1
|
Ogola EO, Kopp A, Bastos ADS, Slothouwer I, Marklewitz M, Omoga D, Rotich G, Getugi C, Sang R, Torto B, Junglen S, Tchouassi DP. Jingmen Tick Virus in Ticks from Kenya. Viruses 2022; 14:1041. [PMID: 35632782 PMCID: PMC9147648 DOI: 10.3390/v14051041] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/29/2023] Open
Abstract
Jingmen tick virus (JMTV) is an arbovirus with a multisegmented genome related to those of unsegmented flaviviruses. The virus first described in Rhipicephalus microplus ticks collected in Jingmen city (Hubei Province, China) in 2010 is associated with febrile illness in humans. Since then, the geographic range has expanded to include Trinidad and Tobago, Brazil, and Uganda. However, the ecology of JMTV remains poorly described in Africa. We screened adult ticks (n = 4550, 718 pools) for JMTV infection by reverse transcription polymerase chain reaction (RT-PCR). Ticks were collected from cattle (n = 859, 18.88%), goats (n = 2070, 45.49%), sheep (n = 1574, 34.59%), and free-ranging tortoises (Leopard tortoise, Stigmochelys pardalis) (n = 47, 1.03%) in two Kenyan pastoralist-dominated areas (Baringo and Kajiado counties) with a history of undiagnosed febrile human illness. Surprisingly, ticks collected from goats (0.3%, 95% confidence interval (CI) 0.1-0.5), sheep (1.8%, 95% CI 1.2-2.5), and tortoise (74.5%, 95% CI 60.9-85.4, were found infected with JMTV, but ticks collected from cattle were all negative. JMTV ribonucleic acid (RNA) was also detected in blood from tortoises (66.7%, 95% CI 16.1-97.7). Intragenetic distance of JMTV sequences originating from tortoise-associated ticks was greater than that of sheep-associated ticks. Phylogenetic analyses of seven complete-coding genome sequences generated from tortoise-associated ticks formed a monophyletic clade within JMTV strains from other countries. In summary, our findings confirm the circulation of JMTV in ticks in Kenya. Further epidemiological surveys are needed to assess the potential public health impact of JMTV in Kenya.
Collapse
Affiliation(s)
- Edwin O. Ogola
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya; (E.O.O.); (D.O.); (G.R.); (C.G.); (R.S.); (B.T.)
- Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Pretoria 0028, South Africa;
| | - Anne Kopp
- Berlin Institute of Health, Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, Chariteplatz 1, 10117 Berlin, Germany; (A.K.); (I.S.); (M.M.)
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, 10117 Berlin, Germany
| | - Armanda D. S. Bastos
- Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Pretoria 0028, South Africa;
| | - Inga Slothouwer
- Berlin Institute of Health, Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, Chariteplatz 1, 10117 Berlin, Germany; (A.K.); (I.S.); (M.M.)
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, 10117 Berlin, Germany
| | - Marco Marklewitz
- Berlin Institute of Health, Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, Chariteplatz 1, 10117 Berlin, Germany; (A.K.); (I.S.); (M.M.)
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, 10117 Berlin, Germany
| | - Dorcus Omoga
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya; (E.O.O.); (D.O.); (G.R.); (C.G.); (R.S.); (B.T.)
| | - Gilbert Rotich
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya; (E.O.O.); (D.O.); (G.R.); (C.G.); (R.S.); (B.T.)
| | - Caroline Getugi
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya; (E.O.O.); (D.O.); (G.R.); (C.G.); (R.S.); (B.T.)
| | - Rosemary Sang
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya; (E.O.O.); (D.O.); (G.R.); (C.G.); (R.S.); (B.T.)
- Kenya Medical Research Institute (KEMRI), Off Raila Odinga Way, Nairobi P.O. Box 54840-00200, Kenya
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya; (E.O.O.); (D.O.); (G.R.); (C.G.); (R.S.); (B.T.)
- Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Pretoria 0028, South Africa;
| | - Sandra Junglen
- Berlin Institute of Health, Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, Chariteplatz 1, 10117 Berlin, Germany; (A.K.); (I.S.); (M.M.)
