1
|
Raeisi N, Saber Tanha A, Aryana K, Soltani E, Barashki S. 99mTc-FAPI-46 Scintigraphy in Recurrence of Low-Grade Myofibroblastic Sarcoma. Clin Nucl Med 2025:00003072-990000000-01732. [PMID: 40392128 DOI: 10.1097/rlu.0000000000005977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/11/2025] [Indexed: 05/22/2025]
Abstract
Low-grade myofibroblastic sarcoma (LGMFS) is a rare mesenchymal tumor, infrequently found in the abdominal cavity, where it may exhibit more aggressive behavior. This case report presents a 15-year-old boy with LGMFS manifesting as a large abdominal mass. Following neoadjuvant therapy and surgical resection, recurrence was detected via follow-up imaging. We employed 99mTc-FAPI-46 scintigraphy, representing its first reported application in LGMFS. The FAPI scintigraphy exhibited uptake in all tumoral lesions identified on contrast-enhanced CT scan, underscoring the potential of FAPI in the evaluation of this rare entity.
Collapse
Affiliation(s)
- Nasrin Raeisi
- Nuclear Medicine Research Center
- Student Research Committee
| | | | | | - Ehsan Soltani
- Surgical Oncology Research Center, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
| | | |
Collapse
|
2
|
Abbasi S, Dehghani M, Khademi S, Irajirad R, Parizi ZP, Sahebi M, Sadeghi M, Montazerabadi A, Tavakoli M. Revolutionizing cancer diagnosis and dose biodistribution: a meta-analysis of [68ga] FAPI- 46 vs. [18f] FDG imaging. Syst Rev 2025; 14:109. [PMID: 40349083 PMCID: PMC12065268 DOI: 10.1186/s13643-025-02835-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/27/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Advancements in novel peptides significantly affect cancer diagnosis by targeting cancer-specific markers, thereby improving imaging modalities, such as positron emission tomography combined with computed tomography (PET/CT) for more accurate tumor detection. This systematic review and meta-analysis aimed to assess the diagnostic accuracy of [18F] Fluorodeoxyglucose (FDG) and 68Ga-fibroblast activation protein inhibitor (FAPI- 46) PET/CT for early cancer detection. METHODS A comprehensive search was conducted in Scopus, MEDLINE, Web of Science, and Embase databases up to March 28, 2024, using MeSH keywords. Titles and abstracts were screened to identify studies on hybrid [68Ga] FAPI- 46 and [18F] FDG, followed by a detailed full-text evaluation. Only cohort or cross-sectional studies published in English, focusing on the clinical diagnosis of cancer patients, were included, while reviews, case reports, conference proceedings, and abstracts were excluded. Random-effects meta-analysis was used for the estimation of pooled specificity and sensitivity with 95% confidence intervals (CIs). In addition, the heterogeneity was assessed across studies and subgroup meta-analyses for the detection rate via Stata. RESULTS Among the 615 retrieved studies, nine articles were incorporated in the present systematic review, with five (n = 144 patients) eligible for meta-analysis. For [68Ga] FAPI- 46, the pooled sensitivity and specificity compared with immunohistopathology were 0.96 (95% CI 0.84, 0.99) and 0.92 (95% CI 0.53, 0.99), respectively, with a positive likelihood ratio (LR +) of 4.41 (95% CI 1.64, 11.79) and a negative likelihood ratio (LR -) of 3.07 (95% CI 1.01, 9.37). For [18F] FDG, pooled sensitivity and specificity compared with immunohistopathology were 0.73 (95% CI 0.34, 0.93) and 0.83 (95% CI 0.57, 0.95), with an LR + of 12.73 (95% CI 1.43, 113.45) and an LR - of 0.32 (95% CI 0.11, 0.17). The pooled odds ratio for the detection rate on a per-lesion basis was 1.73 (95% CI 0.99, 3.02) for [68Ga] FAPI- 46 compared with [18F] FDG. The pooled weighted mean differences in the standardized uptake value (SUVmax) for primary tumor uptake and the tumor-to-background ratio (TBR) in [68Ga] FAPI- 46 vs. 18F-FDG were 4.40 (95% CI - 0.7, 9.5) and 6.18 (95% CI 1.74, 10.61), respectively. Moderate to high heterogeneity was noted because of the variations in patient selection, interpretation criteria, and scanning procedures. CONCLUSIONS This study revealed that [68Ga] FAPI- 46 outperforms [18F] FDG in cancer diagnosis, with higher sensitivity (0.96 vs. 0.73) and specificity (0.92 vs. 0.83). [Ga] FAPI- 46 improved tumor detection with higher SUVmax and TBR. While FDG had a higher LR +, its lower LR - highlighted more false negatives. Accordingly, [68Ga] FAPI- 46 exhibited superior accuracy and reliability than FDG in cancer diagnosis. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD 42023472270.
Collapse
Affiliation(s)
- Samaneh Abbasi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Dehghani
- Department of Epidemiology, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Khademi
- Department of Radiology Technology, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rasoul Irajirad
- Fintech in Medicine Research Center, Iran University of Medical Science, Tehran, Iran
| | - Zahra Pakdin Parizi
- Nuclear Medicine and Molecular Imaging Department, Imam Reza International University, Razavi Hospital, Mashhad, Iran
| | - Mahdieh Sahebi
- Department of Epidemiology, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Sadeghi
- Department of Epidemiology, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alireza Montazerabadi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Meysam Tavakoli
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Sakir M, Ballal S, Rastogi S, Yadav MP, Roesch F, Chandekar K, Gb P, Tripathi M, Dhiman A, Taggar M, Martin M, Bal C. Head-to-Head Comparison Between [ 68 Ga]Ga-DOTA.SA.FAPi And [ 18 F]F-FDG PET/CT Imaging in Patients With Sarcoma. Clin Nucl Med 2025; 50:e271-e279. [PMID: 39876086 DOI: 10.1097/rlu.0000000000005697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025]
Abstract
PURPOSE This study aimed to compare the diagnostic efficacy of [ 68 Ga]Ga-DOTA.SA.FAPi and [ 18 F]F-FDG PET/CT for detecting primary and metastatic lesions in sarcoma patients. MATERIALS AND METHODS The analysis included both patient-based and lesion-based comparisons of PET/CT scans in individuals with histologically confirmed sarcoma. RESULTS A total of 23 sarcoma patients (mean age 43.0 ± 16.5 years; range: 21-76 years) underwent both [ 18 F]F-FDG and [ 68 Ga]Ga-DOTA.SA.FAPi PET/CT scans. Histological distribution included 30% synovial sarcoma, 13% liposarcoma, and 21.7% leiomyosarcoma, with 70% of patients presenting with distant metastases. Detection rates for primary tumors were similar between [ 68 Ga]Ga-DOTA.SA.FAPi and [ 18 F]F-FDG PET/CT (85.7% vs 100%, P = 0.149). Lymph node detection rates were also comparable (80% vs 100%, P = 0.146). Lesion-based analysis revealed that [ 68 Ga]Ga-DOTA.SA.FAPi detected 220 lesions (83% efficiency) compared with 249 lesions (94% efficiency) for [ 18 F]F-FDG ( P < 0.0001). Notably, [ 68 Ga]Ga-DOTA.SA.FAPi demonstrated superior detection of liver (54 vs 38 lesions, P < 0.0001) and bone metastases (125 vs 102 lesions, P < 0.0001). CONCLUSIONS Our study shows that although [ 18 F]F-FDG PET/CT offers superior overall lesion detection efficiency, [ 68 Ga]Ga-DOTA.SA.FAPi PET/CT excels in identifying specific metastatic sites, particularly in bone and liver. These findings highlight the complementary roles of both imaging modalities in sarcoma evaluation.
Collapse
Affiliation(s)
| | | | - Sameer Rastogi
- Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Frank Roesch
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | - Marcel Martin
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University, Mainz, Germany
| | | |
Collapse
|
4
|
Saber Tanha A, Aghaee A, Raeisi N, Zare A, Soltani S. Metastasis Workup for Alveolar Paratesticular Rhabdomyosarcoma: 18F-FDG PET/CT Versus 99mTc-FAPI-46 SPECT/CT. Clin Nucl Med 2025:00003072-990000000-01648. [PMID: 40241438 DOI: 10.1097/rlu.0000000000005738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/29/2024] [Indexed: 04/18/2025]
Abstract
We present a 19-year-old man with alveolar paratesticular rhabdomyosarcoma (RMS) who underwent restaging with both 18F-fluorodeoxyglucose (FDG) positron-emission tomography (PET)/ computed tomography (CT) and 99mTc-fibroblast activation protein inhibitor (FAPI)-46 single-photon emission computed tomography (SPECT)/CT after the initial surgery. Despite normal retroperitoneal lymph nodes on CT, 18F-FDG PET/CT revealed a recurrent mass in the spermatic cord stump and an inguinal lymph node, which was not detected by 99mTc-FAPI SPECT/CT. Our case highlights the superior efficacy of 18F-FDG PET/CT compared with 99mTc-FAPI SPECT/CT in restaging paratesticular RMS, consistent with previous studies demonstrating the utility of 18F-FDG PET/CT in the initial staging of RMS. This report underscores the importance of selecting the optimal imaging modality for accurate disease assessment and management in this aggressive and rare tumor subtype.
Collapse
Affiliation(s)
| | | | | | - Ali Zare
- Department of Urology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Salman Soltani
- Department of Urology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Hassan S, Suvarna R, Uldin H, Hussein M, Botchu R. The Role of Positron Emission Tomography Imaging in Primary Bone Tumours: A Narrative Review. J Clin Med 2025; 14:2624. [PMID: 40283454 PMCID: PMC12027646 DOI: 10.3390/jcm14082624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025] Open
Abstract
Primary malignant bone tumours can pose significant diagnostic and therapeutic challenges due to inter-tumour heterogeneity. While traditional imaging modalities such as radiography, MRI (magnetic resonance imaging), and CT (computed tomography) remain essential for initial evaluation and staging, emerging evidence underscores the evolving role of positron emission tomography (PET), particularly PET/CT with Fluorodeoxyglucose ([18F] FDG), in the comprehensive management of bone sarcomas. This narrative review aims to critically summarise the available literature on PET imaging's utility in the management of primary bone tumours including osteosarcoma, chondrosarcoma, and Ewing sarcoma. Despite limitations like inconsistencies in standard uptake value (SUV) cutoffs and reduced pulmonary resolution, PET/CT is valuable for staging, assessing response to neoadjuvant chemotherapy, predicting histological outcomes, detecting recurrence, and guiding biopsy in metabolically active tumour sites. Further large-scale, prospective studies are warranted to standardise protocols and establish PET's definitive role in sarcoma management.
Collapse
Affiliation(s)
- Shihabul Hassan
- Department of General Medicine, Buckinghamshire Healthcare NHS Trust, Aylesbury HP21 8AL, UK;
| | - Rishabh Suvarna
- School of Medicine, Worsely Building, University of Leeds, Leeds LS2 9JT, UK;
| | - Hasaam Uldin
- Department of Musculoskeletal Radiology, Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham B31 2AP, UK;
| | - Mohsin Hussein
- Department of Radiology, University Hospitals of Leicester, Leicester LE2 7LX, UK;
| | - Rajesh Botchu
- Department of Musculoskeletal Radiology, Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham B31 2AP, UK;
| |
Collapse
|
6
|
Hicks RJ. Are FAP Theranostics Really Happening? Will Radiochemistry or Biology Win? J Nucl Med 2025; 66:497-499. [PMID: 39915120 DOI: 10.2967/jnumed.124.267547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 04/03/2025] Open
Affiliation(s)
- Rodney J Hicks
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
7
|
Watanabe M, Fendler WP, Grafe H, Hirmas N, Hamacher R, Lanzafame H, Pabst KM, Hautzel H, Aigner C, Kasper S, von Tresckow B, Stuschke M, Kümmel S, Lugnier C, Hadaschik B, Grünwald V, Zarrad F, Kersting D, Siveke JT, Herrmann K, Weber M. Head-to-head comparison of 68 Ga-FAPI-46 PET/CT, 18F-FDG PET/CT, and contrast-enhanced CT for the detection of various tumors. Ann Nucl Med 2025; 39:255-265. [PMID: 39443386 DOI: 10.1007/s12149-024-01993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE FAPI-PET/CT exhibits high tumor uptake and low background accumulation, enabling high-sensitivity tumor detection. We compared the diagnostic performance of 68 Ga-FAPI-46 PET/CT plus contrast-enhanced CT (CE-CT), 18F-FDG PET/CT plus CE-CT, and standalone CE-CT in patients with various malignancies. METHODS 232 patients underwent 68 Ga-FAPI-46 PET/CT,18F-FDG PET/CT, and CE-CT each within 4 weeks. Detection rates were assessed by a blinded reader, with ≥ 2 weeks between scans of the same patient to avoid recall bias. A sub-analysis of diagnostic performance was performed for 490 histopathologically validated lesions. Detection rates were compared using McNemar's test. RESULTS Lesion-based detection rates in 68 Ga-FAPI-46 PET/CT plus CE-CT, 18F-FDG PET/CT plus CE-CT, and CE-CT alone were 91.2% (1540/1688), 82.5% (1393/1688) and 60.2% (1016/1688). The detection rates were significantly higher for 68 Ga-FAPI-46 PET/CT plus CE-CT than for 18F-FDG PET/CT plus CE-CT (p < 0.02 for primary lesions and p < 0.001 for total, abdominopelvic nodal, liver and other visceral lesions) and CE-CT (p < 0.0001 for total, primary, cervicothoracic nodal, abdominopelvic nodal, liver, other visceral, and bone lesions). In the sub-analysis, sensitivity, specificity, positive and negative predictive value, and accuracy were 61.3%, 96.7%, 81.4%, 91.4% and 90.0% for 68 Ga-FAPI-46 PET/CT plus CE-CT, 57.0%, 95.7%, 75.7%, 90.5% and 88.4% for 18F-FDG PET/CT plus CE-CT, and 51.6%, 97.2%, 81.4%, 89.6% and 88.6% for CECT, respectively. CONCLUSIONS 68 Ga-FAPI-46 PET/CT plus CE-CT demonstrates a higher tumor detection rate than 18F-FDG PET/CT plus CE-CT and CE-CT in a diverse spectrum of malignancies, especially for primary, abdominopelvic nodal, liver, and other visceral lesions. Further studies on which entities draw particular benefit from 68 Ga-FAPI-46 PET/CT are warranted to aid appropriate diagnostic workup. TRIAL REGISTRATION A total of N = 232 patients were analyzed. Of these, N = 50 patients were included in a prospective interventional trial (NCT05160051), and N = 175 in a prospective observational trial (NCT04571086) for correlation and clinical follow-up of PET findings; N = 7 patients were analyzed retrospectively.
Collapse
Affiliation(s)
- Masao Watanabe
- Department of Nuclear Medicine, University Clinic Essen, Hufelandstr. 55, 45147, Essen, Germany.
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
- Department of Diagnostic Radiology, Kyoto City Hospital, 1-2 Mibuhigashitakadacho, Nakagyo-ku, Kyoto, 604-8845, Japan.
