Likert scale in a two-round electronic Delphi review. The RAND and University of California Los Angeles appropriateness method was used for analysis. Between one and 14 systematic reviews were identified on each topic. All were rated as low to moderate quality. After two rounds of voting, there was consensus on 139 (90%) of 154 of the statements. There was consensus on most statements concerning the use of PET in non-Hodgkin and Hodgkin lymphoma. In multiple myeloma, more studies are required to define the optimal sequence for treatment assessment. Furthermore, nuclear medicine physicians and haematologists are awaiting consistent literature to introduce volumetric parameters, artificial intelligence, machine learning, and radiomics into routine practice.
Collapse
Affiliation(s)
- Cristina Nanni
- Medicina Nucleare, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Carsten Kobe
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bettina Baeßler
- Institute of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Christian Baues
- Department of Radiooncology, Radiotherapy and CyberKnife Center, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Ronald Boellaard
- Radiology & Nuclear Medicine, Amsterdam UMC, VUMC Cancer Center Amsterdam, Amsterdam, Netherlands; Nuclear Medicine & Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter Borchmann
- Department of Haematology and Oncology, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Irène Buvat
- Laboratory of Translational Imaging in Oncology, Institut Curie, Inserm, PSL University, Orsay, France
| | - Björn Chapuy
- Department of Hematology, Oncology and Tumorimmunology, Charité University Medical Center Berlin, Benjamin Franklin Campus, Berlin, Germany
| | | | - Robert Chrzan
- Department of Radiology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Ulrich Dührsen
- Klinik für Hämatologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Martin Hutchings
- Department of Haematology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Wojciech Jurczak
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Françoise Kraeber-Bodéré
- Service de Médecine Nucléaire, University Hospital Hôtel-Dieu, Nantes, France; CRCI2NA, INSERM, CNRS, Université d'Angers, Nantes Université, Nantes, France
| | - Egesta Lopci
- Nuclear Medicine, IRCCS-Humanitas Research Hospital, Milan, Italy
| | - Stefano Luminari
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine Department, University of Modena and Reggio Emilia, Reggio Emilia, Italy; Hematology Unit, Azienda USL IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Steven MacLennan
- Academic Urology Unit, Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - N George Mikhaeel
- Department of Clinical Oncology, Guy's Cancer Centre, Guy's and St Thomas' NHS Trust, London, UK; School of Cancer & Pharmaceutical Sciences, King's College, University of London, London, UK
| | - Marcel Nijland
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | - Giorgio Treglia
- Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical sciences, Università della Svizzera italiana, Lugano, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nadia Withofs
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, CHU of Liege, Liege, Belgium; GIGA-CRC In Vivo Imaging, University of Liege, Liege, Belgium
| | - Elena Zamagni
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Josée M Zijlstra
- Department of Hematology, Amsterdam UMC, VUMC Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | - Jolanta Kunikowska
- Department of Nuclear Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Pellegrino F, Granata V, Fusco R, Grassi F, Tafuto S, Perrucci L, Tralli G, Scaglione M. Diagnostic Management of Gastroenteropancreatic Neuroendocrine Neoplasms: Technique Optimization and Tips and Tricks for Radiologists. Tomography 2023; 9:217-246. [PMID: 36828370 PMCID: PMC9958666 DOI: 10.3390/tomography9010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) comprise a heterogeneous group of neoplasms, which derive from cells of the diffuse neuroendocrine system that specializes in producing hormones and neuropeptides and arise in most cases sporadically and, to a lesser extent, in the context of complex genetic syndromes. Furthermore, they are primarily nonfunctioning, while, in the case of insulinomas, gastrinomas, glucagonomas, vipomas, and somatostatinomas, they produce hormones responsible for clinical syndromes. The GEP-NEN tumor grade and cell differentiation may result in different clinical behaviors and prognoses, with grade one (G1) and grade two (G2) neuroendocrine tumors showing a more favorable outcome than grade three (G3) NET and neuroendocrine carcinoma. Two critical issues should be considered in the NEN diagnostic workup: first, the need to identify the presence of the tumor, and, second, to define the primary site and evaluate regional and distant metastases. Indeed, the primary site, stage, grade, and function are prognostic factors that the radiologist should evaluate to guide prognosis and management. The correct diagnostic management of the patient includes a combination of morphological and functional evaluations. Concerning morphological evaluations, according to the consensus guidelines of the European Neuroendocrine Tumor Society (ENETS), computed tomography (CT) with a contrast medium is recommended. Contrast-enhanced magnetic resonance imaging (MRI), including diffusion-weighted imaging (DWI), is usually indicated for use to evaluate the liver, pancreas, brain, and bones. Ultrasonography (US) is often helpful in the initial diagnosis of liver metastases, and contrast-enhanced ultrasound (CEUS) can solve problems in characterizing the liver, as this tool can guide the biopsy of liver lesions. In addition, intraoperative ultrasound is an effective tool during surgical procedures. Positron emission tomography (PET-CT) with FDG for nonfunctioning lesions and somatostatin analogs for functional lesions are very useful for identifying and evaluating metabolic receptors. The detection of heterogeneity in somatostatin receptor (SSTR) expression is also crucial for treatment decision making. In this narrative review, we have described the role of morphological and functional imaging tools in the assessment of GEP-NENs according to current major guidelines.