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, 10117 Berlin, Germany
| | - David P. Tchouassi
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya; (E.O.O.); (D.O.); (G.R.); (C.G.); (R.S.); (B.T.)
| |
Collapse
|
2
|
Coalson JE, Anderson EJ, Santos EM, Madera Garcia V, Romine JK, Luzingu JK, Dominguez B, Richard DM, Little AC, Hayden MH, Ernst KC. The Complex Epidemiological Relationship between Flooding Events and Human Outbreaks of Mosquito-Borne Diseases: A Scoping Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:96002. [PMID: 34582261 PMCID: PMC8478154 DOI: 10.1289/ehp8887] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Climate change is expected to increase the frequency of flooding events. Although rainfall is highly correlated with mosquito-borne diseases (MBD) in humans, less research focuses on understanding the impact of flooding events on disease incidence. This lack of research presents a significant gap in climate change-driven disease forecasting. OBJECTIVES We conducted a scoping review to assess the strength of evidence regarding the potential relationship between flooding and MBD and to determine knowledge gaps. METHODS PubMed, Embase, and Web of Science were searched through 31 December 2020 and supplemented with review of citations in relevant publications. Studies on rainfall were included only if the operationalization allowed for distinction of unusually heavy rainfall events. Data were abstracted by disease (dengue, malaria, or other) and stratified by post-event timing of disease assessment. Studies that conducted statistical testing were summarized in detail. RESULTS From 3,008 initial results, we included 131 relevant studies (dengue n = 45 , malaria n = 61 , other MBD n = 49 ). Dengue studies indicated short-term (< 1 month ) decreases and subsequent (1-4 month) increases in incidence. Malaria studies indicated post-event incidence increases, but the results were mixed, and the temporal pattern was less clear. Statistical evidence was limited for other MBD, though findings suggest that human outbreaks of Murray Valley encephalitis, Ross River virus, Barmah Forest virus, Rift Valley fever, and Japanese encephalitis may follow flooding. DISCUSSION Flooding is generally associated with increased incidence of MBD, potentially following a brief decrease in incidence for some diseases. Methodological inconsistencies significantly limit direct comparison and generalizability of study results. Regions with established MBD and weather surveillance should be leveraged to conduct multisite research to a) standardize the quantification of relevant flooding, b) study nonlinear relationships between rainfall and disease, c) report outcomes at multiple lag periods, and d) investigate interacting factors that modify the likelihood and severity of outbreaks across different settings. https://doi.org/10.1289/EHP8887.
Collapse
Affiliation(s)
- Jenna E. Coalson
- Center for Insect Science, University of Arizona, Tucson, Arizona, USA
| | | | - Ellen M. Santos
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Valerie Madera Garcia
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - James K. Romine
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Joy K. Luzingu
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Brian Dominguez
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Danielle M. Richard
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Ashley C. Little
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Mary H. Hayden
- National Institute for Human Resilience, University of Colorado Colorado Springs, Colorado Springs, Colorado, USA
| | - Kacey C. Ernst
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| |
Collapse
|
3
|
Vigilant M, Battle-Freeman C, Braumuller KC, Riley R, Fredregill CL. Harris County Public Health Mosquito and Vector Control Division Emergency Response to Hurricane Harvey: Vector-Borne Disease Surveillance and Control. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2020; 36:15-27. [PMID: 33647149 DOI: 10.2987/19-6890.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hurricane Harvey made a landfall on the Texas Gulf Coast on August 25, 2017, stalling over Harris County as a tropical storm for 4 days (August 26-29), dumping approximately 127 cm of rain. This tremendous amount of rainfall overwhelmed the county's natural and man-made drainage systems, resulting in unprecedented widespread flooding. Immediately following, Harris County Public Health Mosquito and Vector Control Division conducted a countywide emergency vector control response by integrating surveillance, control, and education strategies. This included landing rate counts, mosquito and avian surveillance, arbovirus testing, ground-based ultra-low volume (ULV) and aerial pesticide spraying, and community outreach. The immediate response lasted for 4 wk through September, resulting in 774 landing rates, 49,342 ha treated by ground-based ULV, 242,811 ha treated by aerial ULV, 83,241 mosquitoes collected, 1,807 mosquito pools tested, and 20 education/outreach sessions. Recovery activities of 3 additional education/outreach events continued through October while surveillance and control activities returned to routine status.