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Clinic Essen, Hufelandstr. 55, 45147, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Hong Grafe
- Department of Nuclear Medicine, University Clinic Essen, Hufelandstr. 55, 45147, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Nader Hirmas
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Rainer Hamacher
- Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Helena Lanzafame
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Kim M Pabst
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Hubertus Hautzel
- Department of Nuclear Medicine, University Clinic Essen, Hufelandstr. 55, 45147, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery and Thoracic Endoscopy, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Stefan Kasper
- Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Bastian von Tresckow
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center and German Cancer Consortium (DKTK Partner Site Essen), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- Department of Radiation Therapy, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Sherko Kümmel
- Department of Gynecology and Gynecologic Oncology, Ev. Kliniken Essen-Mitte (KEM), Essen, Germany
| | - Celine Lugnier
- Department of Hematology and Oncology With Palliative Care, Ruhr-University Bochum, Bochum, Germany
| | - Boris Hadaschik
- Department of Urology, Department for Medical Oncology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Viktor Grünwald
- Department of Urology, Department for Medical Oncology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Fadi Zarrad
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - David Kersting
- Department of Nuclear Medicine, University Clinic Essen, Hufelandstr. 55, 45147, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Center Consortium (DKTK Partner Site Essen), and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Clinic Essen, Hufelandstr. 55, 45147, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Manuel Weber
- Department of Nuclear Medicine, University Clinic Essen, Hufelandstr. 55, 45147, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| |
Collapse
|
8
|
Teles L, Tolboom N, Plasschaert SL, Poot AJ, Braat AJ, van Noesel MM. Potential of non-FDG PET radiotracers for paediatric patients with solid tumours. EJC PAEDIATRIC ONCOLOGY 2024; 4:100203. [DOI: 10.1016/j.ejcped.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Fouillet J, Torchio J, Rubira L, Fersing C. Unveiling the Tumor Microenvironment Through Fibroblast Activation Protein Targeting in Diagnostic Nuclear Medicine: A Didactic Review on Biological Rationales and Key Imaging Agents. BIOLOGY 2024; 13:967. [PMID: 39765634 PMCID: PMC11673949 DOI: 10.3390/biology13120967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 01/03/2025]
Abstract
The tumor microenvironment (TME) is a dynamic and complex medium that plays a central role in cancer progression, metastasis, and treatment resistance. Among the key elements of the TME, cancer-associated fibroblasts (CAFs) are particularly important for their ability to remodel the extracellular matrix, promote angiogenesis, and suppress anti-tumor immune responses. Fibroblast activation protein (FAP), predominantly expressed by CAFs, has emerged as a promising target in both cancer diagnostics and therapeutics. In nuclear medicine, targeting FAP offers new opportunities for non-invasive imaging using radiolabeled fibroblast activation protein inhibitors (FAPIs). These FAP-specific radiotracers have demonstrated excellent tumor detection properties compared to traditional radiopharmaceuticals such as [18F]FDG, especially in cancers with low metabolic activity, like liver and biliary tract tumors. The most recent FAPI derivatives not only enhance the accuracy of positron emission tomography (PET) imaging but also hold potential for theranostic applications by delivering targeted radionuclide therapies. This review examines the biological underpinnings of FAP in the TME, the design of FAPI-based imaging agents, and their evolving role in cancer diagnostics, highlighting the potential of FAP as a target for precision oncology.
Collapse
Affiliation(s)
- Juliette Fouillet
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Jade Torchio
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
10
|
Tomiyoshi K, Wilson LJ, Mourtada F, Mourtada JS, Namiki Y, Kamata W, Yang DJ, Inoue T. Optimization Processes of Clinical Chelation-Based Radiopharmaceuticals for Pathway-Directed Targeted Radionuclide Therapy in Oncology. Pharmaceutics 2024; 16:1458. [PMID: 39598580 PMCID: PMC11597032 DOI: 10.3390/pharmaceutics16111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Targeted radionuclide therapy (TRT) for internal pathway-directed treatment is a game changer for precision medicine. TRT improves tumor control while minimizing damage to healthy tissue and extends the survival for patients with cancer. The application of theranostic-paired TRT along with cellular phenotype and genotype correlative analysis has the potential for malignant disease management. Chelation chemistry is essential for the development of theranostic-paired radiopharmaceuticals for TRT. Among image-guided TRT, 68Ga and 99mTc are the current standards for diagnostic radionuclides, while 177Lu and 225Ac have shown great promise for β- and α-TRT, respectively. Their long half-lives, potent radiobiology, favorable decay schemes, and ability to form stable chelation conjugates make them ideal for both manufacturing and clinical use. The current challenges include optimizing radionuclide production processes, coordinating chelation chemistry stability of theranostic-paired isotopes to reduce free daughters [this pertains to 225Ac daughters 221Fr and 213Bi]-induced tissue toxicity, and improving the modeling of micro dosimetry to refine dose-response evaluation. The empirical approach to TRT delivery is based on standard radionuclide administered activity levels, although clinical trials have revealed inconsistent outcomes and normal-tissue toxicities despite equivalent administered activities. This review presents the latest optimization methods for chelation-based theranostic radiopharmaceuticals, advancements in micro-dosimetry, and SPECT/CT technologies for quantifying whole-body uptake and monitoring therapeutic response as well as cytogenetic correlative analyses.
Collapse
Affiliation(s)
- Katsumi Tomiyoshi
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan
| | - Lydia J. Wilson
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.J.W.); (F.M.)
| | - Firas Mourtada
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.J.W.); (F.M.)
| | | | - Yuta Namiki
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan; (Y.N.); (W.K.); (D.J.Y.)
| | - Wataru Kamata
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan; (Y.N.); (W.K.); (D.J.Y.)
| | - David J. Yang
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan; (Y.N.); (W.K.); (D.J.Y.)
| | - Tomio Inoue
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan; (Y.N.); (W.K.); (D.J.Y.)
| |
Collapse
|
11
|
Filippi L, Ferrari C, Rubini G. Theranostic strategies in sarcoma: preliminary clinical evidence. Expert Opin Investig Drugs 2024; 33:1119-1127. [PMID: 39367699 DOI: 10.1080/13543784.2024.2414119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
INTRODUCTION Sarcomas encompass a highly diverse range of malignancies, characterized by varied morphological and molecular profiles. Treatment options in case of therapy-refractory or advanced disease are limited. In this context, theranostics emerges as an innovative platform seamlessly integrating diagnosis and therapy, offering promising prospects. AREAS COVERED This special report delves into the initial clinical applications of theranostic-based approaches in sarcomas. Specifically, it examines various strategies targeting biomarkers associated with sarcomas, including fibroblast activation protein (FAP), prostate-specific membrane antigen (PSMA), C-X-C chemokine receptor type 4 (CXCR4) and somatostatin receptor 2 (SSTR2). EXPERT OPINION The heterogeneous uptake of the CXCR4-targeted radioligand in lesions, along with its poor correlation with immunohistochemistry data, diminishes the attractiveness of this theranostic approach in the sarcoma oncological setting. SSTR2-targeted approaches in sarcoma, although potentially effective, are limited to a single case. Early experiences with FAP inhibitors in sarcoma patients have shown particularly promising outcomes, indicating effective disease control with minimal toxicity. While PSMA presents an enticing target for theranostic approaches in sarcomas, its utilization remains anecdotal and requires further investigation. Prospective and well-designed clinical trials are imperative to delineate the potential impact of FAPI- and PSMA-based approaches on sarcoma therapeutic landscapes, offering innovative and personalized treatment options.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Cristina Ferrari
- Nuclear Medicine Unit, Interdisciplinary Department of Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| | - Giuseppe Rubini
- Nuclear Medicine Unit, Interdisciplinary Department of Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
12
|
Kiani M, Jokar S, Hassanzadeh L, Behnammanesh H, Bavi O, Beiki D, Assadi M. Recent Clinical Implications of FAPI: Imaging and Therapy. Clin Nucl Med 2024; 49:e538-e556. [PMID: 39025634 DOI: 10.1097/rlu.0000000000005348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
ABSTRACT The fibroblast activation protein (FAP) is a biomarker that is selectively overexpressed on cancer-associated fibroblasts (CAFs) in various types of tumoral tissues and some nonmalignant diseases, including fibrosis, arthritis, cardiovascular, and metabolic diseases. FAP plays a critical role in tumor microenvironment through facilitating proliferation, invasion, angiogenesis, immunosuppression, and drug resistance. Recent studies reveal that FAP might be regarded as a promising target for cancer diagnosis and treatment. FAP-targeted imaging modalities, especially PET, have shown high sensitivity and specificity in detecting FAP-expressing tumors. FAP-targeted imaging can potentially enhance tumor detection, staging, and monitoring of treatment response, and facilitate the development of personalized treatment strategies. This study provides a comprehensive view of FAP and its function in the pathophysiology of cancer and nonmalignant diseases. It also will discuss the characteristics of radiolabeled FAP inhibitors, particularly those based on small molecules, their recent clinical implications in imaging and therapy, and the associated clinical challenges with them. In addition, we present the results of imaging and biodistribution radiotracer 68 Ga-FAPI-46 in patients with nonmalignant diseases, including interstitial lung disease, primary biliary cirrhosis, and myocardial infarction, who were referred to our department. Our results show that cardiac FAP-targeted imaging can provide a novel potential biomarker for managing left ventricle remodeling. Moreover, this study has been organized and presented in a manner that offers a comprehensive overview of the current status and prospects of FAPI inhibitors in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Mahshid Kiani
- From the Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Safura Jokar
- From the Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Hassanzadeh
- Department of Nuclear Medicine, School of Medicine, Rajaie Cardiovascular, Medical & Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Omid Bavi
- Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy, Bushehr Medical University Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
13
|
Hou P, Zhong K, Guo W, Chen H, Li Y, Ke M, Lv J, Liu S, Zhong H, Fu Y, Lin J, Liu C, Gu Y, Qin J, Hong C, Wang X. The diagnostic value of [ 18F]FAPI-42 PET/CT for pulmonary artery masses: comparison with [ 18F]FDG PET/CT. Eur Radiol 2024; 34:7233-7243. [PMID: 38834788 DOI: 10.1007/s00330-024-10821-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/20/2024] [Accepted: 04/21/2024] [Indexed: 06/06/2024]
Abstract
OBJECTIVES To investigate the potential utility of [18F]fibroblast activation protein inhibitor (FAPI) positron emission tomography/computed tomography (PET/CT) for evaluating pulmonary artery (PA) masses, and compare it with [18F]fluorodeoxyglucose (FDG) PET/CT. METHODS Participants with clinically suspected PA malignancy were prospectively enrolled and underwent dual-tracer PET/CT ([18F]FAPI-42 and [18F]FDG) imaging. Visual analysis and semi-quantitative parameters were compared between the two types of radiotracers. The tissue specimen underwent immunohistochemical staining to verify FAP expression in the tissue. RESULTS Thirty-three patients (18 males/15 females; mean age 53.1 ± 15.4 years) were enrolled. All 21 patients with malignant PA masses were FDG-positive (100%), whereas 20 out of 21 patients were FAPI-positive (95.2%). All 12 patients with benign PA masses were both negative in FDG and FAPI PET. The mean maximum standardized uptake value (SUVmax) and target-to-background ratio (TBR) of FAPI and FDG in malignant PA masses were significantly higher than those of benign masses. Although there was no significant difference in SUVmax between FDG and FAPI in malignant PA masses (11.36 vs. 9.18, p = 0.175), the TBR (liver) and TBR (left ventricle) were more favorable for FAPI than for FDG (13.04 vs. 5.17, p < 0.001); (median: 7.75 vs. 2.75, p = 0.007). Immunohistochemical analysis (n = 16) validated that the level of FAP expression corresponded strongly to the uptake of FAPI in PET/CT scans (rs = 0.712, p = 0.002). For clinical management, FAPI PET found more metastatic lesions than FDG PET in 4 patients, with 2 patients upgrading and 1 patient changing treatment decisions. CONCLUSIONS FAPI PET/CT is feasible in the diagnosis of PA masses. Although not superior to FDG PET/CT, FAPI PET/CT showed better target-to-background contrast. CLINICAL RELEVANCE STATEMENT This study found that FAPI PET/CT is not superior to FDG PET/CT in diagnosing PA masses, but FAPI PET/CT displays better target-to-background contrast and more positive lesions, which may help improve disease management. KEY POINTS Pulmonary malignancies lack specificity in clinical manifestations, laboratory tests, and routine imaging examinations. FAPI PET/CT is not diagnostically better than FDG PET/CT but displays better target-to-background contrast and more positive lesions. Dual-tracer PET/CT ([18F]FAPI-42 and [18F]FDG) imaging improves clinical management of pulmonary artery masses.
Collapse
Affiliation(s)
- Peng Hou
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510010, China
| | - Kaixiang Zhong
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510010, China
| | - Wenliang Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, 510010, China
| | - Haiming Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, 510010, China
| | - Youcai Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510010, China
| | - Miao Ke
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510010, China
| | - Jie Lv
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510010, China
| | - Shaoyu Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510010, China
| | - Huizhen Zhong
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510010, China
| | - Yimin Fu
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510010, China
| | - Jielong Lin
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510010, China
| | - Chunli Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, 510010, China
| | - Yingying Gu
- Department of Respiratory Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, 510010, China
| | - Jilong Qin
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510010, China
| | - Cheng Hong
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, 510010, China.
| | - Xinlu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510010, China.
| |
Collapse
|
14
|
Nilsson T, Rasinski P, Smedby Ö, Af Burén S, Sparrelid E, Löhr JM, Tran TA, Blomgren A, Tzortzakakis A, Axelsson R, Holstensson M. Acquisition Duration Optimization Using Visual Grading Regression in [ 68Ga]FAPI-46 PET Imaging of Oncologic Patients. J Nucl Med Technol 2024; 52:221-228. [PMID: 38627014 DOI: 10.2967/jnmt.123.267156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/04/2024] [Indexed: 09/07/2024] Open
Abstract
Fibroblast activation protein is a promising target for oncologic molecular imaging with radiolabeled fibroblast activation protein inhibitors (FAPI) in a large variety of cancers. However, there are yet no published recommendations on how to set up an optimal imaging protocol for FAPI PET/CT. It is important to optimize the acquisition duration and strive toward an acquisition that is sufficiently short while simultaneously providing sufficient image quality to ensure a reliable diagnosis. The aim of this study was to evaluate the feasibility of reducing the acquisition duration of [68Ga]FAPI-46 imaging while maintaining satisfactory image quality, with certainty that the radiologist's ability to make a clinical diagnosis would not be affected. Methods: [68Ga]FAPI-46 PET/CT imaging was performed on 10 patients scheduled for surgical resection of suspected pancreatic cancer, 60 min after administration of 3.6 ± 0.2 MBq/kg. The acquisition time was 4 min/bed position, and the raw PET data were statistically truncated and reconstructed to represent images with an acquisition duration of 1, 2, and 3 min/bed position, additional to the reference images of 4 min/bed position. Four image quality criteria that focused on the ability to distinguish specific anatomic details, as well as perceived image noise and overall image quality, were scored on a 4-point Likert scale and analyzed with mixed-effects ordinal logistic regression. Results: A trend toward increasing image quality scores with increasing acquisition duration was observed for all criteria. For the overall image quality, there was no significant difference between 3 and 4 min/bed position, whereas 1 and 2 min/bed position were rated significantly (P < 0.05) lower than 4 min/bed position. For the other criteria, all images with a reduced acquisition duration were rated significantly inferior to images obtained at 4 min/bed position. Conclusion: The acquisition duration can be reduced from 4 to 3 min/bed position while maintaining satisfactory image quality. Reducing the acquisition duration to 2 min/bed position or lower is not recommended since it results in inferior-quality images so noisy that clinical interpretation is significantly disrupted.
