1
|
Zhang W, Yao W, Shen G. [ 68Ga]Ga-FAPI PET/CT Monitors Response to Receptor Activator of Nuclear Factor-κB Ligand Inhibitor in a Giant Cell Tumor of Bone: Correlation with Histopathology. J Nucl Med 2025:jnumed.124.269432. [PMID: 40374551 DOI: 10.2967/jnumed.124.269432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/22/2025] [Indexed: 05/17/2025] Open
Affiliation(s)
- Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan (610041), People's Republic of China; and
| | - Wenqing Yao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan (610041), People's Republic of China
| | - Guohua Shen
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan (610041), People's Republic of China; and
| |
Collapse
|
2
|
Abbasi S, Dehghani M, Khademi S, Irajirad R, Parizi ZP, Sahebi M, Sadeghi M, Montazerabadi A, Tavakoli M. Revolutionizing cancer diagnosis and dose biodistribution: a meta-analysis of [68ga] FAPI- 46 vs. [18f] FDG imaging. Syst Rev 2025; 14:109. [PMID: 40349083 PMCID: PMC12065268 DOI: 10.1186/s13643-025-02835-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/27/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Advancements in novel peptides significantly affect cancer diagnosis by targeting cancer-specific markers, thereby improving imaging modalities, such as positron emission tomography combined with computed tomography (PET/CT) for more accurate tumor detection. This systematic review and meta-analysis aimed to assess the diagnostic accuracy of [18F] Fluorodeoxyglucose (FDG) and 68Ga-fibroblast activation protein inhibitor (FAPI- 46) PET/CT for early cancer detection. METHODS A comprehensive search was conducted in Scopus, MEDLINE, Web of Science, and Embase databases up to March 28, 2024, using MeSH keywords. Titles and abstracts were screened to identify studies on hybrid [68Ga] FAPI- 46 and [18F] FDG, followed by a detailed full-text evaluation. Only cohort or cross-sectional studies published in English, focusing on the clinical diagnosis of cancer patients, were included, while reviews, case reports, conference proceedings, and abstracts were excluded. Random-effects meta-analysis was used for the estimation of pooled specificity and sensitivity with 95% confidence intervals (CIs). In addition, the heterogeneity was assessed across studies and subgroup meta-analyses for the detection rate via Stata. RESULTS Among the 615 retrieved studies, nine articles were incorporated in the present systematic review, with five (n = 144 patients) eligible for meta-analysis. For [68Ga] FAPI- 46, the pooled sensitivity and specificity compared with immunohistopathology were 0.96 (95% CI 0.84, 0.99) and 0.92 (95% CI 0.53, 0.99), respectively, with a positive likelihood ratio (LR +) of 4.41 (95% CI 1.64, 11.79) and a negative likelihood ratio (LR -) of 3.07 (95% CI 1.01, 9.37). For [18F] FDG, pooled sensitivity and specificity compared with immunohistopathology were 0.73 (95% CI 0.34, 0.93) and 0.83 (95% CI 0.57, 0.95), with an LR + of 12.73 (95% CI 1.43, 113.45) and an LR - of 0.32 (95% CI 0.11, 0.17). The pooled odds ratio for the detection rate on a per-lesion basis was 1.73 (95% CI 0.99, 3.02) for [68Ga] FAPI- 46 compared with [18F] FDG. The pooled weighted mean differences in the standardized uptake value (SUVmax) for primary tumor uptake and the tumor-to-background ratio (TBR) in [68Ga] FAPI- 46 vs. 18F-FDG were 4.40 (95% CI - 0.7, 9.5) and 6.18 (95% CI 1.74, 10.61), respectively. Moderate to high heterogeneity was noted because of the variations in patient selection, interpretation criteria, and scanning procedures. CONCLUSIONS This study revealed that [68Ga] FAPI- 46 outperforms [18F] FDG in cancer diagnosis, with higher sensitivity (0.96 vs. 0.73) and specificity (0.92 vs. 0.83). [Ga] FAPI- 46 improved tumor detection with higher SUVmax and TBR. While FDG had a higher LR +, its lower LR - highlighted more false negatives. Accordingly, [68Ga] FAPI- 46 exhibited superior accuracy and reliability than FDG in cancer diagnosis. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD 42023472270.