Collapse
Affiliation(s)
- Maximea Vigilant
- Harris County Public Health, Mosquito and Vector Control Division, 3330 Old Spanish Trail, Building D, Houston, TX 77021
| | - Cheryl Battle-Freeman
- Harris County Public Health, Mosquito and Vector Control Division, 3330 Old Spanish Trail, Building D, Houston, TX 77021
| | - Kyndall C Braumuller
- University of South Carolina Arnold School of Public Health-Columbia Laboratory of Vector-borne and Parasitic Diseases, Department of Epidemiology and Biostatistics, 915 Greene Street, Columbia, SC 29201
| | - Rebecca Riley
- Harris County Public Health, Mosquito and Vector Control Division, 3330 Old Spanish Trail, Building D, Houston, TX 77021
| | - Chris L Fredregill
- Harris County Public Health, Mosquito and Vector Control Division, 3330 Old Spanish Trail, Building D, Houston, TX 77021
| |
Collapse
|
4
|
CONNELLY CROXANNE, BORCHERT JEFF. MOSQUITO CONTROL EMERGENCY PREPAREDNESS AND RESPONSE TO NATURAL DISASTERS. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2020; 36:2-4. [PMID: 33575685 PMCID: PMC7871406 DOI: 10.2987/8756-971x-36.2s.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
On February 9, 2019, the Bipartisan Budget Act of 2018 was signed into law and appropriated $200M in hurricane funding to the Centers for Disease Control and Prevention (CDC) for preparation, response, recovery, mitigation, and other expenses related to the consequences of Hurricanes Harvey, Irma, and Maria. The CDC then awarded, through CDC-RFA-TP18-1802 Cooperative Agreement for Emergency Response: Public Health Crisis Response notice of funding opportunity, $51,136,347 in extramural funding. Funding specific to vector-borne diseases, including intramural and extramural (partners and jurisdictions), was $37,628,235 to Florida, Georgia, Louisiana, Mississippi, Texas, Puerto Rico, and US Virgin Islands. State and territorial funding supported the implementation of conventional and novel mosquito control techniques, training for public health pest control applicators, replacement of mosquito surveillance and control supplies utilized in the aftermath of the 2017 hurricanes, insecticide resistance testing and training, and source reduction. Additionally, the CDC hurricane funding supported this special issue of the Journal of the American Mosquito Control Association (JAMCA) focused on mosquito control response in the wake of natural disasters. We invited hurricane relief funding grantees, mosquito control programs, academics, manufacturers, product distributors, and applicators to submit response plans or descriptive articles related to their experience with mosquito control after natural disasters. The objective of this special issue of JAMCA is to provide a comprehensive volume that includes resources to help guide mosquito control in areas affected by natural disasters. The shared experiences should serve to assist others involved in mosquito control in planning for and responding to natural disasters.
Collapse
|
5
|
Hess TM, Noden BH, Whiteman L, Reed M, Kard B, Hoback WW. Mosquito Community and West Nile Virus Risk on a National Guard Training Base in Oklahoma. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2020; 36:81-88. [PMID: 33647130 DOI: 10.2987/20-6928.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Military bases are important areas for mosquito surveillance to maintain active duty combat readiness and protect training exercises. The aim of this study was to assist Camp Gruber National Guard training facility personnel to assess their mosquito community and West Nile virus (WNV) risk using biweekly sampling of 50 sites. Between May and October 2018, 10,259 adult female mosquitoes consisting of 6 genera and 26 species were collected over 662 trap-nights using 2 trap types. The most commonly collected genus was Culex (72.2% of total), followed by Psorophora (13.3%) and Aedes (10.2%). Of note, most of the medically important species were collected in the area containing troop living quarters, including 1 WNV-positive pool of Culex tarsalis. Two specimens of Aedes aegypti were collected around a vehicle storage area. While smaller in land mass size than many other active military bases in Oklahoma, the diversity of species at Camp Gruber was comparable to collections from 4 larger bases in Oklahoma. These data demonstrate the need for regular season-long mosquito monitoring of training bases to protect the health of active duty and reserve military personnel.