Collapse
Affiliation(s)
- Ted Nilsson
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Pawel Rasinski
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Örjan Smedby
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, Sweden
| | - Siri Af Burén
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Ernesto Sparrelid
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Upper Gastrointestinal Diseases, Karolinska University Hospital, Huddinge, Sweden
| | - J Matthias Löhr
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Upper Gastrointestinal Diseases, Karolinska University Hospital, Huddinge, Sweden
| | - Thuy A Tran
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden; and
| | - August Blomgren
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Antonios Tzortzakakis
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Rimma Axelsson
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Huddinge, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Maria Holstensson
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden;
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
15
|
Kessler L, Schwaning F, Metzenmacher M, Pabst K, Siveke J, Trajkovic-Arsic M, Schaarschmidt B, Wiesweg M, Aigner C, Plönes T, Darwiche K, Bölükbas S, Stuschke M, Umutlu L, Nader M, Theegarten D, Hamacher R, Eberhardt WEE, Schuler M, Herrmann K, Fendler WP, Hautzel H. Fibroblast Activation Protein-Directed Imaging Outperforms 18F-FDG PET/CT in Malignant Mesothelioma: A Prospective, Single-Center, Observational Trial. J Nucl Med 2024; 65:1188-1193. [PMID: 38960716 DOI: 10.2967/jnumed.124.267473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024] Open
Abstract
The fibroblast activation protein (FAP) is highly expressed in tumor and stromal cells of mesothelioma and thus is an interesting imaging and therapeutic target. Previous data on PET imaging with radiolabeled FAP inhibitors (FAPIs) suggest high potential for superior tumor detection. Here, we report the data of a large malignant pleural mesothelioma cohort within a 68Ga-FAPI46 PET observational trial (NCT04571086). Methods: Of 43 eligible patients with suspected or proven malignant mesothelioma, 41 could be included in the data analysis of the 68Ga-FAPI46 PET observational trial. All patients underwent 68Ga-FAPI46 PET/CT, contrast-enhanced CT, and 18F-FDG PET/CT. The primary study endpoint was the association of 68Ga-FAPI46 PET uptake intensity and histopathologic FAP expression. Furthermore, secondary endpoints were detection rate and sensitivity, specificity, and positive and negative predictive values as compared with 18F-FDG PET/CT. Datasets were interpreted by 2 masked readers. Results: The primary endpoint was met, and the association between 68Ga-FAPI46 SUVmax or SUVpeak and histopathologic FAP expression was significant (SUVmax: r = 0.49, P = 0.037; SUVpeak: r = 0.51, P = 0.030).68Ga-FAPI46 and 18F-FDG showed similar sensitivity by histopathologic validation on a per-patient (100.0% vs. 97.3%) and per region (98.0% vs. 95.9%) basis. Per-region analysis revealed higher 68Ga-FAPI46 than 18F-FDG specificity (81.1% vs. 36.8%) and positive predictive value (87.5% vs. 66.2%). Conclusion: We confirm an association of 68Ga-FAPI46 uptake and histopathologic FAP expression in mesothelioma patients. Additionally, we report high sensitivity and superior specificity and positive predictive value for 68Ga-FAPI46 versus 18F-FDG.
Collapse
Affiliation(s)
- Lukas Kessler
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - Felix Schwaning
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - Martin Metzenmacher
- German Cancer Consortium, Partner Site Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kim Pabst
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - Jens Siveke
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium, Partner Site Essen, Essen, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Marija Trajkovic-Arsic
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium, Partner Site Essen, Essen, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Benedikt Schaarschmidt
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Marcel Wiesweg
- German Cancer Consortium, Partner Site Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery and Thoracic Endoscopy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Till Plönes
- German Cancer Research Center, Heidelberg, Germany
- Department of Thoracic Surgery and Thoracic Endoscopy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Division of Thoracic Surgery, Department of Visceral, Thoracic, and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Kaid Darwiche
- Department of Pulmonary Medicine, Section of Interventional Pulmonology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Servet Bölükbas
- Department of Thoracic Surgery and Thoracic Endoscopy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lale Umutlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Nader
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - Dirk Theegarten
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; and
| | - Rainer Hamacher
- German Cancer Consortium, Partner Site Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wilfried E E Eberhardt
- German Cancer Consortium, Partner Site Essen, Essen, Germany
- Division of Thoracic Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Schuler
- German Cancer Consortium, Partner Site Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - Hubertus Hautzel
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site Essen, Essen, Germany
| |
Collapse
|
16
|
Oster C, Kessler L, Blau T, Keyvani K, Pabst KM, Fendler WP, Fragoso Costa P, Lazaridis L, Schmidt T, Feldheim J, Pierscianek D, Schildhaus HU, Sure U, Ahmadipour Y, Kleinschnitz C, Guberina N, Stuschke M, Deuschl C, Scheffler B, Herrmann K, Kebir S, Glas M. The Role of Fibroblast Activation Protein in Glioblastoma and Gliosarcoma: A Comparison of Tissue, 68Ga-FAPI-46 PET Data, and Survival Data. J Nucl Med 2024; 65:1217-1223. [PMID: 38960714 DOI: 10.2967/jnumed.123.267151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/22/2024] [Indexed: 07/05/2024] Open
Abstract
Despite their unique histologic features, gliosarcomas belong to the group of glioblastomas and are treated according to the same standards. Fibroblast activation protein (FAP) is a component of a tumor-specific subpopulation of fibroblasts that plays a critical role in tumor growth and invasion. Some case studies suggest an elevated expression of FAP in glioblastoma and a particularly strong expression in gliosarcoma attributed to traits of predominant mesenchymal differentiation. However, the prognostic impact of FAP and its diagnostic and therapeutic potential remain unclear. Here, we investigate the clinical relevance of FAP expression in gliosarcoma and glioblastoma and how it correlates with 68Ga-FAP inhibitor (FAPI)-46 PET uptake. Methods: Patients diagnosed with gliosarcoma or glioblastoma without sarcomatous differentiation with an overall survival of less than 2.5 y were enrolled. Histologic examination included immunohistochemistry and semiquantitative scoring of FAP (0-3, with higher values indicating stronger expression). Additionally, 68Ga-FAPI-46 PET scans were performed in a subset of glioblastomas without sarcomatous differentiation patients. The clinical SUVs were correlated with FAP expression levels in surgically derived tumor tissue and relevant prognostic factors. Results: Of the 61 patients who were enrolled, 13 of them had gliosarcoma. Immunohistochemistry revealed significantly more FAP in gliosarcomas than in glioblastomas without sarcomatous differentiation of tumor tissue (P < 0.0001). In the latter, FAP expression was confined to the perivascular space, whereas neoplastic cells additionally expressed FAP in gliosarcoma. A significant correlation of immunohistochemical FAP with SUVmean and SUVpeak of 68Ga-FAPI-46 PET indicates that clinical tracer uptake represents FAP expression of the tumor. Although gliosarcomas express higher levels of FAP than do glioblastomas without sarcomatous differentiation, overall survival does not significantly differ between the groups. Conclusion: The analysis reveals a significant correlation between SUVmean and SUVpeak in 68Ga-FAPI-46 PET and immunohistochemical FAP expression. This study indicates that FAP expression is much more abundant in the gliosarcoma subgroup of glioblastomas. This could open not only a diagnostic but also a therapeutic gap, since FAP could be explored as a theranostic target to enhance survival in a distinct subgroup of high-risk brain tumor patients with poor survival prognosis.
Collapse
Affiliation(s)
- Christoph Oster
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen-Düsseldorf, Partnership Between DKFZ and University Hospital Essen, Essen, Germany; and DKFZ-Division of Translational Neurooncology at West German Cancer Center (WTZ), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Lukas Kessler
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; and National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Tobias Blau
- Institute of Neuropathology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Kim M Pabst
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; and National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; and National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Pedro Fragoso Costa
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; and National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Lazaros Lazaridis
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Teresa Schmidt
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Jonas Feldheim
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Daniela Pierscianek
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
- Department of Neurosurgery and Spine Surgery, St. Marienhospital Lünen, Lünen, Germany
| | - Hans Ulrich Schildhaus
- Institute of Pathology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- Discovery Life Sciences Biomarker Services GmbH, Kassel, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Yahya Ahmadipour
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Nika Guberina
- Department of Radiotherapy, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- Department of Radiotherapy, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Cornelius Deuschl
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
| | - Björn Scheffler
- German Cancer Consortium (DKTK), Partner Site Essen-Düsseldorf, Partnership Between DKFZ and University Hospital Essen, Essen, Germany; and DKFZ-Division of Translational Neurooncology at West German Cancer Center (WTZ), University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany; and
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; and National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
- National Center for Tumor Diseases (NCT), NCT West, Heidelberg, Germany
| | - Sied Kebir
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen-Düsseldorf, Partnership Between DKFZ and University Hospital Essen, Essen, Germany; and DKFZ-Division of Translational Neurooncology at West German Cancer Center (WTZ), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Martin Glas
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany;
- German Cancer Consortium (DKTK), Partner Site Essen-Düsseldorf, Partnership Between DKFZ and University Hospital Essen, Essen, Germany; and DKFZ-Division of Translational Neurooncology at West German Cancer Center (WTZ), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
17
|
Watanabe M, Fendler WP, Grafe H, Hirmas N, Hamacher R, Lanzafame H, Pabst KM, Hautzel H, Aigner C, Kasper S, von Tresckow B, Stuschke M, Kümmel S, Lugnier C, Hadaschik B, Grünwald V, Zarrad F, Siveke JT, Herrmann K, Weber M. Prognostic Implications of 68Ga-FAPI-46 PET/CT-Derived Parameters on Overall Survival in Various Types of Solid Tumors. J Nucl Med 2024; 65:1027-1034. [PMID: 38782454 DOI: 10.2967/jnumed.123.266981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Tumoral fibroblast activation protein expression is associated with proliferation and angiogenesis and can be visualized by PET/CT. We examined the prognostic value of [68Ga]Ga-fibroblast activation protein inhibitor (FAPI) (68Ga-FAPI)-46 PET/CT for different tumor entities in patients enrolled in 2 prospective imaging studies (NCT05160051, n = 30; NCT04571086, n = 115). Methods: Within 4 wk, 145 patients underwent 68Ga-FAPI-46 and [18F]FDG (18F-FDG) PET/CT. The association between overall survival (OS) and sex, age, tumor entity, total lesion number, highest SUVmax, and the presence of each nodal, visceral, and bone metastasis was tested using univariate Cox regression analysis. Multivariate analyses were performed for prognostic factors with P values of less than 0.05. Results: In the univariate analysis, shorter OS was associated with total lesion number and the presence of nodal, visceral, and bone metastases on 68Ga-FAPI-46 PET/CT (hazard ratio [HR], 1.06, 2.18, 1.69, and 2.05; P < 0.01, < 0.01, = 0.04, and = 0.02, respectively) and 18F-FDG PET/CT (HR, 1.05, 2.31, 1.76, and 2.30; P < 0.01, < 0.01, = 0.03, and < 0.01, respectively) and with SUVmax on 68Ga-FAPI-46 PET/CT (HR, 1.03; P = 0.03). In the multivariate analysis, total lesion number on 68Ga-FAPI-46 PET/CT was an independent risk factor for shorter OS (HR, 1.05; P = 0.02). In patients with pancreatic cancer, shorter OS was associated with total lesion number on 68Ga-FAPI-46 PET/CT (HR, 1.09; P < 0.01) and bone metastases on 18F-FDG PET/CT (HR, 31.39; P < 0.01) in the univariate analysis and with total lesion number on 68Ga-FAPI-46 PET/CT (HR, 1.07; P = 0.04) in the multivariate analyses. In breast cancer, total lesion number on 68Ga-FAPI-46 PET/CT (HR, 1.07; P = 0.02), as well as bone metastases on 18F-FDG PET/CT (HR, 9.64; P = 0.04), was associated with shorter OS in the univariate analysis. The multivariate analysis did not reveal significant prognostic factors. In thoracic cancer (lung cancer and pleural mesothelioma), the univariate and multivariate analyses did not reveal significant prognostic factors. Conclusion: Disease extent on 68Ga-FAPI-46 PET/CT is a predictor of short OS and may aid in future risk stratification by playing a supplemental role alongside 18F-FDG PET/CT.
Collapse
Affiliation(s)
- Masao Watanabe
- Department of Nuclear Medicine, University Clinic Essen, Essen, Germany;
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Clinic Essen, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Hong Grafe
- Department of Nuclear Medicine, University Clinic Essen, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Nader Hirmas
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Rainer Hamacher
- Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Helena Lanzafame
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Kim M Pabst
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Hubertus Hautzel
- Department of Nuclear Medicine, University Clinic Essen, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery and Thoracic Endoscopy, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Stefan Kasper
- Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Bastian von Tresckow
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center and German Cancer Consortium (DKTK partner site Essen), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- Department of Radiation Therapy, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Sherko Kümmel
- Department of Gynecology and Gynecologic Oncology, Evang. Kliniken Essen-Mitte, Essen, Germany, and Department of Gynecology with Breast Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Celine Lugnier
- Department of Hematology and Oncology with Palliative Care, Ruhr University Bochum, Bochum, Germany
| | - Boris Hadaschik
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Viktor Grünwald
- Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Fadi Zarrad
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany; and
- Division of Solid Tumor Translational Oncology, German Cancer Center Consortium (DKTK partner site Essen), and German Cancer Research Center, Heidelberg, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Clinic Essen, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Manuel Weber
- Department of Nuclear Medicine, University Clinic Essen, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| |
Collapse
|
18
|
Xiang F, Zhang Y, Tan X, Zhang J, Li T, Yan Y, Ma W, Chen Y. A bibliometric analysis based on hotspots and frontier trends of positron emission tomography/computed tomography utility in bone and soft tissue sarcoma. Front Oncol 2024; 14:1344643. [PMID: 38974238 PMCID: PMC11224451 DOI: 10.3389/fonc.2024.1344643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Purpose This study aimed to analyze articles on the diagnosis and treatment of bone and soft tissue sarcoma using positron emission tomography (PET)/computed tomography (CT) published in the last 13 years. The objective was to conduct a bibliometric analysis and identify the research hotspots and emerging trends. Methods Web of Science was used to search for articles on PET/CT diagnosis and treatment of bone and soft tissue sarcoma published from January 2010 to June 2023. CiteSpace was utilized to import data for bibliometric analysis. Results In total, 425 relevant publications were identified. Publications have maintained a relatively stable growth rate for the past 13 years. The USA has the highest number of published articles (139) and the highest centrality (0.35). The UDICE-French Research Universities group is the most influential institution. BYUN BH is a prominent contributor to this field. The Journal of Clinical Oncology has the highest impact factor in the field. Conclusion The clinical application of PET/CT is currently a research hotspot. Upcoming areas of study concentrate on the merging of PET/CT with advanced machine learning and/or alternative imaging methods, novel imaging substances, and the fusion of diagnosis and therapy. The use of PET/CT has progressively become a crucial element in the identification and management of sarcomas. To confirm its efficacy, there is a need for extensive, multicenter, prospective studies.