Collapse
Affiliation(s)
- Samaneh Abbasi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Dehghani
- Department of Epidemiology, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Khademi
- Department of Radiology Technology, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rasoul Irajirad
- Fintech in Medicine Research Center, Iran University of Medical Science, Tehran, Iran
| | - Zahra Pakdin Parizi
- Nuclear Medicine and Molecular Imaging Department, Imam Reza International University, Razavi Hospital, Mashhad, Iran
| | - Mahdieh Sahebi
- Department of Epidemiology, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Sadeghi
- Department of Epidemiology, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alireza Montazerabadi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Meysam Tavakoli
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
García Megías I, Almeida LS, Calapaquí Terán AK, Pabst KM, Herrmann K, Giammarile F, Delgado Bolton RC. FAPI radiopharmaceuticals in nuclear oncology and theranostics of solid tumours: are we nearer to surrounding the hallmarks of cancer? Ann Nucl Med 2025; 39:407-423. [PMID: 40069442 PMCID: PMC12014767 DOI: 10.1007/s12149-025-02022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/22/2025] [Indexed: 04/05/2025]
Abstract
[18F]FDG PET/CT is the most widely used PET radiopharmaceutical in oncology, but it is not exempt of diagnostic limitations. FAPI have emerged as a great tool in the management of several different solid tumours in which [18F]FDG is not able to provide enough information. The aim of this work was to evaluate the available evidence on diagnostic and therapeutic applications of PET/CT with FAPI radiopharmaceuticals. We underwent a non-systematic review focusing in the utility of FAPI radiopharmaceuticals in PET/CT diagnosis and in the treatment of several malignancies. FAPI radiopharmaceuticals present characteristics that can potentially overcome some known diagnostic limitations of [18F]FDG. FAPI radiopharmaceuticals present a high target-to-background ratio (TBR) in many solid tumours such as oesophageal cancer, gastric cancer, pancreatic cancer, hepatic cancer, colorectal cancer, breast cancer, ovarian, cervical cancer, and head and neck cancer. Available evidence suggests the high TBR improves sensitivity and specificity compared to [18F]FDG, especially for the detection of lymphadenopathies and peritoneal metastases, and may improve patient management and radiation treatment planning. Moreover, it is important to underline the potential theranostic application of FAPI radiopharmaceuticals.
Collapse
Affiliation(s)
- Irene García Megías
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain
- Department of Nuclear Medicine, University Hospital of Toledo, Toledo, Spain
| | - Ludmila Santiago Almeida
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain
- Division of Nuclear Medicine, Department of Anesthesiology, Oncology and Radiology, Faculty of Medical Sciences, Campinas University, Campinas, Brazil
| | - Adriana K Calapaquí Terán
- Servicio Cántabro de Salud, Santander, España
- Department of Pathology, University Hospital "Marqués de Valdecilla", Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla, IDIVAL, Santander, Spain
| | - Kim M Pabst
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Francesco Giammarile
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain.
- Servicio Cántabro de Salud, Santander, España.
| |
Collapse
|
4
|
Serumula W, Pillay V, Hadebe B, Vorster M. Fibroblast Activation Protein Inhibitor (FAPI)-Based Theranostics. Pharmaceuticals (Basel) 2025; 18:522. [PMID: 40283957 PMCID: PMC12030087 DOI: 10.3390/ph18040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Fibroblast activation protein (FAP) is a serine protease selectively expressed in cancer-associated fibroblasts (CAFs), fibrotic tissues, and areas of active tissue remodeling, making it an attractive target for diagnostic imaging across a spectrum of disease. FAP inhibitors (FAPIs) labeled with PET tracers have rapidly advanced as a novel imaging modality with broad clinical applications that offers several advantages, including rapid tumor accumulation, low background uptake, and high tumor-to-background ratios. In oncology, FAPI PET has demonstrated excellent performance in visualizing a wide range of malignancies, including those with low glycolytic activity, such as pancreatic cancer, cholangiocarcinoma, and certain sarcomas. Its high sensitivity and specificity for the stromal component enables improved tumor delineation, staging, and response assessment. Additionally, the potential to guide theranostic approaches, where the same tracer can be labeled with therapeutic radionuclides, positions FAPI as a key player in precision oncology. Beyond oncology, FAPI PET has shown promise in imaging conditions characterized by fibrotic and inflammatory processes. In the cardiovascular field, FAPI PET imaging is being investigated for its ability to detect myocardial fibrosis and active cardiac remodeling, crucial in conditions like heart failure, post-myocardial infarction remodeling, and hypertrophic cardiomyopathy. This review highlights the expanding clinical applications of FAPI-based PET imaging across oncology, inflammation, and cardiovascular disease. While the current data are promising, further large-scale studies and multicenter trials are essential to validate these findings and establish standardized protocols. The versatility and broad applicability of FAPI PET underscore its potential as a transformative tool in precision medicine.