Collapse
Affiliation(s)
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Francesca Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80127 Naples, Italy
| | - Salvatore Tafuto
- S.C. Sarcomi e Tumori Rari, Istituto Nazionale Tumori, IRCCS, Fondazione “G. Pascale”, 80131 Naples, Italy
| | - Luca Perrucci
- Ferrara Department of Interventional and Diagnostic Radiology, Ospedale di Lagosanto, Azienda AUSL, 44023 Ferrara, Italy
| | - Giulia Tralli
- Department of Radiology, Ospedale Santa Maria della Misericordia, 45100 Rovigo, Italy
| | - Mariano Scaglione
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
5
|
Pellegrino F, Scabbia F, Merlo A, Perrucci L, Aliberti L, Urso A, Ambrosio MR, Cuneo A, Galeotti R, Giganti M. Spontaneously reversible adrenal nodules in primary diffuse large B-cell testicular lymphoma mimicking an extranodal involvement: A case report. Radiol Case Rep 2021; 16:2168-2173. [PMID: 34168717 PMCID: PMC8209649 DOI: 10.1016/j.radcr.2021.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/12/2022] Open
Abstract
In the staging of cancer patients, transient and spontaneously reversible bilateral adrenal hypertrophy may mimic a secondary localization of the disease. We discuss the case of an 82-year-old male patient with suspected testicular neoplasia in which abdominal CT examination reveals the onset of a bilateral macronodular adrenal enlargement, suggesting the diagnostic hypothesis of primary testicular neoplasia with secondary adrenal localization. The subsequent 18FDG-PET/CT study showed hyper-metabolism of the testicular mass, while the adrenal glands, surprisingly, did not show increased uptake of the radiotracer. After right orchifunicolectomy, primary testicular diffuse large B-cell lymphoma was diagnosed. The subsequent staging PET/CT study with iodine contrast medium, three months after the first CT examination, showed spontaneous complete regression of the adrenal hypertrophy without any use of drug therapy. The differential diagnosis of this finding considered the lack of hypermetabolism and the densitometric characteristics of the adrenal glands, the absence of possible pharmacological interactions throughout the time of the diagnostic procedures, and the available clinical-laboratory data. By excluding the main causes of adrenal hypertrophy, the most likely diagnostic hypothesis was transient adrenal hypertrophy due to stress induced by testicular lymphoma, meaning by stress a disturbance not only emotional but also an alteration of organic homeostasis. Our case suggests that the analysis of adrenal lesions appeared in cancer patients should take into account non-metastatic conditions that must be studied with a multimodal approach and with serial investigations.
Collapse
Affiliation(s)
| | - Francesca Scabbia
- Department of Morphology, Section of Diagnostic Imaging, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Annalisa Merlo
- Department of Morphology, Section of Diagnostic Imaging, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Luca Perrucci
- Ferrara Department of Interventional and Diagnostic Radiology, Ospedale di Lagosanto, Azienda AUSL, Ferrara, Italy
| | - Ludovica Aliberti
- Department of Medical Sciences, Section of Endocrinology and Internal Medicine, University of Ferrara, Italy
| | - Antonio Urso
- Section of Hematology, St. Anna University Hospital, Ferrara, Italy
| | - Maria Rosaria Ambrosio
- Department of Medical Sciences, Section of Endocrinology and Internal Medicine, University of Ferrara, Italy
| | - Antonio Cuneo
- Section of Hematology, St. Anna University Hospital, Ferrara, Italy
| | - Roberto Galeotti
- Department of Morphology, Section of Diagnostic Imaging, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Melchiore Giganti
- Department of Morphology, Section of Diagnostic Imaging, Surgery and Experimental Medicine, University of Ferrara, Italy
| |
Collapse
|