Collapse
Affiliation(s)
- Feifan Xiang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
- Department of Orthopedic, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yue Zhang
- Department of Orthopedic, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoqi Tan
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jintao Zhang
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, China
| | - Tengfei Li
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, China
| | - Yuanzhuo Yan
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, China
| | - Wenzhe Ma
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yue Chen
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
19
|
Lanzafame H, Mavroeidi IA, Pabst KM, Desaulniers M, Ingenwerth M, Hirmas N, Kessler L, Nader M, Bartel T, Leyser S, Barbato F, Schuler M, Bauer S, Siveke JT, Herrmann K, Hamacher R, Fendler WP. 68Ga-Fibroblast Activation Protein Inhibitor PET/CT Improves Detection of Intermediate and Low-Grade Sarcomas and Identifies Candidates for Radiopharmaceutical Therapy. J Nucl Med 2024; 65:880-887. [PMID: 38724279 DOI: 10.2967/jnumed.123.267248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/15/2024] [Indexed: 06/05/2024] Open
Abstract
Fibroblast activation protein-α (FAP) is often highly expressed by sarcoma cells and by sarcoma-associated fibroblasts in the tumor microenvironment. This makes it a promising target for imaging and therapy. The level of FAP expression and the diagnostic value of 68Ga-FAP inhibitor (FAPI) PET for sarcoma subtypes are unknown. We assessed the diagnostic performance and accuracy of 68Ga-FAPI PET in various bone and soft-tissue sarcomas. Potential eligibility for FAP-targeted radiopharmaceutical therapy (FAP-RPT) was evaluated. Methods: This prospective observational trial enrolled 200 patients with bone and soft-tissue sarcoma who underwent 68Ga-FAPI PET/CT and 18F-FDG PET/CT (186/200, or 93%) for staging or restaging. The number of lesions detected and the uptake (SUVmax) of the primary tumor, lymph nodes, and visceral and bone metastases were analyzed. The Wilcoxon test was used for semiquantitative assessment. The association of 68Ga-FAPI uptake intensity, histopathologic grade, and FAP expression in sarcoma biopsy samples was analyzed using Spearman r correlation. The impact of 68Ga-FAPI PET on clinical management was investigated using questionnaires before and after PET/CT. Eligibility for FAP-RPT was defined by an SUVmax greater than 10 for all tumor regions. Results: 68Ga-FAPI uptake was heterogeneous among sarcoma subtypes. The 3 sarcoma entities with the highest uptake (mean SUVmax ± SD) were solitary fibrous tumor (24.7 ± 11.9), undifferentiated pleomorphic sarcoma (18.8 ± 13.1), and leiomyosarcoma (15.2 ± 10.2). Uptake of 68Ga-FAPI versus 18F-FDG was significantly higher in low-grade sarcomas (10.4 ± 8.5 vs. 7.0 ± 4.5, P = 0.01) and in potentially malignant intermediate or unpredictable sarcomas without a World Health Organization grade (not applicable [NA]; 22.3 ± 12.5 vs. 8.5 ± 10.0, P = 0.0004), including solitary fibrous tumor. The accuracy, as well as the detection rates, of 68Ga-FAPI was higher than that of 18F-FDG in low-grade sarcomas (accuracy, 92.2 vs. 80.0) and NA sarcomas (accuracy, 96.9 vs. 81.9). 68Ga-FAPI uptake and the histopathologic FAP expression score (n = 89) were moderately correlated (Spearman r = 0.43, P < 0.0002). Of 138 patients, 62 (45%) with metastatic sarcoma were eligible for FAP-RPT. Conclusion: In patients with low-grade and NA sarcomas, 68Ga-FAPI PET demonstrates uptake, detection rates, and accuracy superior to those of 18F-FDG PET. 68Ga-FAPI PET criteria identified eligibility for FAP-RPT in about half of sarcoma patients.
Collapse
Affiliation(s)
- Helena Lanzafame
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany;
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
| | - Ilektra A Mavroeidi
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Kim M Pabst
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
| | - Mélanie Desaulniers
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marc Ingenwerth
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Nader Hirmas
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
| | - Lukas Kessler
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Michael Nader
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
| | - Timo Bartel
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
| | - Stephan Leyser
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
| | - Francesco Barbato
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
| | - Martin Schuler
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
- National Center for Tumor Diseases West, Campus Essen, Essen, Germany; and
| | - Sebastian Bauer
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
- National Center for Tumor Diseases West, Campus Essen, Essen, Germany; and
| | - Jens T Siveke
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
- National Center for Tumor Diseases West, Campus Essen, Essen, Germany; and
- Bridge Institute of Experimental Tumor Therapy and Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Rainer Hamacher
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
- Cancer Consortium partner site Essen/Düsseldorf, DKFZ and University Hospital Essen, Essen, Germany
| |
Collapse
|
20
|
Nakayama M, Hope TA, Salavati A. Diagnostic and Therapeutic Application of Fibroblast Activation Protein Inhibitors in Oncologic and Nononcologic Diseases. Cancer J 2024; 30:210-217. [PMID: 38753756 DOI: 10.1097/ppo.0000000000000719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Fibroblast activation protein inhibitor positron emission tomography (PET) has gained interest for its ability to demonstrate uptake in a diverse range of tumors. Its molecular target, fibroblast activation protein, is expressed in cancer-associated fibroblasts, a major cell type in tumor microenvironment that surrounds various types of cancers. Although existing literature on FAPI PET is largely from single-center studies and case reports, initial findings show promise for some cancer types demonstrating improved imaging when compared with the widely used 18F-fludeoxyglucose PET for oncologic imaging. As we expand our knowledge of the utility of FAPI PET, accurate understanding of noncancerous uptake seen on FAPI PET is crucial for accurate evaluation. In this review, we summarize potential diagnostic and therapeutic applications of radiolabeled FAP inhibitors in oncological and nononcological disease processes.
Collapse
Affiliation(s)
- Mariko Nakayama
- From the Department of Radiological Sciences, UCLA, Los Angeles, CA, USA
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ali Salavati
- Division of Nuclear Medicine and Translational Theranostics, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
21
|
Al-Rashdan R, Ruzzeh S, Al-Hajaj N, Al-Rasheed U, Al-Ibraheem A. Incidental Intense Fibroblast Activation Protein Inhibitor (FAPI) Uptake in Bilateral Gluteal Myositis Ossificans: A Case Report. Cureus 2024; 16:e59520. [PMID: 38826990 PMCID: PMC11144052 DOI: 10.7759/cureus.59520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/04/2024] Open
Abstract
Positron emission tomography/computed tomography (PET/CT) using 18F-fluorodeoxyglucose ([18F]-FDG) is a widely adopted imaging modality for detecting hypermetabolic lesions. However, emerging positron-emitting tracers, such as radiopharmaceuticals featuring fibroblast activation protein (FAP) inhibitors (FAPI) labeled with [18F] or [68Ga], have opened new avenues in nuclear medicine. This case report focuses on the unique behavior of [68Ga]-FAPI in bilateral gluteal myositis ossificans, an infrequent condition characterized by soft tissue ossification. A 45-year-old woman with gastric adenocarcinoma underwent subtotal gastrectomy and received neoadjuvant and adjuvant chemotherapy; [68Ga]-FAPI PET revealed metastatic processes and unexpected [68Ga]-FAPI avid intramuscular ossifications in the pelvic and bilateral thigh muscles. Even though there was no history of trauma, the patient was diagnosed with myositis ossificans, a condition marked by non-cancerous ectopic ossifications. Diagnosis relies on history, radiology, and/or histology. FAPI imaging, increasingly used for inflammatory and infectious diseases, can exhibit uptake in benign conditions, including those involving bones and joints. This case report is the first to document incidental bilateral [68Ga]-FAPI uptake in bilateral gluteal myositis ossificans. The robust [68Ga]-FAPI activity in myositis ossificans highlights the importance of considering myositis ossificans in the context of soft tissue calcifications with intense [68Ga]-FAPI uptake.
Collapse
Affiliation(s)
| | - Saad Ruzzeh
- Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, JOR
| | | | - Ula Al-Rasheed
- Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, JOR
| | | |
Collapse
|
22
|
Bentestuen M, Nalliah S, Stolberg MMK, Zacho HD. How to Perform FAPI PET? An Expedited Systematic Review Providing a Recommendation for FAPI PET Imaging With Different FAPI Tracers. Semin Nucl Med 2024; 54:345-355. [PMID: 38052711 DOI: 10.1053/j.semnuclmed.2023.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
This expedited systematic review aims to provide the first overview of the different Fibroblast activation protein inhibitor (FAPI) PET scan procedures in the literature and discuss how to efficiently obtain optimal FAPI PET images based on the best available evidence. The PubMed, Embase, Cochrane Library, and Web of Science databases were systematically searched in April 2023. Peer-reviewed cohort studies published in English and used FAPI tracers were included. Articles were excluded if critical scan procedure information was missing, or the article was not retrievable from a university library within 30 days. Data were grouped according to the FAPI tracer applied. Meta-analysis with proper statistics was deemed not feasible based on a pilot study. A total of 946 records were identified. After screening, 159 studies were included. [68Ga]Ga-FAPI-04 was applied in 98 studies (61%), followed by [68Ga]Ga-FAPI-46 in 19 studies (12%). Most studies did not report specific patient preparation. A mean/median administered activity of 80-200 MBq was most common; however, wide ranges were seen in [68Ga]Ga-FAPI-04 PET studies (56-370 MBq). An injection-to-scan-time of 60 minutes was dominant for all FAPI PET studies. A possible trend toward shorter injection-to-scan times was observed for [68Ga]Ga-FAPI-46. Three studies evaluated [68Ga]Ga-FAPI-46 PET acquisition at multiple time points in more than 593 cancer lesions, all yielding equivalent tumor detection at 10 minutes vs later time points despite slightly lower tumor-to-background Ratios. Despite the wide ranges, most institutions administer an average of 80-200 MBq [68Ga]Ga-FAPI-04/46 and scan patients at 60 minutes postinjection. For [68Ga]Ga-FAPI-46, the present evidence consistently supports the feasibility of image acquisition earlier than 30 minutes. Currently, data on the optimal FAPI PET scan procedure are limited, and more studies are encouraged. The current review can serve as a temporary guideline for institutions planning FAPI PET studies.
Collapse
Affiliation(s)
- Morten Bentestuen
- Department of Nuclear Medicine and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Surenth Nalliah
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Marie M K Stolberg
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Helle D Zacho
- Department of Nuclear Medicine and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
23
|
Broski SM. Positron Emission Tomography/Computed Tomography Transformation of Oncology: Musculoskeletal Cancers. PET Clin 2024; 19:217-229. [PMID: 38184453 DOI: 10.1016/j.cpet.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
The past 25 years have seen significant growth in the role of positron emission tomography/computed tomography (PET/CT) in musculoskeletal oncology. Substantiative advances in technical capability and image quality have been paralleled by increasingly widespread clinical adoption and implementation. It is now recognized that PET/CT is useful in diagnosis, staging, prognostication, response assessment, and surveillance of bone and soft tissue sarcomas, often providing critical information in addition to conventional imaging assessment. As individualized, precision medicine continues to evolve for patients with sarcoma, PET/CT is uniquely positioned to offer additional insight into the biology and management of these tumors.
Collapse
Affiliation(s)
- Stephen M Broski
- Department of Radiology, Mayo Clinic, Mayo Building, 2nd Floor, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
24
|
Zhang Z, Tao J, Qiu J, Cao Z, Huang H, Xiao J, Zhang T. From basic research to clinical application: targeting fibroblast activation protein for cancer diagnosis and treatment. Cell Oncol (Dordr) 2024; 47:361-381. [PMID: 37726505 DOI: 10.1007/s13402-023-00872-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
PURPOSE This study aims to review the multifaceted roles of a membrane protein named Fibroblast Activation Protein (FAP) expressed in tumor tissue, including its molecular functionalities, regulatory mechanisms governing its expression, prognostic significance, and its crucial role in cancer diagnosis and treatment. METHODS Articles that have uncovered the regulatory role of FAP in tumor, as well as its potential utility within clinical realms, spanning diagnosis to therapeutic intervention has been screened for a comprehensive review. RESULTS Our review reveals that FAP plays a pivotal role in solid tumor progression by undertaking a multitude of enzymatic and nonenzymatic roles within the tumor stroma. The exclusive presence of FAP within tumor tissues highlights its potential as a diagnostic marker and therapeutic target. The review also emphasizes the prognostic significance of FAP in predicting tumor progression and patient outcomes. Furthermore, the emerging strategies involving FAPI inhibitor (FAPI) in cancer research and clinical trials for PET/CT diagnosis are discussed. And targeted therapy utilizing FAP including FAPI, chimeric antigen receptor (CAR) T cell therapy, tumor vaccine, antibody-drug conjugates, bispecific T-cell engagers, FAP cleavable prodrugs, and drug delivery system are also introduced. CONCLUSION FAP's intricate interactions with tumor cells and the tumor microenvironment make it a promising target for diagnosis and treatment. Promising strategies such as FAPI offer potential avenues for accurate tumor diagnosis, while multiple therapeutic strategies highlight the prospects of FAP targeting treatments which needs further clinical evaluation.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jinxin Tao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jiangdong Qiu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhe Cao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hua Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jianchun Xiao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
25
|
Li Z, Qiu L, Xu T, Su D, Chen Y. 18 F-FDG PET/CT Versus 68 Ga-FAPI PET/CT in a Case of Isolated Nodal-Type Follicular Dendritic Cell Sarcoma. Clin Nucl Med 2024; 49:268-269. [PMID: 38048566 DOI: 10.1097/rlu.0000000000004986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
ABSTRACT Follicular dendritic cell sarcoma is a rare low-grade sarcoma originating from mesenchymal dendritic cells. We presented 18 F-FDG and 68 Ga-FAPI PET/CT findings in a 32-year-old woman with pathologically confirmed nodal-type follicular dendritic cell sarcoma. In this case, follicular dendritic cell sarcoma demonstrated lower uptake with FAPI than FDG.