Collapse
Affiliation(s)
| | | | | | - Mariza Vorster
- Department of Nuclear Medicine, School of Health Sciences, University of KwaZulu-Natal, Durban 4058, South Africa; (W.S.); (V.P.); (B.H.)
| |
Collapse
|
5
|
McGale J, Khurana S, Howell H, Nakhla A, Roa T, Doshi P, Shirini D, Huang A, Duong P, Backhaus P, Liao M, Kaur H, Fontani AM, Hung I, Pandit-Taskar N, Haberkorn U, Gulati A, Naim A, Sinigaglia M, Bebawy M, Girard A, Seban RD, Dercle L. FAP-Targeted SPECT/CT and PET/CT Imaging for Breast Cancer Patients. Clin Nucl Med 2025; 50:e138-e145. [PMID: 39780367 DOI: 10.1097/rlu.0000000000005617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
ABSTRACT Breast cancer presents a significant global health challenge, necessitating continued innovation in diagnostic and therapeutic approaches. Recent advances have led to the identification of cancer-associated fibroblasts, which are highly prevalent in breast cancers and express fibroblast activation proteins (FAPs), as critical targets. FAP-specific radiotracers, when used with PET/CT and SPECT/CT, have significant potential for improving early breast cancer detection, staging, treatment response monitoring, and therapeutic intervention. This review provides insight into FAP-targeted molecular imaging, exploring advanced techniques for protein status assessment, development of early-phase targeted therapies, and other emerging applications. The advent of FAP-targeted imaging stands to significantly enhance personalized oncologic care, leading to improved breast cancer management and overall patient outcomes.
Collapse
Affiliation(s)
- Jeremy McGale
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Sakshi Khurana
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Harrison Howell
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Abanoub Nakhla
- Department of Surgery, Maimonides Medical Center, New York, NY
| | - Tina Roa
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Parth Doshi
- Department of Internal Medicine, Lewis Katz School of Medicine, Philadelphia, PA
| | - Dorsa Shirini
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alice Huang
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Phuong Duong
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Philipp Backhaus
- European Institute for Molecular Imaging, University of Münster, Münster, Germany and Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Matthew Liao
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Harleen Kaur
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | | | | | - Neeta Pandit-Taskar
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Amit Gulati
- Department of Internal Medicine, Maimonides Medical Center, New York, NY
| | - Asmâa Naim
- Université Mohammed VI des Sciences et de la Santé, Casablanca, Morocco
| | | | - Maria Bebawy
- Morristown Medical Center, OBGYN Department, Morristown, NJ
| | - Antoine Girard
- Department of Nuclear Medicine, CHU Amiens-Picardie, Amiens, France
| | - Romain-David Seban
- Department of Nuclear Medicine and Endocrine Oncology, Institut Curie, Saint-Cloud, France and Laboratory of Translational Imaging in Oncology, Paris Sciences et Lettres (PSL) Research University, Institut Curie, Orsay, France
| | - Laurent Dercle
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| |
Collapse
|
6
|
Hope TA, Calais J, Goenka AH, Haberkorn U, Konijnenberg M, McConathy J, Oprea-Lager DE, Trimnal L, Zan E, Herrmann K, Deroose CM. SNMMI Procedure Standard/EANM Practice Guideline for Fibroblast Activation Protein (FAP) PET. J Nucl Med 2025; 66:26-33. [PMID: 39572227 PMCID: PMC11705787 DOI: 10.2967/jnumed.124.269002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 01/11/2025] Open
Affiliation(s)
- Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California;
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiology, San Francisco VA Medical Center, San Francisco, California
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
| | - Ajit H Goenka
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Mark Konijnenberg
- Radiology and Nuclear Medicine Department, Erasmus MC, Rotterdam, Netherlands
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniela E Oprea-Lager
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura Trimnal
