1
|
Darai A, de Gooyer JM, Ubels S, Bremers AJA, de Reuver PR, Aarntzen EHJG, Nagtegaal ID, Rijpkema M, de Wilt JHW. Multimodal carcinoembryonic antigen-targeted fluorescence and radio-guided cytoreductive surgery for peritoneal metastases of colorectal origin: single-arm confirmatory trial. BJS Open 2025; 9:zraf045. [PMID: 40270484 PMCID: PMC12018875 DOI: 10.1093/bjsopen/zraf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Selection of suitable candidates for intraoperative tumour detection and cytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC) is important for improving outcomes for patients with colorectal peritoneal metastases. Previous research demonstrated the use of single-photon emission computed tomography (SPECT), intraoperative radiodetection, and near-infrared fluorescence (NIRF)-guided surgery with a dual-labelled 111In-labelled dodecane tetra-acetic acid (DOTA)-labetuzumab-IRDye800CW tracer to detect peritoneal metastases before operation. The aim of this study was to validate these results. METHODS A single-centre phase II study was conducted to evaluate the safety and feasibility of 111In-labelled DOTA-labetuzumab-IRDye800CW in patients with colorectal peritoneal metastases undergoing CRS-HIPEC. SPECT/computed tomography (CT) was undertaken before surgery, after intravenous administration of 10 mg 111In-labelled DOTA-labetuzumab-IRDye800CW (mean 101.25 MBq). During surgery, radiodetection and NIRF imaging were used for tumour detection. Adverse events were assessed, and tumour-to-background ratios (TBRs) and peritoneal cancer index scores were analysed. RESULTS Seven patients were included. No study-related severe adverse events were reported. Imaging before surgery revealed previously undetected metastases in one patient. The mean(standard deviation, s.d.) SPECT/CT peritoneal cancer index score was 3(2), and the intraoperative score was 14(7) (P = 0.032). A total of 52 lesions were removed during CRS, of which 37 were malignant. With NIRF imaging, 34 (92%) of 37 malignant lesions were detectable. Of 52 fluorescent lesions, 4 were false-positive. Mean(s.d.) fluorescence TBR was 3.4(1.8) and mean radiodetection TBR was 4.4(1.4). CONCLUSION This study confirmed the safety and feasibility of multimodal image-guided surgery in patients with peritoneal metastases.
Collapse
Affiliation(s)
- Aaya Darai
- Department of Surgery, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Jan Marie de Gooyer
- Department of Surgery, Radboud University Medical Centre, Nijmegen, the Netherlands
- Department of Medical Imaging and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Sander Ubels
- Department of Surgery, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Andreas J A Bremers
- Department of Surgery, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Philip R de Reuver
- Department of Surgery, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Erik H J G Aarntzen
- Department of Medical Imaging and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Mark Rijpkema
- Department of Medical Imaging and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Johannes H W de Wilt
- Department of Surgery, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Srinivasan A, Kaminskaite V, Winter SC. The Use of Fluorescent Markers to Detect and Delineate Head and Neck Cancer: A Scoping Review. Clin Otolaryngol 2025; 50:220-240. [PMID: 39629534 PMCID: PMC11792437 DOI: 10.1111/coa.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/10/2024] [Accepted: 11/17/2024] [Indexed: 02/05/2025]
Abstract
OBJECTIVES The aim of surgery for head and neck squamous cell carcinoma (HNSCC) is to achieve clear resection margins, whilst preserving function and cosmesis. Fluorescent markers have demonstrated potential in the intraoperative visualisation and delineation of tumours, such as glioma, with consequent improvements in resection. The purpose of this scoping review was to identify and compare the fluorescent markers that have been used to detect and delineate HNSCC to date. METHODS A literature search was performed using the Ovid MEDLINE, Ovid Embase, Cochrane CENTRAL, ClinicalTrials.gov and ICTRP databases. Primary human studies published through September 2023 demonstrating the use of fluorescent markers to visualise HNSCC were selected and reviewed independently by two authors. RESULTS The search strategy identified 5776 records. Two hundred and forty-four full texts were reviewed, and sixty-five eligible reports were included. The most used fluorescent markers in the included studies were indocyanine green (ICG) (n = 14), toluidine blue (n = 11), antibodies labelled with IRDye800CW (n = 10) and 5-aminolevulinic acid (5-ALA) (n = 8). Toluidine blue and ICG both have limited specificity, although novel targeted options derived from ICG may be more effective. 5-ALA has been demonstrated as a topical marker and, recently, via enteral administration but it is associated with photosensitivity reactions. The fluorescently labelled antibodies cetuximab-IRDye800CW and panitumumab-IRDye800CW are promising options being investigated by ongoing trials. CONCLUSION Multiple safe fluorescent markers have emerged which may aid the surgical resection of HNSCC. Further research in larger cohorts is required to identify which marker should be considered gold standard.