Collapse
Affiliation(s)
- Zhuoyuan Li
- From the Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province; and Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | | | | | | | | |
Collapse
|
26
|
Hirmas N, Hamacher R, Sraieb M, Kessler L, Pabst KM, Barbato F, Lanzafame H, Kasper S, Nader M, Kesch C, von Tresckow B, Hautzel H, Aigner C, Glas M, Stuschke M, Kümmel S, Harter P, Lugnier C, Uhl W, Hadaschik B, Grünwald V, Siveke JT, Herrmann K, Fendler WP. Diagnostic Accuracy of 68Ga-FAPI Versus 18F-FDG PET in Patients with Various Malignancies. J Nucl Med 2024; 65:372-378. [PMID: 38331453 DOI: 10.2967/jnumed.123.266652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/20/2023] [Indexed: 02/10/2024] Open
Abstract
To assess the diagnostic accuracy of 68Ga-labeled fibroblast activation protein inhibitor (FAPI) and 18F-labeled FDG PET for the detection of various tumors, we performed a head-to-head comparison of both imaging modalities across a range of tumor entities as part of our ongoing 68Ga-FAPI PET observational trial. Methods: The study included 115 patients with 8 tumor entities who received imaging with 68Ga-FAPI for tumor staging or restaging between October 2018 and March 2022. Of those, 103 patients received concomitant imaging with 68Ga-FAPI and 18F-FDG PET and had adequate lesion validation for accuracy analysis. Each scan was evaluated for the detection of primary tumor, lymph nodes, and visceral and bone metastases. True or false positivity and negativity to detected lesions was assigned on the basis of histopathology from biopsies or surgical excision, as well as imaging validation. Results: 68Ga-FAPI PET revealed higher accuracy than 18F-FDG PET in the detection of colorectal cancer (n = 14; per-patient, 85.7% vs. 78.6%; per-region, 95.6% vs. 91.1%) and prostate cancer (n = 22; per-patient, 100% vs. 90.9%; per-region, 96.4% vs. 92.7%). 68Ga-FAPI PET and 18F-FDG PET had comparable per-patient accuracy in detecting breast cancer (n = 16, 100% for both) and head and neck cancers (n = 10, 90% for both modalities). 68Ga-FAPI PET had lower per-patient accuracy than 18F-FDG PET in cancers of the bladder (n = 12, 75% vs. 100%) and kidney (n = 10, 80% vs. 90%), as well as lymphoma (n = 9, 88.9% vs. 100%) and myeloma (n = 10, 80% vs. 90%). Conclusion: 68Ga-FAPI PET demonstrated higher diagnostic accuracy than 18F-FDG PET in the diagnosis of colorectal cancer and prostate cancer, as well as comparable diagnostic performance for cancers of the breast and head and neck. Accuracy and impact on management will be further assessed in an ongoing prospective interventional trial (NCT05160051).
Collapse
Affiliation(s)
- Nader Hirmas
- Department of Nuclear Medicine, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany;
| | - Rainer Hamacher
- Department of Medical Oncology, West German Cancer Center, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Miriam Sraieb
- Department of Nuclear Medicine, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lukas Kessler
- Department of Nuclear Medicine, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kim M Pabst
- Department of Nuclear Medicine, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Francesco Barbato
- Department of Nuclear Medicine, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Helena Lanzafame
- Department of Nuclear Medicine, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Kasper
- Department of Medical Oncology, West German Cancer Center, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Nader
- Department of Nuclear Medicine, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Claudia Kesch
- Department of Urology, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bastian von Tresckow
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hubertus Hautzel
- Department of Nuclear Medicine, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery and Thoracic Endoscopy, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- Department of Radiation Therapy, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sherko Kümmel
- Breast Unit, Kliniken Essen-Mitte, Essen, Germany
- Department of Gynecology with Breast Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Harter
- Department of Gynecology and Gynecologic Oncology, Evangelische Kliniken Essen-Mitte, Essen, Germany
| | - Celine Lugnier
- Department of Hematology and Oncology with Palliative Care, Ruhr University Bochum, Bochum, Germany
| | - Waldemar Uhl
- Department of General and Visceral Surgery, Ruhr University Bochum, Bochum, Germany
| | - Boris Hadaschik
- Department of Urology, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Viktor Grünwald
- Department of Urology, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany; and
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK partner site Essen), German Cancer Research Center, Heidelberg, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, German Cancer Consortium-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
27
|
Jena SR, Watts A, Aggarwal P, Bachhal V, Kaur H, Dhingra K, Singh H, Bal A, Singh B. 68 Ga-Pentixafor PET/CT for in-vivo mapping of CXCR4 receptors as potential radiotheranostic targets in soft tissue and bone sarcoma: preliminary results. Nucl Med Commun 2024; 45:229-235. [PMID: 38165171 DOI: 10.1097/mnm.0000000000001803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
OBJECTIVE To evaluate the diagnostic utility of 68 Ga-Pentixafor PET/CT for in vivo imaging of CXCR4 receptors in soft tissue/bone sarcoma. METHODS Ten (7M: 3F; mean age = 24.7 ± 14.2 years) consecutive patients with clinical and radiological evidence of bone/soft tissue sarcoma were recruited prospectively whole body 68 Ga-Pentixafor PET/CT imaging was performed at 60-min after tracer administration. After performing standard CT, PET acquisition from head to toe was done (3 min/bed position) in a caudocranial direction. PET/CT data was reconstructed and SUV max , SUV mean values, target-to-background ratio (TBR) and active tumor volume (cc) were computed for the tracer avid lesions. Histopathological and IHC analysis was performed on the surgically excised primary tumors. CXCR4 receptors' intensity was evaluated by visual scoring. RESULTS The mean SUV max and SUV mean values in the primary tumors were 4.80 ± 1.0 (3.9-7.7) and 2.40 ± 0.60 (0.9-4.0). The mean TBR and tumor volume (cc) were 1.84 ± 1.3 and 312.2 ± 285. Diagnosis of osteosarcoma in 7, chondrosarcoma, leiomyosarcoma and synovial sarcoma in 1 patient each was confirmed on HP analysis. Distant metastatic lesions were seen in 3/10 patients. Nuclear CXCR4 receptors' positivity was seen in 5, cytoplasmic in 4 and both pattern seen in 1 patient. The mean CXCR4 receptors' intensity was found to be 7.6 ± 2. The highest SUV max value of 7.7 was observed in the patient having both cytoplasmic and nuclear CXCR4 expression. SUV max was found to be poorly correlated ( r = 0.441) with CXCR4 expression. CONCLUSION 68 Ga-Pentixafor PET/CT detects CXCR4 receptors over-expressed in sarcoma, its radio-theranostics potential needs detailed evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Amanjit Bal
- Histopathology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | | |
Collapse
|
28
|
Zhang A, Meng X, Yao Y, Zhou X, Zhang Y, Li N. Head to head comparison of 68Ga-DOTA-FAPI-04 vs 18F-FDG PET/CT in the evaluation of primary extrapulmonary tumors in the chest. Eur Radiol 2024; 34:1960-1970. [PMID: 37668694 DOI: 10.1007/s00330-023-10130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 09/06/2023]
Abstract
OBJECTIVE We conducted a prospective study using 18F-flurodeoxyglucose (18F-FDG) and 68Ga-DOTA-FAPI-04 (fibroblast-activation protein inhibitor, 68Ga-FAPI) PET/CT to diagnose, differentiate, and stage primary extrapulmonary tumors of the thorax. METHODS Fifty-four participants were undergoing 18F-FDG and 68Ga-FAPI PET/CT and divided into the benign, intermediate, and malignant based on pathology. The maximum standardized uptake value (SUVmax), the tumor-to-blood pool ratio, and tumor-to-liver ratio were compared for primary tumors, lymph nodes, and metastases between the two modalities by two independent samples t tests. One-way ANOVA was used to compare the uptake of 18F-FDG or 68Ga-FAPI among the three groups. RESULTS Fifty-four participants were confirmed to have 71 primary lesions, 56 metastatic lymph nodes, and 43 metastatic lesions. 18F-FDG PET/CT could both effectively distinguish malignant lesions from non-malignant lesions, accuracies of 87.32% (p < 0.001). 68Ga-FAPI PET/CT effectively differentiated benign lesions from the non-benign, accuracy being 91.55% (p < 0.001). The accuracies of 18F-FDG and 68Ga-FAPI for detecting lymph node metastasis were 77.22% (61/79) and 87.34% (69/79) (p = 0.096). The uptake of 68Ga-FAPI in metastatic lymph nodes was significantly higher than that of the nonmetastatic (p < 0.001). The detection rate of 68Ga-FAPI PET/CT for metastatic lesions was significantly higher than that of 18F-FDG, 100% (43/43) vs. 53.49% (23/43) (p < 0.001). Compared with 18F-FDG PET/CT, 68Ga-FAPI PET/CT changed the treatment strategy of 7.4% (4/54) participants. CONCLUSION 68Ga-FAPI PET/CT is valuable in the diagnosis and differentiation of primary extrapulmonary tumors and superior to 18F-FDG PET/CT for evaluating lymph node and distant metastasis. CLINICAL RELEVANCE STATEMENT The application of 68Ga-FAPI PET/CT in primary extrapulmonary chest tumors is valuable, which is reflected in diagnosis, differentiation and exploration of lymph node metastasis and distant metastasis. KEY POINTS • 68Ga-FAPI PET/CT is valuable in the diagnosis, differentiation, and staging of primary extrapulmonary tumors. • 68Ga-FAPI PET/CT is superior to 18 F-FDG PET/CT for evaluating lymph node and distant metastasis.
Collapse
Affiliation(s)
- Annan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian, Beijing, 100142, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian, Beijing, 100142, China
| | - Yuan Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian, Beijing, 100142, China
| | - Xin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian, Beijing, 100142, China
| | - Yan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian, Beijing, 100142, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian, Beijing, 100142, China.
| |
Collapse
|
29
|
Zhao M, Zhang A, Zu M, Ma Y, Ding S, Zhang W. Comparison of 18 F-FDG and 18 F-FAPI PET/CT Findings of Signet-Ring Cell Carcinoma of the Stomach. Clin Nucl Med 2024; 49:e139-e140. [PMID: 38271264 DOI: 10.1097/rlu.0000000000005024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
ABSTRACT A 66-year-old man with gastric signet-ring cell carcinoma underwent both 18 F-FDG and 18 FAl-NOTA-FAPI PET/CT imaging. There was no abnormal FDG activity in the stomach, but there was diffuse intense 18 FAl-NOTA-FAPI uptake in the known lesion and an adjacent metastasis.
Collapse
Affiliation(s)
| | | | | | - Yanpeng Ma
- General Surgery, Peking University Third Hospital, Beijing, China
| | | | | |
Collapse
|
30
|
Hamacher R, Pabst KM, Cheung PF, Heilig CE, Hüllein J, Liffers ST, Borchert S, Costa PF, Schaarschmidt BM, Kessler L, Miera MA, Droste M, Akbulut M, Falkenhorst J, Zarrad F, Kostbade K, Mavroeidi IA, Glimm H, Umutlu L, Schuler M, Hübschmann D, Bauer S, Fröhling S, Herrmann K, Siveke JT, Schildhaus HU, Fendler WP. Fibroblast Activation Protein α-Directed Imaging and Therapy of Solitary Fibrous Tumor. J Nucl Med 2024; 65:252-257. [PMID: 38176718 DOI: 10.2967/jnumed.123.266411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/07/2023] [Indexed: 01/06/2024] Open
Abstract
Fibroblast activation protein α (FAPα) is expressed at high levels in several types of tumors. Here, we report the expression pattern of FAPα in solitary fibrous tumor (SFT) and its potential use as a radiotheranostic target. Methods: We analyzed FAPα messenger RNA and protein expression in biopsy samples from SFT patients using immunohistochemistry and multiplexed immunofluorescence. Tracer uptake and detection efficacy were assessed in patients undergoing clinical 68Ga-FAPα inhibitor (FAPI)-46 PET,18F-FDG PET, and contrast-enhanced CT. 90Y-FAPI-46 radioligand therapy was offered to eligible patients with progressive SFT. Results: Among 813 patients and 126 tumor entities analyzed from the prospective observational MASTER program of the German Cancer Consortium, SFT (n = 34) had the highest median FAPα messenger RNA expression. Protein expression was confirmed in tumor biopsies from 29 of 38 SFT patients (76%) in an independent cohort. Most cases showed intermediate to high FAPα expression by immunohistochemistry (24/38 samples, 63%), which was located primarily on the tumor cell surface. Nineteen patients who underwent 68Ga-FAPI-46 PET imaging demonstrated significantly increased tumor uptake, with an SUVmax of 13.2 (interquartile range [IQR], 10.2), and an improved mean detection efficacy of 94.5% (SEM, 4.2%), as compared with 18F-FDG PET (SUVmax, 3.2 [IQR, 3.1]; detection efficacy, 77.3% [SEM, 5.5%]). Eleven patients received a total of 34 cycles (median, 3 cycles [IQR, 2 cycles]) of 90Y-FAPI-46 radioligand therapy, which resulted in disease control in 9 patients (82%). Median progression-free survival was 227 d (IQR, 220 d). Conclusion: FAPα is highly expressed by SFT and may serve as a target for imaging and therapy. Further studies are warranted to define the role of FAPα-directed theranostics in the care of SFT patients.
Collapse
Affiliation(s)
- Rainer Hamacher
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany;
- German Cancer Consortium, Partner site University Hospital Essen, Essen, Germany
| | - Kim M Pabst
- German Cancer Consortium, Partner site University Hospital Essen, Essen, Germany
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Phyllis F Cheung
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (Partner Site Essen) and German Cancer Research Center, Heidelberg, Germany
| | - Christoph E Heilig
- Department of Translational Medical Oncology, National Center for Tumor Diseases, Heidelberg and German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany
| | - Jennifer Hüllein
- Computational Oncology, Molecular Precision Oncology Program, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
| | - Sven-Thorsten Liffers
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (Partner Site Essen) and German Cancer Research Center, Heidelberg, Germany
| | - Sabrina Borchert
- German Cancer Consortium, Partner site University Hospital Essen, Essen, Germany
- Institute of Pathology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Pedro Fragoso Costa
- German Cancer Consortium, Partner site University Hospital Essen, Essen, Germany
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Benedikt M Schaarschmidt
- German Cancer Consortium, Partner site University Hospital Essen, Essen, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Lukas Kessler
- German Cancer Consortium, Partner site University Hospital Essen, Essen, Germany
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Monika A Miera
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Margret Droste
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (Partner Site Essen) and German Cancer Research Center, Heidelberg, Germany
| | - Merve Akbulut
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Johanna Falkenhorst
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner site University Hospital Essen, Essen, Germany
| | - Fadi Zarrad
- German Cancer Consortium, Partner site University Hospital Essen, Essen, Germany
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Karina Kostbade
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner site University Hospital Essen, Essen, Germany
| | - Ilektra A Mavroeidi
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner site University Hospital Essen, Essen, Germany
| | - Hanno Glimm
- Department for Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center, Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium, Dresden, Germany; and
| | - Lale Umutlu
- German Cancer Consortium, Partner site University Hospital Essen, Essen, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Martin Schuler
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner site University Hospital Essen, Essen, Germany
| | - Daniel Hübschmann
- German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany
- Computational Oncology, Molecular Precision Oncology Program, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
| | - Sebastian Bauer
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner site University Hospital Essen, Essen, Germany
| | - Stefan Fröhling
- Department of Translational Medical Oncology, National Center for Tumor Diseases, Heidelberg and German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany
| | - Ken Herrmann
- German Cancer Consortium, Partner site University Hospital Essen, Essen, Germany
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Jens T Siveke
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner site University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (Partner Site Essen) and German Cancer Research Center, Heidelberg, Germany
| | - Hans-Ulrich Schildhaus
- German Cancer Consortium, Partner site University Hospital Essen, Essen, Germany
- Institute of Pathology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Wolfgang P Fendler
- German Cancer Consortium, Partner site University Hospital Essen, Essen, Germany
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
| |
Collapse
|
31
|
Wu G, Wang D, Zhang W, Jia Z, Li J, Zhang L. Head-to-head comparison of [68Ga]Ga-FAPI PET and [18F]FDG PET in the detection of bone and lymph node metastasis in various cancers: A systematic review and meta-analysis. Eur J Radiol 2024; 171:111302. [PMID: 38219352 DOI: 10.1016/j.ejrad.2024.111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/21/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
PURPOSE The aim of our meta-analysis and systematic review was to contrast the positivity rates of [68Ga]Ga-FAPI PET and [18F]FDG PET in detecting bone and lymph node metastases across diverse cancer types. METHODS We conducted a comprehensive search for eligible articles up until August 2023, utilizing databases including PubMed, Embase, and Web of Science. Studies focusing on the positivity rate of [68Ga]Ga-FAPI PET vs. [18F]FDG PET for bone and lymph metastasis were included. Using random-effect model, the positivity rate for [68Ga]Ga-FAPI PET and [18F]FDG PET were generated. In order to gauge the heterogeneity among aggregated studies, we utilized the I2 statistic. Additionally, we applied the Quality Assessment of Diagnostic Performance Studies (QUADAS-2) methodology to evaluate the caliber of the studies encompassed in our analysis. RESULTS A total of 430 publications were initially identified in the search. Eventually, 25 studies, involving 779 patients, met the inclusion criteria. In terms of bone metastasis, the findings indicate no statistically significant difference between the use of [68Ga]Ga-FAPI PET and [18F]FDG PET (P = 0.34). However, concerning lymph node metastasis, the results demonstrate significant difference between the two imaging agents (P = 0.04). CONCLUSIONS This systematic review suggests that [68Ga]Ga-FAPI PET appears to outperform [18F]FDG PET in detecting lymph node metastases. However, when it comes to bone metastasis, no statistically significant difference was observed. It is crucial to acknowledge that the insights concerning bone metastasis stem from studies with comparatively modest sample sizes. Consequently, there is a pressing demand for further, expansive prospective studies in this field.