- Department of Radiology, San Francisco VA Medical Center, San Francisco, California
| | - Elcin Zan
- Department of Radiology, Cleveland Clinic, Cleveland, Ohio
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, and German Cancer Research Center, Essen, Germany
| | - Christophe M Deroose
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium; and
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Edmonds CE, O'Brien SR, McDonald ES, Mankoff DA, Pantel AR. PET Imaging of Breast Cancer: Current Applications and Future Directions. JOURNAL OF BREAST IMAGING 2024; 6:586-600. [PMID: 39401324 DOI: 10.1093/jbi/wbae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 11/07/2024]
Abstract
As molecular imaging use expands for patients with breast cancer, it is important for breast radiologists to have a basic understanding of molecular imaging, including PET. Although breast radiologists may not directly interpret such studies, basic knowledge of molecular imaging will enable the radiologist to better direct diagnostic workup of patients as well as discuss diagnostic imaging with the patient and other treating physicians. Several new tracers are now available to complement imaging glucose metabolism with FDG. Because it provides a noninvasive assessment of disease status across the whole body, PET offers specific advantages over tissue-based assays. Paired with targeted therapy, molecular imaging has the potential to guide personalized treatment of breast cancer, including guiding dosing during drug trials as well as predicting and assessing clinical response. This review discusses the current established applications of FDG, which remains the most widely used PET radiotracer for malignancy, including breast cancer, and highlights potential areas for expanded use based on recent research. It also summarizes research to date on the U.S. Food and Drug Administration (FDA)-approved PET tracer 16α-18F-fluoro-17β-estradiol (FES), which targets ER, including the current guidelines from the Society of Nuclear Medicine and Molecular Imaging on the appropriate use of FES-PET/CT for breast cancer as well as areas of active investigation for other potential applications. Finally, the review highlights several of the most promising novel PET tracers that are poised for clinical translation in the near future.
Collapse
Affiliation(s)
- Christine E Edmonds
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sophia R O'Brien
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth S McDonald
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - David A Mankoff
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Austin R Pantel
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Lin Y, Gao H, Zheng J, Al-Ibraheem A, Hu P, Shi H. Clinical Explorations of [ 68Ga] Ga-FAPI-04 and [ 18F] FDG Dual-Tracer Total-body PET/CT and PET/MR Imaging. Semin Nucl Med 2024; 54:904-913. [PMID: 39489646 DOI: 10.1053/j.semnuclmed.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024]
Abstract
Fibroblast activation protein inhibitor (FAPI) and [18F]fluorodeoxyglucose ([18F]FDG) provide complementary biological information, and FAPI/FDG dual-tracer imaging clinical application is increasing recently. However, optimal protocols for FAPI/FDG dual-tracer positron emission tomography/computed tomography (PET/CT) and PET/magnetic resonance (PET/MR) imaging are still under investigation. Due to its high sensitivity, total-body PET/CT allows for imaging with minimal tracer activity and supports the creation of new dual-tracer PET/CT imaging protocols. PET/MR, with its multiparametric MR imaging, provides additional biological information for diagnosis. Studies have investigated the clinical feasibility of low-activity PET/MR imaging, yielding promising results. As there are still few institutions in the world that have experience with the advances provided by the use of total-body PET/CT and equipped with a PET/MR scanner, we have discussed the clinical explorations to reduce radiation exposure and optimize workflows for [68Ga]Ga-FAPI-04 and [18F]FDG dual-tracer PET/CT and PET/MR imaging. The review also provides potential new clinical explorations of [68Ga]Ga-FAPI-04 and [18F]FDG dual-tracer total-body PET/CT and PET/MR imaging, including dual-tracer dual-low-activity imaging.