Collapse
Affiliation(s)
| | | | - Stuart C. Winter
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| |
Collapse
|
3
|
Stone LD, Kasten BB, Rao S, Gonzalez ML, Stevens TM, Lin D, Carroll W, Greene B, Moore LS, Fuson A, James S, Hartman YE, McCammon S, Panuganti B, Nabell LM, Li Y, Li M, Bailey L, Rosenthal EL, Jeyarajan H, Thomas CM, Warram JM. Interim Phase II Results Using Panitumumab-IRDye800CW during Transoral Robotic Surgery in Patients with Oropharyngeal Cancer. Clin Cancer Res 2024; 30:4016-4028. [PMID: 39012279 PMCID: PMC11398989 DOI: 10.1158/1078-0432.ccr-24-0940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
PURPOSE The incidence of oropharyngeal squamous cell carcinoma (OPSCC) has continually increased during the past several decades. Using transoral robotic surgery (TORS) significantly improves functional outcomes relative to open surgery for OPSCC. However, TORS limits tactile feedback, which is often the most important element of cancer surgery. Fluorescence-guided surgery (FGS) strategies to aid surgeon assessment of malignancy for resection are in various phases of clinical research but exhibit the greatest potential impact for improving patient care when the surgeon receives limited tactile feedback, such as during TORS. Here, we assessed the feasibility of intraoperative fluorescence imaging using panitumumab-IRDye800CW (PAN800) during TORS in patients with OPSCC. PATIENTS AND METHODS Twelve consecutive patients with OPSCC were enrolled as part of a nonrandomized, prospective, phase II FGS clinical trial using PAN800. TORS was performed with an integrated robot camera for surgeon assessment of fluorescence. Intraoperative and ex vivo fluorescence signals in tumors and normal tissue were quantified and correlated with histopathology. RESULTS Intraoperative robot fluorescence views delineated OPSCC from normal tissue throughout the TORS procedure (10.7 mean tumor-to-background ratio), including in tumors with low expression of the molecular target. Tumor-specific fluorescence was consistent with surgeon-defined tumor borders requiring resection. Intraoperative robot fluorescence imaging revealed an OPSCC fragment initially overlooked during TORS based on brightfield views, further substantiating the clinical benefit of this FGS approach. CONCLUSIONS The results from this patient with OPSCC cohort support further clinical assessment of FGS during TORS to aid resection of solid tumors.