Collapse
Affiliation(s)
- Guiyou Wu
- Joint Training Base of Jinzhou Medical University, China Postgraduate Training Base of The Fourth Medical Center of PLA General Hospital, Hospital of Jinzhou, Medical University, China; Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Daofeng Wang
- Department of Sports Medicine, Sports Medicine Service, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Wupeng Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Zhengfeng Jia
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jiantao Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China.
| | - Licheng Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China.
| |
Collapse
|
32
|
Wegen S, Weindler J, Voltin CA, van Heek L, Schomäcker K, Fischer T, Marnitz S, Kobe C, Drzezga A, Roth KS. Dual-tracer PET/CT protocol with [ 18F]FDG and [ 68Ga]Ga-FAPI-46 outperforms single-tracer PET/CT with [ 18F]FDG in different cancer types, resulting in larger functional and gross tumor volume. Strahlenther Onkol 2024; 200:28-38. [PMID: 37584717 PMCID: PMC10784364 DOI: 10.1007/s00066-023-02117-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 08/17/2023]
Abstract
PURPOSE Fibroblast activation protein (FAP) detected by positron-emission tomography (PET) using fibroblast activation protein inhibitor (FAPI) appears to be a promising target for cancer imaging, staging, and therapy, providing added value and strength as a complement to [18F]fluorodeoxyglucose (FDG) in cancer imaging. We recently introduced a combined single-session/dual-tracer protocol with [18F]FDG and [68Ga]Ga-FAPI for cancer imaging and staging. Malignant tissue visualization and target-to-background uptake ratios (TBRs) as well as functional tumor volume (FTV) and gross tumor volume (GTV) were assessed in the present study with single-tracer [18F]FDG PET/computed tomography (CT) and with dual-tracer [18F]FDG&[68Ga]Ga-FAPI-46 PET/CT. METHODS A total of 19 patients with head and neck and gastrointestinal cancers received initial [18F]FDG-PET/CT followed by dual-tracer PET/CT after additional injection of [68Ga]Ga-FAPI-46 during the same medical appointment (on average 13.9 ± 12.3 min after injection of [18F]FDG). Two readers visually compared detection rate of malignant tissue, TBR, FTV, and GTV for tumor and metastatic tissue in single- and dual-tracer PET/CT. RESULTS The diagnostic performance of dual-tracer compared to single-tracer PET/CT was equal in 13 patients and superior in 6 patients. The mean TBRs of tumors and metastases in dual-tracer PET/CTs were mostly higher compared to single-tracer PET/CT using maximal count rates (CRmax). GTV and FTV were significantly larger when measured on dual-tracer compared to single-tracer PET/CT. CONCLUSION Dual-tracer PET/CT with [18F]FDG and [68Ga]Ga-FAPI-46 showed better visualization due to a generally higher TBR and larger FTV and GTV compared to [18F]FDG-PET/CT in several tumor entities, suggesting that [68Ga]Ga-FAPI-46 provides added value in pretherapeutic staging.
Collapse
Affiliation(s)
- Simone Wegen
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Jasmin Weindler
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Conrad-Amadeus Voltin
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Lutz van Heek
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Klaus Schomäcker
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Thomas Fischer
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Simone Marnitz
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Carsten Kobe
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Katrin S Roth
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
33
|
Jiang S, Jiang M, Rao S, Liang J, Zhang R. 18 F-FDG PET/CT Versus 18 F-FAPI PET/CT in a Case of Recurrent Malignant Phyllodes Breast Tumor. Clin Nucl Med 2024; 49:e35-e37. [PMID: 37962169 DOI: 10.1097/rlu.0000000000004936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
ABSTRACT A 52-year-old woman with medical history of surgery for left malignant phyllodes breast tumor found a mass on the left chest 3 months ago. A suspicion of recurrent malignant phyllodes breast tumor was made. The patient was enrolled in the clinical trial of 18 F-FAPI PET/CT in recurrent sarcoma (no. NCT05485792). 18 F-FAPI PET/CT and 18 F-FDG PET/CT were performed, and the images demonstrated intense uptake in a huge mass in the left anterior chest wall. Then the patient underwent extended resection of left chest wall tumor. The tumor proved to be recurrent malignant phyllodes breast tumor pathologically.
Collapse
Affiliation(s)
| | - Ming Jiang
- Breast Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | | | | | | |
Collapse
|
34
|
Kessler L, Hirmas N, Pabst KM, Hamacher R, Ferdinandus J, Schaarschmidt BM, Milosevic A, Nader M, Umutlu L, Uhl W, Reinacher-Schick A, Lugnier C, Witte D, Niedergethmann M, Herrmann K, Fendler WP, Siveke JT. 68Ga-Labeled Fibroblast Activation Protein Inhibitor ( 68Ga-FAPI) PET for Pancreatic Adenocarcinoma: Data from the 68Ga-FAPI PET Observational Trial. J Nucl Med 2023; 64:1910-1917. [PMID: 37973185 DOI: 10.2967/jnumed.122.264827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/27/2023] [Indexed: 11/19/2023] Open
Abstract
The fibroblast activation protein (FAP) is highly expressed on carcinoma-associated fibroblasts in the stroma of pancreatic cancer and thus is a promising target for imaging and therapy. Preliminary data on PET imaging with radiolabeled FAP inhibitors (FAPIs) demonstrate superior tumor detection. Here we assess the accuracy of FAP-directed PET in patients with pancreatic cancer. Methods: Of 64 patients with suspected or proven pancreatic cancer, 62 (97%) were included in the data analysis of the 68Ga-FAPI PET observational trial (NCT04571086). All of these patients underwent contrast-enhanced CT, and 38 patients additionally underwent 18F-FDG PET. The primary study endpoint was the association of 68Ga-FAPI PET uptake intensity and histopathologic FAP expression. Secondary endpoints were detection rate, diagnostic performance, interreader reproducibility, and change in management. Datasets were interpreted by 2 masked readers. Results: The primary endpoint was met: The association between 68Ga-FAPI SUVmax and histopathologic FAP expression was significant (Spearman r, 0.48; P = 0.04). For histopathology-validated lesions, 68Ga-FAPI PET showed high sensitivity and positive predictive values (PPVs) on per-patient (sensitivity, 100%; PPV, 96.3%) and per-region (sensitivity, 100%; PPV, 97.0%) bases. In a head-to-head comparison versus 18F-FDG or contrast-enhanced CT, 68Ga-FAPI detected more tumor on a per-lesion (84.7% vs. 46.5% vs. 52.9%), per-patient (97.4% vs. 73.7% vs. 92.1%), or per-region (32.6% vs. 18.8% vs. 23.7%) basis, respectively. 68Ga-FAPI PET readers showed substantial overall agreement on the basis of the Fleiss κ: primary κ, 0.77 (range, 0.66-0.88). Minor and major changes in clinical management occurred in 5 patients (8.4%) after 68Ga-FAPI PET. Conclusion: We confirmed an association of 68Ga-FAPI PET SUVmax and histopathologic FAP expression in pancreatic cancer patients. Additionally, we found high detection rate and diagnostic accuracy, superior to those of 18F-FDG PET/CT. 68Ga-FAPI might become a powerful diagnostic tool for pancreatic cancer work-up.
Collapse
Affiliation(s)
- Lukas Kessler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK) (Partner Site University Hospital Essen) and German Cancer Research Center (DKFZ), Essen, Germany
| | - Nader Hirmas
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) (Partner Site University Hospital Essen) and German Cancer Research Center (DKFZ), Essen, Germany
| | - Kim M Pabst
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Rainer Hamacher
- German Cancer Consortium (DKTK) (Partner Site University Hospital Essen) and German Cancer Research Center (DKFZ), Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
| | - Justin Ferdinandus
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Benedikt M Schaarschmidt
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK) (Partner Site University Hospital Essen) and German Cancer Research Center (DKFZ), Essen, Germany
| | - Aleksandar Milosevic
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK) (Partner Site University Hospital Essen) and German Cancer Research Center (DKFZ), Essen, Germany
| | - Michael Nader
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK) (Partner Site University Hospital Essen) and German Cancer Research Center (DKFZ), Essen, Germany
| | - Waldemar Uhl
- Department of General and Visceral Surgery, St. Josef Hospital Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Anke Reinacher-Schick
- Department of Hematology and Oncology with Palliative Care, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Celine Lugnier
- Department of General and Visceral Surgery, Alfried Krupp Hospital, Essen, Germany
| | - David Witte
- Department of General and Visceral Surgery, Alfried Krupp Hospital, Essen, Germany
| | - Marco Niedergethmann
- Department of General and Visceral Surgery, Alfried Krupp Hospital, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) (Partner Site University Hospital Essen) and German Cancer Research Center (DKFZ), Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;
- German Cancer Consortium (DKTK) (Partner Site University Hospital Essen) and German Cancer Research Center (DKFZ), Essen, Germany
| | - Jens T Siveke
- German Cancer Consortium (DKTK) (Partner Site University Hospital Essen) and German Cancer Research Center (DKFZ), Essen, Germany;
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; and
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK) (Partner Site University Hospital Essen) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
35
|
Galbiati A, Dorten P, Gilardoni E, Gierse F, Bocci M, Zana A, Mock J, Claesener M, Cufe J, Büther F, Schäfers K, Hermann S, Schäfers M, Neri D, Cazzamalli S, Backhaus P. Tumor-Targeted Interleukin 2 Boosts the Anticancer Activity of FAP-Directed Radioligand Therapeutics. J Nucl Med 2023; 64:1934-1940. [PMID: 37734838 PMCID: PMC10690118 DOI: 10.2967/jnumed.123.266007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
We studied the antitumor efficacy of a combination of 177Lu-labeled radioligand therapeutics targeting the fibroblast activation protein (FAP) (OncoFAP and BiOncoFAP) with the antibody-cytokine fusion protein L19-interleukin 2 (L19-IL2) providing targeted delivery of interleukin 2 to tumors. Methods: The biodistribution of 177Lu-OncoFAP and 177Lu-BiOncoFAP at different molar amounts (3 vs. 250 nmol/kg) of injected ligand was studied via SPECT/CT in mice bearing subcutaneous HT-1080.hFAP tumors, and self-absorbed tumor and organ doses were calculated. The in vivo anticancer effect of 5 MBq of the radiolabeled preparations was evaluated as monotherapy or in combination with L19-IL2 in subcutaneously implanted HT-1080.hFAP and SK-RC-52.hFAP tumors. Tumor samples from animals treated with 177Lu-BiOncoFAP, L19-IL2, or both were analyzed by mass spectrometry-based proteomics to identify therapeutic signatures on cellular and stromal markers of cancer and on immunomodulatory targets. Results: 177Lu-BiOncoFAP led to a significantly higher self-absorbed dose in FAP-positive tumors (0.293 ± 0.123 Gy/MBq) than did 177Lu-OncoFAP (0.157 ± 0.047 Gy/MBq, P = 0.01) and demonstrated favorable tumor-to-organ ratios at high molar amounts of injected ligand. Administration of L19-IL2 or 177Lu-BiOncoFAP as single agents led to cancer cures in only a limited number of treated animals. In 177Lu-BiOncoFAP-plus-L19-IL2 combination therapy, complete remissions were observed in all injected mice (7/7 complete remissions for the HT-1080.hFAP model, and 4/4 complete remissions for the SK-RC-52.hFAP model), suggesting therapeutic synergy. Proteomic studies revealed a mechanism of action based on the activation of natural killer cells, with a significant enhancement of the expression of granzymes and perforin 1 in the tumor microenvironment after combination treatment. Conclusion: The combination of OncoFAP-based radioligand therapeutics with concurrent targeting of interleukin 2 shows synergistic anticancer effects in the treatment of FAP-positive tumors. This experimental finding should be corroborated by future clinical studies.
Collapse
Affiliation(s)
- Andrea Galbiati
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Paulina Dorten
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Ettore Gilardoni
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Florian Gierse
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Matilde Bocci
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Aureliano Zana
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Jacqueline Mock
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Michael Claesener
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Juela Cufe
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Florian Büther
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Klaus Schäfers
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- West German Cancer Centre, Münster, Germany
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland; and
- Philogen S.p.A., Siena, Italy
| | - Samuele Cazzamalli
- Research and Development Department, Philochem AG, Otelfingen, Switzerland;
| | - Philipp Backhaus
- European Institute for Molecular Imaging, University of Münster, Münster, Germany;
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- West German Cancer Centre, Münster, Germany
| |
Collapse
|
36
|
Shen Z, Wang R. Comparison of 18F-FDG PET/CT and 68Ga-FAPI in Spindle Cell Rhabdomyosarcoma. Diagnostics (Basel) 2023; 13:3006. [PMID: 37761371 PMCID: PMC10530021 DOI: 10.3390/diagnostics13183006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
We report a rare case of spindle cell rhabdomyosarcoma. Sarcomas generally exhibit an abnormal increased FDG uptake on 18F-FDG PET/CT imaging, while spindle cell rhabdosarcomas exhibits a significantly increased lesion uptake on 68Ga FAPI PET/CT imaging compared to 18F-FDG. This case suggests that 68Ga-FAPI PET/CT has potential value in evaluating spindle cell rhabdomyosarcoma.