Collapse
Affiliation(s)
- Yu Lin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Shanghai, China; Institute of Nuclear Medicine, Fudan University, Shanghai, China; Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huaping Gao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Shanghai, China; Institute of Nuclear Medicine, Fudan University, Shanghai, China; Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiefu Zheng
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, VA
| | - Akram Al-Ibraheem
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman Jordan; Department of Radiology and Nuclear Medicine, School of Medicine, University of Jordan, Amman, Jordan
| | - Pengcheng Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Shanghai, China; Institute of Nuclear Medicine, Fudan University, Shanghai, China; Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Shanghai, China; Institute of Nuclear Medicine, Fudan University, Shanghai, China; Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Zhang X, Lin Z, Feng Y, Lin Z, Tao K, Zhang T, Lan X. Predicting Pathologic Complete Response in Locally Advanced Rectal Cancer with [ 68Ga]Ga-FAPI-04 PET, [ 18F]FDG PET, and Contrast-Enhanced MRI: Lesion-to-Lesion Comparison with Pathology. J Nucl Med 2024; 65:1548-1556. [PMID: 39353648 DOI: 10.2967/jnumed.124.267581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
Neoadjuvant therapy in patients with locally advanced rectal cancer (LARC) has achieved good pathologic complete response (pCR) rates, potentially eliminating the need for surgical intervention. This study investigated preoperative methods for predicting pCR after neoadjuvant short-course radiotherapy (SCRT) combined with immunochemotherapy. Methods: Treatment-naïve patients with histologically confirmed LARC were enrolled from February 2023 to July 2023. Before surgery, the patients received neoadjuvant SCRT followed by 2 cycles of capecitabine and oxaliplatin plus camrelizumab. 68Ga-labeled fibroblast activation protein inhibitor ([68Ga]Ga-FAPI-04) PET/MRI, [18F]FDG PET/CT, and contrast-enhanced MRI were performed before treatment initiation and before surgery in each patient. PET and MRI features and the size and number of lesions were also collected from each scan. Each parameter's sensitivity, specificity, and diagnostic cutoff were derived via receiver-operating-characteristic curve analysis. Results: Twenty eligible patients (13 men, 7 women; mean age, 60.2 y) were enrolled and completed the entire trial, and all patients had proficient mismatch repair or microsatellite-stable LARC. A postoperative pCR was achieved in 9 patients (45.0%). In the visual evaluation, both [68Ga]Ga-FAPI-04 PET/MRI and [18F]FDG PET/CT were limited to forecasting pCR. Contrast-enhanced MRI had a low sensitivity of 55.56% to predict pCR. In the quantitative evaluation, [68Ga]Ga-FAPI-04 change in SULpeak percentage, where SULpeak is SUVpeak standardized by lean body mass, had the largest area under the curve (0.929) with high specificity (sensitivity, 77.78%; specificity, 100.0%; cutoff, 63.92%). Conclusion: [68Ga]Ga-FAPI-04 PET/MRI is a promising imaging modality for predicting pCR after SCRT combined with immunochemotherapy. The SULpeak decrease exceeding 63.92% may provide valuable guidance in selecting patients who can forgo surgery after neoadjuvant therapy.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China
| | - Zhenyu Lin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Yuan Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China
| | - Zhaoguo Lin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China
| |
Collapse
|
10
|
Ludwig V, Maliha PG, Shen J, Tonnelet D, Raman S, Litwin MS, Calais J. [ 68Ga]Ga-FAPI-46 False-Positive Uptake After Chemotherapy in Nonseminomatous Germ Cell Tumor Metastatic Lesions. J Nucl Med 2024; 65:1328-1329. [PMID: 38664018 DOI: 10.2967/jnumed.124.267609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 08/03/2024] Open
Affiliation(s)
- Vinicius Ludwig
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California;
| | - Peter George Maliha
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
- Nuclear Medicine, Centre Hospitalier de l'Université de Montréal Centre de Recherche, Université de Montréal, Montréal, Québec, Canada
- Nuclear Medicine Department, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - John Shen
- Department of Hematology/Oncology, UCLA, Los Angeles, California
- Department of Urology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - David Tonnelet
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, and QuantIF-LITIS, University of Rouen, Rouen, France; and
| | - Steve Raman
- Department of Radiology, UCLA, Los Angeles, California
| | - Mark S Litwin
- Department of Urology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
11
|