Collapse
Affiliation(s)
- Logan D. Stone
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Benjamin B. Kasten
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Shilpa Rao
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | | | - Todd M. Stevens
- Department of Pathology, University of Kansas Medical Center, Kansas City, KS
| | - Diana Lin
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - William Carroll
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Benjamin Greene
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Lindsay S. Moore
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Andrew Fuson
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Sherin James
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Yolanda E. Hartman
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Susan McCammon
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Bharat Panuganti
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Lisle M. Nabell
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Yufeng Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Mei Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Luke Bailey
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Eben L. Rosenthal
- Department of Otolaryngology-Head & Neck Surgery, Vanderbilt University, Nashville, TN
| | | | - Carissa M. Thomas
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Jason M. Warram
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
4
|
Streeter SS, Xu X, Hebert KA, Werth PM, Hoopes PJ, Jarvis LA, Pogue BW, Paulsen KD, Samkoe KS, Henderson ER. Neoadjuvant Therapies Do Not Reduce Epidermal Growth Factor Receptor (EGFR) Expression or EGFR-Targeted Fluorescence in a Murine Model of Soft-Tissue Sarcomas. Mol Imaging Biol 2024; 26:272-283. [PMID: 38151580 PMCID: PMC11973971 DOI: 10.1007/s11307-023-01884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE ABY-029, an epidermal growth factor receptor (EGFR)-targeted, synthetic Affibody peptide labeled with a near-infrared fluorophore, is under investigation for fluorescence-guided surgery of sarcomas. To date, studies using ABY-029 have occurred in tumors naïve to chemotherapy (CTx) and radiation therapy (RTx), although these neoadjuvant therapies are frequently used for sarcoma treatment in humans. The goal of this study was to evaluate the impact of CTx and RTx on tumor EGFR expression and ABY-029 fluorescence of human soft-tissue sarcoma xenografts in a murine model. PROCEDURES Immunodeficient mice (n = 98) were divided into five sarcoma xenograft groups and three treatment groups - CTx only, RTx only, and CTx followed by RTx, plus controls. Four hours post-injection of ABY-029, animals were sacrificed followed by immediate fluorescence imaging of ex vivo adipose, muscle, nerve, and tumor tissues. Histological hematoxylin and eosin staining confirmed tumor type, and immunohistochemistry staining determined EGFR, cluster of differentiation 31 (CD31), and smooth muscle actin (SMA) expression levels. Correlation analysis (Pearson's correlation coefficients, r) and linear regression (unstandardized coefficient estimates, B) were used to determine statistical relationships in molecular expression and tissue fluorescence between xenografts and treatment groups. RESULTS Neoadjuvant therapies had no broad impact on EGFR expression (|B|≤ 7.0, p ≥ 0.4) or on mean tissue fluorescence (any tissue type, (|B|≤ 2329.0, p ≥ 0.1). Mean tumor fluorescence was significantly related to EGFR expression (r = 0.26, p = 0.01), as expected. CONCLUSION Results suggest that ABY-029 as an EGFR-targeted, fluorescent probe is not negatively impacted by neoadjuvant soft-tissue sarcoma therapies, although validation in humans is required.
Collapse
Affiliation(s)
- Samuel S Streeter
- Department of Orthopaedics, Dartmouth Health, One Medical Center Drive, Lebanon, NH, 03756, USA.
- Department of Orthopaedics, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA.