Collapse
Affiliation(s)
| | - Ruimin Wang
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China;
| |
Collapse
|
37
|
Bentestuen M, Al-Obaydi N, Zacho HD. FAPI-avid nonmalignant PET/CT findings: An expedited systematic review. Semin Nucl Med 2023; 53:694-705. [PMID: 36813670 DOI: 10.1053/j.semnuclmed.2023.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/01/2023] [Indexed: 02/22/2023]
Abstract
Fibroblast activation protein inhibitor (FAPI) is a promising tracer in oncologic positron emission tomography/computed tomography (PET/CT). Numerous studies have demonstrated the superior sensitivity of FAPI PET/CT over fluorodeoxyglucose (FDG) PET/CT in several types of cancer. However, the cancer specificity of FAPI uptake remains understudied, and several cases of false-positive FAPI PET/CT findings have been reported. A systematic search of PubMed, Embase, and Web of Science was conducted for studies published prior to April 2022 reporting nonmalignant FAPI PET/CT findings. We included original peer-reviewed articles of studies in humans using FAPI tracers radiolabeled with 68Ga or 18F that were published in English. Papers without original data and studies with insufficient information were excluded. Nonmalignant findings were presented on a per-lesion basis and grouped according to the type of organ or tissue involved. The search identified a total of 1.178 papers, of which 108 studies were eligible. Eighty studies were case reports (74%), and the remaining 28 were cohort studies (26%). A total of 2.372 FAPI-avid nonmalignant findings were reported, with the most frequent being uptake in the arteries, e.g., related to plaques (n = 1178, 49%). FAPI uptake was also frequently related to degenerative and traumatic bone and joint lesions (n = 147, 6%) or arthritis (n = 92, 4%). For organs, diffuse or focal uptake was often seen in cases of inflammation, infection, fibrosis, and IgG4-related disease (n = 157, 7%). FAPI-avid inflammatory/reactive lymph nodes (n = 121, 5%) and tuberculosis lesions (n = 51, 2%) have been reported and could prove to be potential pitfalls in cancer staging. Periodontitis (n = 76, 3%), hemorrhoids (n = 47, 2%), and scarring/wound healing (n = 35, 2%) also presented as focal uptake on FAPI PET/CT. The present review provides an overview of the reported FAPI-avid nonmalignant PET/CT findings to date. A large number of benign clinical entities may show FAPI uptake and should be kept in mind when interpreting FAPI PET/CT findings in patients with cancer.
Collapse
Affiliation(s)
- Morten Bentestuen
- Department of Nuclear Medicine and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, North Jutland Region, Denmark.
| | - Noor Al-Obaydi
- Department of Nuclear Medicine and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, North Jutland Region, Denmark
| | - Helle D Zacho
- Department of Nuclear Medicine and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, North Jutland Region, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, North Jutland Region, Denmark
| |
Collapse
|
38
|
Beer P, Pauli C, Haberecker M, Grest P, Beebe E, Fuchs D, Markkanen E, Krudewig C, Nolff MC. Cross-species evaluation of fibroblast activation protein alpha as potential imaging target for soft tissue sarcoma: a comparative immunohistochemical study in humans, dogs, and cats. Front Oncol 2023; 13:1210004. [PMID: 37727209 PMCID: PMC10505752 DOI: 10.3389/fonc.2023.1210004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Complete surgical tumor resection is paramount in the management of soft tissue sarcoma (STS) in humans, dogs, and cats alike. Near-infrared targeted tracers for fluorescence-guided surgery (FGS) could facilitate intraoperative visualization of the tumor and improve resection accuracy. Target identification is complicated in STS due to the rarity and heterogeneity of the disease. This study aims to validate the expression of fibroblast activation protein alpha (FAP) in selected human, canine, and feline STS subtypes to assess the value of FAP as a target for FGS and to validate companion animals as a translational model. Methods Formalin-fixed and paraffin-embedded tissue samples from 53 canine STSs (perivascular wall tumor (PWT), canine fibrosarcoma (cFS), and STS not further specified (NOS)), 24 feline fibrosarcomas, and 39 human STSs (myxofibrosarcoma, undifferentiated pleomorphic sarcoma, dermatofibrosarcoma protuberans, and malignant peripheral nerve sheath tumor) as well as six canine and seven feline healthy controls and 10 inflamed tissue samples were immunohistochemically stained for their FAP expression. FAP labeling in tumor, peritumoral, healthy skin, and inflamed tissue samples was quantified using a visually assessed semiquantitative expression score and digital image analysis. Target selection criteria (TASC) scoring was subsequently performed as previously described. Results Eighty-five percent (85%) of human (33/39), 76% of canine (40/53), and 92% of feline (22/24) STSs showed FAP positivity in over 10% of the tumor cells. A high expression was determined in 53% canine (28/53), 67% feline (16/24), and 44% human STSs (17/39). The average FAP-labeled area of canine, feline, and human STSs was 31%, 33%, and 42%, respectively (p > 0.8990). The FAP-positive tumor area was larger in STS compared to healthy and peritumoral tissue samples (p < 0.0001). TASC scores were above 18 for all feline and human STS subtypes and canine PWTs but not for canine STS NOS and cFS. Conclusion This study represents the first cross-species target evaluation of FAP for STS. Our results demonstrate that FAP expression is increased in various STS subtypes compared to non-cancerous tissues across species, thereby validating dogs and cats as suitable animal models. Based on a TASC score, FAP could be considered a target for FGS.
Collapse
Affiliation(s)
- Patricia Beer
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University of Zurich, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Martina Haberecker
- Department of Pathology and Molecular Pathology, University of Zurich, Zurich, Switzerland
| | - Paula Grest
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Erin Beebe
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Daniel Fuchs
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christiane Krudewig
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Mirja Christine Nolff
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
39
|
Abstract
Computed tomography (CT), MR imaging, and PET with fluorodeoxyglucose F18/CT are commonly used for radiation therapy planning; however, issues including precise nodal staging on CT or false positive results on PET/CT limit their usability. Clinical trials using fibroblast activation protein ligands for additional imaging have provided promising results regarding staging and target volume delineation-particularly suitable for sarcoma, some gastrointestinal tumors, head and neck tumors, and lung and pancreatic cancer. Although further prospective trials are necessary to identify clinical settings for its application in radiation oncology, fibroblast activation protein inhibitor PET/CT indisputably represents an excellent opportunity for assisting radiotherapy planning.
Collapse
Affiliation(s)
- Stefan A Koerber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany; Department of Radiation Oncology, Barmherzige Brueder Hospital Regensburgh, Regensburg, Germany.
| |
Collapse
|
40
|
Chandekar KR, Prashanth A, Vinjamuri S, Kumar R. FAPI PET/CT Imaging-An Updated Review. Diagnostics (Basel) 2023; 13:2018. [PMID: 37370912 PMCID: PMC10297281 DOI: 10.3390/diagnostics13122018] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Despite revolutionizing the field of oncological imaging, Positron Emission Tomography (PET) with [18F]Fluorodeoxyglucose (FDG) as its workhorse is limited by a lack of specificity and low sensitivity in certain tumor subtypes. Fibroblast activation protein (FAP), a type II transmembrane glycoprotein, is expressed by cancer-associated fibroblasts (CAFs) that form a major component of the tumor stroma. FAP holds the promise to be a pan-cancer target, owing to its selective over-expression in a vast majority of neoplasms, particularly epithelial cancers. Several radiolabeled FAP inhibitors (FAPI) have been developed for molecular imaging and potential theranostic applications. Preliminary data on FAPI PET/CT remains encouraging, with extensive multi-disciplinary clinical research currently underway. This review summarizes the existing literature on FAPI PET/CT imaging with an emphasis on diagnostic applications, comparison with FDG, pitfalls, and future directions.
Collapse
Affiliation(s)
- Kunal Ramesh Chandekar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Arun Prashanth
- Department of Nuclear Medicine, MIOT International Hospital, Chennai 600089, India;
| | - Sobhan Vinjamuri
- Department of Nuclear Medicine, Royal Liverpool and Broadgreen University Hospital, Liverpool L7-8YE, UK;
| | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110029, India;
| |
Collapse
|
41
|
Crane JN, Graham DS, Mona CE, Nelson SD, Samiei A, Dawson DW, Dry SM, Masri MG, Crompton JG, Benz MR, Czernin J, Eilber FC, Graeber TG, Calais J, Federman NC. Fibroblast Activation Protein Expression in Sarcomas. Sarcoma 2023; 2023:2480493. [PMID: 37333052 PMCID: PMC10275689 DOI: 10.1155/2023/2480493] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Objectives Fibroblast activation protein alpha (FAP) is highly expressed by cancer-associated fibroblasts in multiple epithelial cancers. The aim of this study was to characterize FAP expression in sarcomas to explore its potential utility as a diagnostic and therapeutic target and prognostic biomarker in sarcomas. Methods Available tissue samples from patients with bone or soft tissue tumors were identified at the University of California, Los Angeles. FAP expression was evaluated via immunohistochemistry (IHC) in tumor samples (n = 63), adjacent normal tissues (n = 30), and positive controls (n = 2) using semiquantitative systems for intensity (0 = negative; 1 = weak; 2 = moderate; and 3 = strong) and density (none, <25%, 25-75%; >75%) in stromal and tumor/nonstromal cells and using a qualitative overall score (not detected, low, medium, and high). Additionally, RNA sequencing data in publicly available databases were utilized to compare FAP expression in samples (n = 10,626) from various cancer types and evaluate the association between FAP expression and overall survival (OS) in sarcoma (n = 168). Results The majority of tumor samples had FAP IHC intensity scores ≥2 and density scores ≥25% for stromal cells (77.7%) and tumor cells (50.7%). All desmoid fibromatosis, myxofibrosarcoma, solitary fibrous tumor, and undifferentiated pleomorphic sarcoma samples had medium or high FAP overall scores. Sarcomas were among cancer types with the highest mean FAP expression by RNA sequencing. There was no significant difference in OS in patients with sarcoma with low versus high FAP expression. Conclusion The majority of the sarcoma samples showed FAP expression by both stromal and tumor/nonstromal cells. Further investigation of FAP as a potential diagnostic and therapeutic target in sarcomas is warranted.
Collapse
Affiliation(s)
- Jacquelyn N. Crane
- Department of Pediatrics, Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Stanford University School of Medicine, 1000 Welch Rd, Suite 300, Palo Alto, CA 94304, USA
| | - Danielle S. Graham
- University of California Los Angeles, Department of Surgery, Los Angeles, CA, USA
| | - Christine E. Mona
- University of California Los Angeles, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
| | - Scott D. Nelson
- University of California Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Alireza Samiei
- University of California Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
| | - David W. Dawson
- University of California Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Sarah M. Dry
- University of California Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Marwan G. Masri
- University of California Los Angeles, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
| | - Joseph G. Crompton
- University of California Los Angeles, Department of Surgery, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Matthias R. Benz
- University of California Los Angeles, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Johannes Czernin
- University of California Los Angeles, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Fritz C. Eilber
- University of California Los Angeles, Department of Surgery, Los Angeles, CA, USA
- University of California Los Angeles, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Thomas G. Graeber
- University of California Los Angeles, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Jeremie Calais
- University of California Los Angeles, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
| | - Noah C. Federman
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
- University of California Los Angeles, Department of Pediatrics, Los Angeles, CA, USA
| |
Collapse
|
42
|
Wass G, Clifford K, Subramaniam RM. Evaluation of the Diagnostic Accuracy of FAPI PET/CT in Oncologic Studies: Systematic Review and Metaanalysis. J Nucl Med 2023:jnumed.123.265471. [PMID: 37290798 DOI: 10.2967/jnumed.123.265471] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/14/2023] [Indexed: 06/10/2023] Open
Abstract
Fibroblast-activation protein is a promising target for oncologic molecular imaging. Studies show that fibroblast activation protein inhibitor (FAPI) radiotracers are accurate diagnostics with favorable tumor-to-background ratios across various cancers. Therefore, we performed a systematic review and metaanalysis to assess the diagnostic performance of FAPI PET/CT in comparison with [18F]FDG PET/CT, the most widely used radiotracer in oncology. Methods: We conducted a systematic search in MEDLINE, Embase, Scopus, PubMed, Cochrane Central Register of Controlled Trials, relevant trial registries, and bibliographies. The search consisted of combinations of terms for 3 topics: neoplasia, PET/CT, and FAPI. Two authors independently screened retrieved articles using predefined inclusion and exclusion criteria and extracted the data. Study quality was assessed using the criteria of QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2). For each study, the sensitivity, specificity, and 95% CIs were calculated to determine diagnostic accuracy for primary, nodal, and metastatic lesions. A random-effects metaanalysis was used for pooling the data, and heterogeneity was assessed (I2 index). Results: Thirty-nine studies (1,259 patients) investigating the use of FAPI PET/CT were included. On a patient-based analysis, pooled sensitivity was 0.99 (95% CI, 0.97-1.0) for the detection of primary lesions. Pooled sensitivity for nodal and distant metastases was 0.91 (95% CI, 0.81-0.96) and 0.99 (95% CI, 0.96-1.0), respectively. On a paired analysis between FAPI and [18F]FDG PET/CT, FAPI had a higher sensitivity in the detection of primary, nodal, and metastatic lesions (all P < 0.001). The differences in sensitivities between FAPI and [18F]FDG were statistically significant. In terms of heterogeneity, analyses on primary lesions were moderately affected, distant metastatic lesions were highly affected, and the nodal metastatic analyses had negligible heterogeneity. Conclusion: The diagnostic performance of FAPI PET/CT is superior to that of [18F]FDG in the detection of primary, nodal, and distant metastases. However, further studies are needed to better evaluate its utility and indication in specific cancer types and clinical settings.