Guo C, Liu Y, Yang H, Xia Y, Li X, Chen L, Feng Y, Zhang Y, Chen Y, Huang Z. A pilot study of [68Ga]Ga-fibroblast activation protein inhibitor-04 PET/CT in renal cell carcinoma. Br J Radiol 2024; 97:859-867. [PMID: 38290775 PMCID: PMC11027253 DOI: 10.1093/bjr/tqae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/26/2023] [Accepted: 01/24/2024] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVES As a promising positron emission tomography (PET) tracer, [68Ga]Ga-fibroblast activation protein inhibitor-04([68Ga]Ga-FAPI-04) performs better than 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG) at diagnosing primary and metastatic lesions in patients with various types of cancer. We investigated the utility of [68Ga]Ga-FAPI-04 PET/CT for the detection of primary and metastatic lesions in renal cell carcinoma (RCC). [18F]FDG PET/CT were used for comparison. METHODS Twenty-two patients with suspected RCC or recurrent RCC were enrolled in our study. Among these patients, 14 were newly diagnosed with RCC, 3 had recurrent RCC, and 5 were excluded from further analysis due to having benign renal tumours. Seventeen patients with RCC underwent [68Ga]Ga-FAPI-04 PET/CT, and 6 of them also received [18F]FDG PET/CT. The positive detection rates were calculated and compared with those in patients who underwent both scans. RESULTS Data from 17 patients with RCC (median age: 60.5 years, interquartile range [IQR]: 54-70 years) were evaluated. The positive detection rate of [68Ga]Ga-FAPI-04 PET/CT for RCC was 64.7% (11/17). Lymph node metastases (n = 44), lung metastasis (n = 1), and bone metastasis (n = 1) were detected. Six patients with RCC underwent [68Ga]Ga-FAPI-04 and [18F]FDG PET/CT. [68Ga]Ga-FAPI-04 PET/CT showed a higher positive detection rate than [18F]FDG PET/CT in detecting RCC (83.3% [5/6] vs. 50% [3/6], P = 0.545). Additionally, [68Ga]Ga-FAPI-04 PET/CT has higher SUVmax (3.20 [IQR: 2.91-5.80 vs. 2.71 [IQR: 2.13-3.10], P = 0.116) and tumour-to-background ratio (TBR) values (1.60 [IQR: 1.33-3.67] vs. 0.86 [0.48-1.21], P = 0.028) than [18F]FDG PET/CT. CONCLUSIONS These findings suggest that [68Ga]Ga-FAPI-04 PET/CT has potential value in RCC diagnosis. Further studies are warranted to validate these results. ADVANCES IN KNOWLEDGE Clinical utility of [68Ga]Ga-FAPI-04 in RCC remains unclear, and there are not many similar studies in the literature. We evaluated the role of [68Ga]Ga-FAPI-04 in diagnosing RCC.
Collapse
Affiliation(s)
- Chunmei Guo
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ya Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Haozhou Yang
- Department of Urology, Fushun People’s Hospital, Zigong, Sichuan 643000, China
| | - Yuxiao Xia
- Department of Nuclear Medicine, Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, Sichuan 610000, China
| | - Xue Li
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Liming Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yue Feng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhanwen Huang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
12
|
Chung HW, Park KS, Lim I, Noh WC, Yoo YB, Nam SE, So Y, Lee EJ. PET/MRI and Novel Targets for Breast Cancer. Biomedicines 2024; 12:172. [PMID: 38255277 PMCID: PMC10813582 DOI: 10.3390/biomedicines12010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer, with its global prevalence and impact on women's health, necessitates effective early detection and accurate staging for optimal patient outcomes. Traditional imaging modalities such as mammography, ultrasound, and dynamic contrast-enhanced magnetic resonance imaging (MRI) play crucial roles in local-regional assessment, while bone scintigraphy and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) aid in evaluating distant metastasis. Despite the proven utility of 18F-FDG PET/CT in various cancers, its limitations in breast cancer, such as high false-negative rates for small and low-grade tumors, have driven exploration into novel targets for PET radiotracers, including estrogen receptor, human epidermal growth factor receptor-2, fibroblast activation protein, and hypoxia. The advent of PET/MRI, which combines metabolic PET information with high anatomical detail from MRI, has emerged as a promising tool for breast cancer diagnosis, staging, treatment response assessment, and restaging. Technical advancements including the integration of PET and MRI, considerations in patient preparation, and optimized imaging protocols contribute to the success of dedicated breast and whole-body PET/MRI. This comprehensive review offers the current technical aspects and clinical applications of PET/MRI for breast cancer. Additionally, novel targets in breast cancer for PET radiotracers beyond glucose metabolism are explored.
Collapse
Affiliation(s)
- Hyun Woo Chung
- Department of Nuclear Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (H.W.C.); (Y.S.)
| | - Kyoung Sik Park
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (W.C.N.); (Y.B.Y.); (S.E.N.)
- Research Institute of Medical Science, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea
| | - Ilhan Lim
- Department of Nuclear Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 07812, Republic of Korea;
| | - Woo Chul Noh
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (W.C.N.); (Y.B.Y.); (S.E.N.)
| | - Young Bum Yoo
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (W.C.N.); (Y.B.Y.); (S.E.N.)
| | - Sang Eun Nam
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (W.C.N.); (Y.B.Y.); (S.E.N.)
| | - Young So
- Department of Nuclear Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (H.W.C.); (Y.S.)
| | - Eun Jeong Lee
- Department of Nuclear Medicine, Seoul Medical Center, 156 Sinnae-ro, Jungnang-gu, Seoul 02053, Republic of Korea;
| |
Collapse
|