| | - Xiaochun Xu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Kendra A Hebert
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Paul M Werth
- Department of Orthopaedics, Dartmouth Health, One Medical Center Drive, Lebanon, NH, 03756, USA
- Department of Orthopaedics, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - P Jack Hoopes
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
- Dartmouth Cancer Center, Dartmouth Health, Lebanon, NH, 03756, USA
| | - Lesley A Jarvis
- Dartmouth Cancer Center, Dartmouth Health, Lebanon, NH, 03756, USA
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Brian W Pogue
- Department of Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | - Keith D Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
- Dartmouth Cancer Center, Dartmouth Health, Lebanon, NH, 03756, USA
| | - Kimberley S Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
- Dartmouth Cancer Center, Dartmouth Health, Lebanon, NH, 03756, USA
| | - Eric R Henderson
- Department of Orthopaedics, Dartmouth Health, One Medical Center Drive, Lebanon, NH, 03756, USA
- Department of Orthopaedics, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
- Dartmouth Cancer Center, Dartmouth Health, Lebanon, NH, 03756, USA
| |
Collapse
|
5
|
Kondo T, Nishio N, Park JS, Mani LD, Naveed A, Tanaka H, Lewis JS, Rosenthal EL, Hom ME. Identification of Optimal Tissue-Marking Dye Color for Pathological Evaluation in Fluorescence Imaging Using IRDye800CW. Mol Imaging Biol 2024; 26:162-172. [PMID: 38057647 DOI: 10.1007/s11307-023-01882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Fluorescence-guided surgery using a tumor-specific antibody-dye conjugate is useful in various cancer types. Fluorescence imaging is a valuable tool both intraoperatively and postoperatively for ex vivo imaging. The color of inks used for tumor specimens during ex vivo specimen processing in pathology is an important consideration for fluorescence imaging since the absorption/emission of the dyes may interfere with the fluorescent dye. This study assesses suitable ink colors for use specifically with IRDye800CW fluorescence imaging. PROCEDURES Eight tissue-marking inks or dyes (TMDs) commonly used for pathological evaluation were assessed. Agarose tissue-mimicking phantoms containing Panitumumab-IRDye800CW were used as an initial model. Mean fluorescence intensity was measured at 800 nm using both Pearl Trilogy as a closed-field fluorescence imaging system and pde-neo II as an open-field fluorescence imaging system before and after TMD application. An in vivo mouse xenograft model using the human head and neck squamous cell carcinoma FaDu cell line was then used in conjunction with TMDs. RESULTS The retained IRDye800CW fluorescence on Pearl Trilogy was as follows: yellow at 91.0 ± 4.5%, red at 90.6 ± 2.7%, orange at 88.2 ± 2.2%, violet at 56.6 ± 1.1%, lime at 40.9 ± 1.8%, green at 19.3 ± 2.8%, black at 13.3 ± 0.6%, and blue at 8.1 ± 0.2%. The retained IRDye800CW fluorescence on pde-neo II was as follows: yellow at 86.5 ± 6.4%, red at 77.0 ± 6.2%, orange at 76.9 ± 2.8%, lime at 72.5 ± 9.5%, violet at 59.7 ± 0.4%, green at 30.1 ± 6.9%, black at 17.0 ± 2.7%, and blue at 6.7 ± 1.7%. The retained IRDye800CW fluorescence in yellow and blue TMDs was 42.1 ± 14.9% and 0.2 ± 0.2%, respectively in the mouse experiment (p = 0.039). CONCLUSION Yellow, red, and orange TMDs should be used, and blue and black TMDs should be avoided for evaluating tumor specimens through fluorescence imaging using IRDye800CW.
Collapse
Affiliation(s)
- Takahito Kondo
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naoki Nishio
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Jason S Park
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lucas D Mani
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Abdullah Naveed
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hidenori Tanaka
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James S Lewis
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eben L Rosenthal
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marisa E Hom
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Sikkenk DJ, Sterkenburg AJ, Schmidt I, Gorpas D, Nagengast WB, Consten ECJ. Detection of Tumour-Targeted IRDye800CW Tracer with Commercially Available Laparoscopic Surgical Systems. Diagnostics (Basel) 2023; 13:diagnostics13091591. [PMID: 37174982 PMCID: PMC10178288 DOI: 10.3390/diagnostics13091591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
(1) Introduction: Near-infrared fluorescence (NIRF) combined with tumour-targeted tracers, such as bevacizumab-800CW, could aid surgical decision-making. This study explored the use of IRDye800CW, conjugated to bevacizumab, with four commercially available NIRF laparoscopes optimised for indocyanine green (ICG). (2) Methods: A (lymph node) phantom was made from a calibration device for NIRF and tissue-mimicking material. Serial dilutions of bevacizumab-800CW were made and ICG functioned as a reference. System settings, working distance, and thickness of tissue-mimicking material were varied to assess visibility of the fluorescence signal and tissue penetration. Tests were performed with four laparoscopes: VISERA ELITE II, Olympus; IMAGE1 S™ 4U Rubina, KARL STORZ; ENDOCAM Logic 4K platform, Richard Wolf; da Vinci Xi, Intuitive Surgical. (3) Results: The lowest visible bevacizumab-800CW concentration ranged between 13-850 nM (8-512 times diluted stock solution) for all laparoscopes, but the tracer was not visible through 0.8 cm of tissue in all systems. In contrast, ICG was still visible at a concentration of 0.4 nM (16,384 times diluted) and through 1.6-2.4 cm of tissue. Visibility and tissue penetration generally improved with a reduced working distance and manually adjusted system settings. (4) Conclusion: Depending on the application, bevacizumab-800CW might be sufficiently visible with current laparoscopes, but optimisation would widen applicability of tumour-targeted IRDye800CW tracers.