Collapse
Affiliation(s)
- Grayson Wass
- Department of Medicine, Dunedin School of Medicine, University of Otago Medical School, Dunedin, New Zealand
| | - Kari Clifford
- Surgical Outcomes Research Centre, Department of Surgical Sciences, University of Otago Medical School, Dunedin, New Zealand
| | - Rathan M Subramaniam
- Department of Medicine, Dunedin School of Medicine, University of Otago Medical School, Dunedin, New Zealand;
- Department of Radiology, Duke University, Durham, North Carolina; and
- Faculty of Medicine, Nursing, Midwifery, and Health Sciences, University of Notre Dame Australia, Sydney, Australia
| |
Collapse
|
43
|
Mei R, Kessler L, Pabst KM, Weber M, Schimdkonz C, Rischpler C, Zacho HD, Hope T, Schwarzenböck SM, Allen-Auerbach M, Emmett L, Ferdinandus J, Unterrainer M, Schaarschmidt BM, Umutlu L, Farolfi A, Castellucci P, Nanni C, Telo S, Fanti S, Herrmann K, Fendler WP. 68Ga-FAPI PET/CT Interobserver Agreement on Tumor Assessment: An International Multicenter Prospective Study. J Nucl Med 2023:jnumed.122.265245. [PMID: 37230530 DOI: 10.2967/jnumed.122.265245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/21/2023] [Indexed: 05/27/2023] Open
Abstract
68Ga-fibroblast activation protein inhibitors (FAPIs) are promising radiotracers for cancer imaging, with emerging data in the recent years. Nonetheless, the interobserver agreement on 68Ga-FAPI PET/CT study interpretations in cancer patients remains poorly understood. Methods: 68Ga-FAPI PET/CT was performed on 50 patients with various tumor entities (sarcoma [n = 10], colorectal cancer [n = 10], pancreatic adenocarcinoma [n = 10], genitourinary cancer [n = 10], and other types of cancer [n = 10]). Fifteen masked observers reviewed and interpreted the images using a standardized approach for local, local nodal, and metastatic involvement. Observers were grouped by experience as having a low (<30 prior 68Ga-FAPI PET/CT studies; n = 5), intermediate (30-300 studies; n = 5), or high level of experience (>300 studies; n = 5). Two independent readers with a high level of experience and unmasked to clinical information, histopathology, tumor markers, and follow-up imaging (CT/MRI or PET/CT) served as the standard of reference (SOR). Observer groups were compared by overall agreement (percentage of patients matching SOR) and Fleiss κ with mean and corresponding 95% CI. We defined acceptable agreement as a κ value of at least 0.6 (substantial or higher) and acceptable accuracy as at least 80%. Results: Highly experienced observers agreed substantially on all categories (primary tumor: κ = 0.71; 95% CI, 0.71-0.71; local nodal involvement: κ = 0.62; 95% CI, 0.61-0.62; distant metastasis: κ = 0.75; 95% CI, 0.75-0.75), whereas observers with intermediate experience showed substantial agreement on primary tumor (κ = 0.73; 95% CI, 0.73-0.73) and distant metastasis (κ = 0.65; 95% CI, 0.65-0.65) but moderate agreement on local nodal stages (κ = 0.55; 95% CI, 0.55-0.55). Observers with low experience had moderate agreement on all categories (primary tumor: κ = 0.57; 95% CI, 0.57-0.58; local nodal involvement: κ = 0.51; 95% CI, 0.51-0.52; distant metastasis: κ = 0.54; 95% CI, 0.53-0.54). Compared with SOR, the accuracy for readers with high, intermediate, and low experience was 85%, 83%, and 78%, respectively. In summary, only highly experienced readers showed substantial agreement and a diagnostic accuracy of at least 80% in all categories. Conclusion: The interpretation of 68Ga-FAPI PET/CT for cancer imaging had substantial reproducibility and accuracy among highly experienced observers only, especially for local nodal and metastatic assessments. Therefore, for accurate interpretation of different tumor entities and pitfalls, we recommend training or experience with at least 300 representative scans for future clinical readers.
Collapse
Affiliation(s)
- Riccardo Mei
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;
- Nuclear Medicine Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Lukas Kessler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, and German Cancer Research Center, Essen, Germany
| | - Kim M Pabst
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, and German Cancer Research Center, Essen, Germany
| | - Manuel Weber
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, and German Cancer Research Center, Essen, Germany
| | | | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, and German Cancer Research Center, Essen, Germany
| | | | - Thomas Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | | | - Martin Allen-Auerbach
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
- Institute of Urologic Oncology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Louise Emmett
- Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, and Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Justin Ferdinandus
- Department of Internal Medicine I, University of Cologne, Cologne, Germany
| | - Marcus Unterrainer
- Department of Radiology, University Hospital LMU Munich, Munich, Germany; and
| | - Benedikt M Schaarschmidt
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andrea Farolfi
- Nuclear Medicine Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Paolo Castellucci
- Nuclear Medicine Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Cristina Nanni
- Nuclear Medicine Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Silvi Telo
- Nuclear Medicine Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, and German Cancer Research Center, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, and German Cancer Research Center, Essen, Germany
| |
Collapse
|
44
|
Oh C, Bishop MW, Cho SY, Im HJ, Shulkin BL. 18F-FDG PET/CT in the Management of Osteosarcoma. J Nucl Med 2023:jnumed.123.265592. [PMID: 37201958 DOI: 10.2967/jnumed.123.265592] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Indexed: 05/20/2023] Open
Abstract
Osteosarcoma is the most common type of primary malignant bone tumor. 18F-FDG PET/CT is useful for staging, detecting recurrence, monitoring response to neoadjuvant chemotherapy, and predicting prognosis. Here, we review the clinical aspects of osteosarcoma management and assess the role of 18F-FDG PET/CT, in particular with regard to pediatric and young adult patients.
Collapse
Affiliation(s)
- Chiwoo Oh
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Michael W Bishop
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Steve Y Cho
- Nuclear Medicine and Molecular Imaging Section, Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea;
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea; and
| | - Barry L Shulkin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
45
|
Abstract
Advances in histopathologic and molecular genetic subtyping of sarcoma will potentially allow identification of novel diagnostic and therapeutic targets for specific subtypes, but a "pan-sarcoma" target is needed. This article provides an overview on expression of one potential candidate, fibroblast activation protein alpha in soft tissue and bone sarcoma, and the resulting application of 68Ga-FAPI as novel imaging probes in these rare tumor entities. Current preclinical and clinical data on 68Ga-FAPI-PET/CT in sarcomas are summarized. 68Ga-FAPI-PET-CT potentially offers important complementary information to be used in diagnostic work-up, assessment of therapy response, and prognostication of soft tissue and bone sarcomas.
Collapse
Affiliation(s)
- Lukas Kessler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, and German Cancer Research Center (DKFZ), Essen, Germany.
| |
Collapse
|
46
|
Zhong X, Guo J, Han X, Wu W, Yang R, Zhang J, Shao G. Synthesis and Preclinical Evaluation of a Novel FAPI-04 Dimer for Cancer Theranostics. Mol Pharm 2023; 20:2402-2414. [PMID: 37015025 DOI: 10.1021/acs.molpharmaceut.2c00965] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Overexpression of fibroblast activation protein (FAP) in cancer-associated fibroblasts in a wide variety of tumors enables a highly selective targeting strategy using FAP inhibitors (FAPIs). Quinoline-based FAPIs labeled with radionuclides have been widely developed for tumor-targeted nuclear medicine imaging. However, the short retention time of FAPIs at the tumor site limits their application in radionuclide therapy. In this study, a novel FAPI-04 dimer was synthesized and labeled with radionuclides to prolong the retention time in tumors for imaging and therapy. To prepare the FAPI-04 dimer complex, DOTA-Suc-Lys-(FAPI-04)2, we used Fmoc-Lys(Boc)-OH as the linker to conjugate two FAPI-04 structures by an amide reaction. The resulting product was further modified by DOTA groups to allow for conjugation with radioactive metals. Both [68Ga]Ga-(FAPI-04)2 and [177Lu]Lu-(FAPI-04)2 showed a radiochemical purity of >99% and remained stable in vitro. In vivo, micro-PET images of SKOV3, A431, and H1299 xenografts revealed that the tumor uptake of [68Ga]Ga-(FAPI-04)2 was about twice that of [68Ga]Ga-FAPI-04 and that the accumulation of [68Ga]Ga-(FAPI-04)2 at the tumor site did not significantly decrease even 3h after injection. The tumor-abdomen ratio of [68Ga]Ga-(FAPI-04)2 images was significantly higher than that of [18F]F-FDG images. For radionuclide therapy, [177Lu]Lu-(FAPI-04)2 effectively retarded tumor growth and displayed good tolerance. In conclusion, the DOTA-Suc-Lys-(FAPI-04)2 design enhanced its uptake in FAP-expressing tumors, improved its retention time at the tumor site, and produced high-contrast imaging in xenografts after radionuclide labeling. Furthermore, it showed a noticeable antitumor effect. DOTA-Suc-Lys-(FAPI-04)2 provides a new approach for applying FAPI derivatives in tumor theranostics.
Collapse
Affiliation(s)
- Xuan Zhong
- Nanjing University of Chinese Medicine, Nanjing 210046, China
- Department of Nuclear Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Jingru Guo
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Xiuping Han
- Department of Nuclear Medicine, Nanjing Medical University Affiliated Nanjing Hospital, Nanjing 210029, China
| | - Wenyu Wu
- Department of Nuclear Medicine, Nanjing Medical University Affiliated Nanjing Hospital, Nanjing 210029, China
| | - Rui Yang
- Department of Nuclear Medicine, Nanjing Medical University Affiliated Nanjing Hospital, Nanjing 210029, China
| | - Jun Zhang
- Nanjing University of Chinese Medicine, Nanjing 210046, China
- Department of Nuclear Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing Medical University Affiliated Nanjing Hospital, Nanjing 210029, China
| |
Collapse
|
47
|
Strating E, van de Loo A, Elias S, Lam M, Kranenburg O. Fibroblast Activation Protein Inhibitor-PET Imaging in Colorectal Cancer. PET Clin 2023:S1556-8598(23)00016-0. [PMID: 37030984 DOI: 10.1016/j.cpet.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Fibroblast activation protein inhibitor (FAPI)-PET imaging holds great promise for improving the clinical management of colorectal cancer. High fibroblast activation protein expression is particularly observed in lymph node metastases, in the aggressive Consensus Molecular Subtype 4, in peritoneal metastases, and in tumors that respond poorly to immunotherapy. We have defined six clinical dilemmas in the diagnosis and treatment of colorectal cancer, which FAPI-PET may help solve. Future clinical trials should include patients undergoing tumor resection, allowing correlation of FAPI-PET signals with in-depth histopathological, cellular, and molecular tissue analyses.
Collapse
Affiliation(s)
- Esther Strating
- Division of Imaging and Cancer, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, G.04.2.28, Utrecht, the Netherlands
| | - Anne van de Loo
- Division of Imaging and Cancer, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, G.04.2.28, Utrecht, the Netherlands
| | - Sjoerd Elias
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, STR.6.131, Utrecht, the Netherlands
| | - Marnix Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, E.01.1.32, Utrecht, the Netherlands.
| | - Onno Kranenburg
- Division of Imaging and Cancer, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, G.04.2.28, Utrecht, the Netherlands.
| |
Collapse
|
48
|
Hamacher R, Lanzafame H, Mavroeidi IA, Pabst KM, Kessler L, Cheung PF, Bauer S, Herrmann K, Schildhaus HU, Siveke JT, Fendler WP. Fibroblast Activation Protein Inhibitor Theranostics. PET Clin 2023:S1556-8598(23)00021-4. [PMID: 36997366 DOI: 10.1016/j.cpet.2023.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The theranostic use of fibroblast activation protein inhibitors (FAPIs) is a novel approach in oncology. Sarcomas are a heterogenous group of rare malignant tumors. Prognosis remains poor in advanced/metastatic disease due to limited therapeutic options. Sarcoma frequently demonstrate high expression of fibroblast activation protein alpha on the tumor cells themselves, in contrast to other solid tumors, where it is mainly expressed on cancer-associated fibroblasts. Consequently, high in vivo uptake of FAPI in PET is observed in sarcoma. Moreover, retrospective case reports and series demonstrated feasibility of FAPI radioligand therapy with signs of tumor response.
Collapse
|
49
|
van den Hoven AF, Keijsers RGM, Lam MGEH, Glaudemans AWJM, Verburg FA, Vogel WV, Lavalaye J. Current research topics in FAPI theranostics: a bibliometric analysis. Eur J Nucl Med Mol Imaging 2023; 50:1014-1027. [PMID: 36437424 DOI: 10.1007/s00259-022-06052-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE The study aimed to provide a comprehensive bibliometric overview of the current scientific publications on fibroblast activation protein inhibitor (FAPI) positron emission tomography imaging and radionuclide therapy. METHODS A PubMed search was performed to identify all MEDLINE-indexed publications on FAPI imaging and radionuclide therapy. The last update was performed on 31 May 2022. An online database of this literature was created, and hierarchical topic-related tags were subsequently assigned to all relevant studies. Frequency analysis was used to evaluate the distribution of the following characteristics: first author's country of origin, journal of publication, study design, imaging techniques and radiopharmaceutical used, histopathological correlation, the type of cancer, and benign disease/uptake types evaluated. RESULTS A total of 294 relevant publications on original studies were identified, consisting of 209 (71%) case reports/series and 85 cohort studies (29%). The majority of studies focused on imaging topics, predominantly comparing uptake on FAPI-PET/CT with 2-[18F]FDG-PET/CT, anatomical imaging, and/or histopathology results. 68% of studies focused on malignancies, with gastro-intestinal cancer, hepato-pancreato-biliary cancer, mixed cancers/metastases, lung cancer, sarcoma, head and neck cancer, and breast cancer being the most frequently reported. 42% of studies focused on benign disease categories, with cardiovascular, musculoskeletal, HPB, head and neck, and IgG4-related disease as most common categories. 16/294 (5%) studies focused on radionuclide therapy, with preliminary reports of acceptable toxicity profiles, tumour activity retention, and suggestion of disease control. CONCLUSION FAPI research is rapidly expanding from diagnostic studies in malignancies and benign diseases to the first reports of salvage radionuclide therapy. The research activity needs to shift now from low-level-of-evidence case reports and series to prospectively designed studies in homogenous patient groups to provide evidence on how and in which clinical situations FAPI theranostics can be of added value to clinical care. We have provided an overview of current research topics to build upon.
Collapse
Affiliation(s)
- Andor F van den Hoven
- Department of Nuclear Medicine, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands.
| | - Ruth G M Keijsers
- Department of Nuclear Medicine, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands
| | - Marnix G E H Lam
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Frederik A Verburg
- Department of Radiology and Nuclear Medicine, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Wouter V Vogel
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jules Lavalaye
- Department of Nuclear Medicine, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands
| |
Collapse
|
50
|
Dong Y, Zhou H, Alhaskawi A, Wang Z, Lai J, Yao C, Liu Z, Hasan Abdullah Ezzi S, Goutham Kota V, Hasan Abdulla Hasan Abdulla M, Lu H. The Superiority of Fibroblast Activation Protein Inhibitor (FAPI) PET/CT Versus FDG PET/CT in the Diagnosis of Various Malignancies. Cancers (Basel) 2023; 15:1193. [PMID: 36831535 PMCID: PMC9954090 DOI: 10.3390/cancers15041193] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Cancer represents a major cause of death worldwide and is characterized by the uncontrolled proliferation of abnormal cells that escape immune regulation. It is now understood that cancer-associated fibroblasts (CAFs), which express specific fibroblast activation protein (FAP), are critical participants in tumor development and metastasis. Researchers have developed various FAP-targeted probes for imaging of different tumors from antibodies to boronic acid-based inhibitor molecules and determined that quinoline-based FAP inhibitors (FAPIs) are the most appropriate candidate as the radiopharmaceutical for FAPI PET/CT imaging. When applied clinically, FAPI PET/CT yielded satisfactory results. Over the past few years, the utility and effectiveness of tumor detection and staging of FAPI PET/CT have been compared with FDG PET/CT in various aspects, including standardized uptake values (SUVs), rate of absorbance and clearance. This review summarizes the development and clinical application of FAPI PET/CT, emphasizing the diagnosis and management of various tumor types and the future prospects of FAPI imaging.
Collapse
Affiliation(s)
- Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
| | - Haiying Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
| | - Zewei Wang
- School of Medicine, Zhejiang University, #866 Yuhangtang Road, Hangzhou 310058, China
| | - Jingtian Lai
- School of Medicine, Zhejiang University, #866 Yuhangtang Road, Hangzhou 310058, China
| | - Chengjun Yao
- School of Medicine, Zhejiang University, #866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhenfeng Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
| | - Sohaib Hasan Abdullah Ezzi
- Department of Orthopaedics, Third Xiangya Hospital of Central South University, #138 Tongzipo Road, Changsha 410013, China
| | - Vishnu Goutham Kota
- School of Medicine, Zhejiang University, #866 Yuhangtang Road, Hangzhou 310058, China
| | | | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University, #79 Qingchun Road, Hangzhou 310003, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, #866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|