Collapse
Affiliation(s)
- Thomas M Hess
- Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK 74078-3033
| | - Bruce H Noden
- Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK 74078-3033
| | - Liam Whiteman
- Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK 74078-3033
| | - Melissa Reed
- Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK 74078-3033
| | - Brad Kard
- Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK 74078-3033
| | - W Wyatt Hoback
- Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK 74078-3033
| |
Collapse
|
6
|
Barrera R, Felix G, Acevedo V, Amador M, Rodriguez D, Rivera L, Gonzalez O, Nazario N, Ortiz M, Muñoz-Jordan JL, Waterman SH, Hemme RR. Impacts of Hurricanes Irma and Maria on Aedes aegypti Populations, Aquatic Habitats, and Mosquito Infections with Dengue, Chikungunya, and Zika Viruses in Puerto Rico. Am J Trop Med Hyg 2020; 100:1413-1420. [PMID: 30963992 PMCID: PMC6553919 DOI: 10.4269/ajtmh.19-0015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Puerto Rico was severely impacted by Hurricanes Irma and Maria in September 2017. The island has been endemic for dengue viruses (DENV) and recently suffered epidemics of chikungunya (CHIKV 2014) and Zika (ZIKV 2016) viruses. Although severe storms tend to increase the number of vector and nuisance mosquitoes, we do not know how they influence Aedes aegypti populations and arboviral transmission. We compared the abundance of female Ae. aegypti in autocidal gravid ovitraps (AGO traps), container habitats, and presence of RNA of DENV, CHIKV, and ZIKV in this vector before and after the hurricanes in Caguas city and in four communities in southern Puerto Rico. Two of these communities were under vector control using mass AGO trapping and the other two nearby communities were not. We also investigated mosquito species composition and relative abundance (females/trap) using Biogents traps (BG-2 traps) in 59 sites in metropolitan San Juan city after the hurricanes. Mosquitoes sharply increased 5 weeks after Hurricane Maria. Ensuing abundance of Ae. aegypti was higher in Caguas and in one of the southern communities without vector control. Aedes aegypti did not significantly change in the two areas with vector control. The most abundant mosquitoes among the 26 species identified in San Juan were Culex (Melanoconion) spp., Culex quinquefasciatus, Culex nigripalpus, and Ae. aegypti. No arboviruses were detected in Ae. aegypti following the hurricanes, in contrast with observations from the previous year, so that the potential for Aedes-borne arboviral outbreaks following the storms in 2017 was low.
Collapse
Affiliation(s)
- Roberto Barrera
- Entomology and Ecology Team, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Gilberto Felix
- Entomology and Ecology Team, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Veronica Acevedo
- Entomology and Ecology Team, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Manuel Amador
- Entomology and Ecology Team, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Damaris Rodriguez
- Entomology and Ecology Team, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Luis Rivera
- Entomology and Ecology Team, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Orlando Gonzalez
- Entomology and Ecology Team, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Nicole Nazario
- Vector Control Unit of Puerto Rico, Puerto Rico Science Trust, San Juan, Puerto Rico
| | - Marianyoly Ortiz
- Vector Control Unit of Puerto Rico, Puerto Rico Science Trust, San Juan, Puerto Rico
| | - Jorge L Muñoz-Jordan
- Molecular Diagnostic Laboratory, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Stephen H Waterman
- Entomology and Ecology Team, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Ryan R Hemme
- Entomology and Ecology Team, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| |
Collapse
|
7
|
Tall JA, Gatton ML. Flooding and Arboviral Disease: Predicting Ross River Virus Disease Outbreaks Across Inland Regions of South-Eastern Australia. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:241-251. [PMID: 31310648 DOI: 10.1093/jme/tjz120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Indexed: 06/10/2023]
Abstract
Flood frequency is expected to increase across the globe with climate change. Understanding the relationship between flooding and arboviral disease can reduce disease risk and associated costs. South-eastern Australia is dominated by the flood-prone Murray-Darling River system where the incidence of Australia's most common arboviral disease, Ross River virus (RRV), is high. This study aimed to determine the relationship between riverine flooding and RRV disease outbreaks in inland south-eastern Australia, specifically New South Wales (NSW). Each study month from 1991 to 2013, for each of 37 local government areas (LGAs) was assigned 'outbreak/non-outbreak' status based on long-term trimmed-average age-standardized RRV notification rates and 'flood/non-flood' status based on riverine overflow. LGAs were grouped into eight climate zones with the relationship between flood and RRV outbreak modeled using generalized estimating equations. Modeling adjusted for rainfall in the previous 1-3 mo. Spring-summer flooding increased the odds of summer RRV outbreaks in three climate zones before and after adjusting for rainfall 1, 2, and 3 mo prior to the outbreak. Flooding at any time of the year was not predictive of RRV outbreaks in the remaining five climate zones. Predicting RRV disease outbreaks with flood events can assist with more targeted mosquito spraying programs, thereby reducing disease transmission and mosquito resistance.