Collapse
Affiliation(s)
- Daan J Sikkenk
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Department of Surgery, Meander Medical Centre, Maatweg 3, 3813 TZ Amersfoort, The Netherlands
| | - Andrea J Sterkenburg
- Department of Gastroenterology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Iris Schmidt
- Department of Gastroenterology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Dimitris Gorpas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Ismaninger Straße 22, D-81675 Munich, Germany
| | - Wouter B Nagengast
- Department of Gastroenterology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Esther C J Consten
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Department of Surgery, Meander Medical Centre, Maatweg 3, 3813 TZ Amersfoort, The Netherlands
| |
Collapse
|
7
|
Young K, Ma E, Kejriwal S, Nielsen T, Aulakh SS, Birkeland AC. Intraoperative In Vivo Imaging Modalities in Head and Neck Cancer Surgical Margin Delineation: A Systematic Review. Cancers (Basel) 2022; 14:cancers14143416. [PMID: 35884477 PMCID: PMC9323577 DOI: 10.3390/cancers14143416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Surgical margin status is one of the strongest prognosticators in predicting patient outcomes in head and neck cancer, yet head and neck surgeons continue to face challenges in the accurate detection of these margins with the current standard of care. Novel intraoperative imaging modalities have demonstrated great promise for potentially increasing the accuracy and efficiency in surgical margin delineation. In this current study, we collated and analyzed various intraoperative imaging modalities utilized in head and neck cancer to evaluate their use in discriminating malignant from healthy tissues. The authors conducted a systematic database search through PubMed/Medline, Web of Science, and EBSCOhost (CINAHL). Study screening and data extraction were performed and verified by the authors, and more studies were added through handsearching. Here, intraoperative imaging modalities are described, including optical coherence tomography, narrow band imaging, autofluorescence, and fluorescent-tagged probe techniques. Available sensitivities and specificities in delineating cancerous from healthy tissues ranged from 83.0% to 100.0% and 79.2% to 100.0%, respectively, across the different imaging modalities. Many of these initial studies are in small sample sizes, with methodological differences that preclude more extensive quantitative comparison. Thus, there is impetus for future larger studies examining and comparing the efficacy of these intraoperative imaging technologies.
Collapse
Affiliation(s)
- Kurtis Young
- John A. Burns School of Medicine, Honolulu, HI 96813, USA; (K.Y.); (E.M.); (S.K.); (T.N.)
| | - Enze Ma
- John A. Burns School of Medicine, Honolulu, HI 96813, USA; (K.Y.); (E.M.); (S.K.); (T.N.)
| | - Sameer Kejriwal
- John A. Burns School of Medicine, Honolulu, HI 96813, USA; (K.Y.); (E.M.); (S.K.); (T.N.)
| | - Torbjoern Nielsen
- John A. Burns School of Medicine, Honolulu, HI 96813, USA; (K.Y.); (E.M.); (S.K.); (T.N.)
| | | | - Andrew C. Birkeland
- Department of Otolaryngology—Head and Neck Surgery, University of California, Davis, CA 95817, USA
- Correspondence:
| |
Collapse
|