Collapse
Affiliation(s)
- Julie A Tall
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, O Block, Kelvin Grove, Queensland, Australia
| | - Michelle L Gatton
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, O Block, Kelvin Grove, Queensland, Australia
| |
Collapse
|
8
|
Rochlin I, Faraji A, Healy K, Andreadis TG. West Nile Virus Mosquito Vectors in North America. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1475-1490. [PMID: 31549725 DOI: 10.1093/jme/tjz146] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Indexed: 05/11/2023]
Abstract
In North America, the geographic distribution, ecology, and vectorial capacity of a diverse assemblage of mosquito species belonging to the genus Culex determine patterns of West Nile virus transmission and disease risk. East of the Mississippi River, mostly ornithophagic Culex pipiens L. complex mosquitoes drive intense enzootic transmission with relatively small numbers of human cases. Westward, the presence of highly competent Culex tarsalis (Coquillett) under arid climate and hot summers defines the regions with the highest human risk. West Nile virus human risk distribution is not uniform geographically or temporally within all regions. Notable geographic 'hotspots' persist with occasional severe outbreaks. Despite two decades of comprehensive research, several questions remain unresolved, such as the role of non-Culex bridge vectors, which are not involved in the enzootic cycle, but may be involved in virus transmission to humans. The absence of bridge vectors also may help to explain the frequent lack of West Nile virus 'spillover' into human populations despite very intense enzootic amplification in the eastern United States. This article examines vectorial capacity and the eco-epidemiology of West Nile virus mosquito vectors in four geographic regions of North America and presents some of the unresolved questions.
Collapse
Affiliation(s)
- Ilia Rochlin
- Center for Vector Biology, Rutgers University, New Brunswick, NJ
| | - Ary Faraji
- Salt Lake City Mosquito Abatement District, Salt Lake City, UT
| | - Kristen Healy
- Department of Entomology, Louisiana State University, Baton Rouge, LA
| | - Theodore G Andreadis
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT
| |
Collapse
|
9
|
Irish SR, Stevens WMB, Derua YA, Walker T, Cameron MM. Comparison of Methods for Xenomonitoring in Vectors of Lymphatic Filariasis in Northeastern Tanzania. Am J Trop Med Hyg 2015; 93:983-9. [PMID: 26350454 PMCID: PMC4703286 DOI: 10.4269/ajtmh.15-0234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/14/2015] [Indexed: 11/07/2022] Open
Abstract
Monitoring Wuchereria bancrofti infection in mosquitoes (xenomonitoring) can play an important role in determining when lymphatic filariasis has been eliminated, or in focusing control efforts. As mosquito infection rates can be low, a method for collecting large numbers of mosquitoes is necessary. Gravid traps collected large numbers of Culex quinquefasciatus in Tanzania, and a collection method that targets mosquitoes that have already fed could result in increased sensitivity in detecting W. bancrofti-infected mosquitoes. The aim of this experiment was to test this hypothesis by comparing U.S. Centers for Disease Control and Prevention (CDC) light traps with CDC gravid traps in northeastern Tanzania, where Cx. quinquefasciatus is a vector of lymphatic filariasis. After an initial study where small numbers of mosquitoes were collected, a second study collected 16,316 Cx. quinquefasciatus in 60 gravid trap-nights and 240 light trap-nights. Mosquitoes were pooled and tested for presence of W. bancrofti DNA. Light and gravid traps collected similar numbers of mosquitoes per trap-night, but the physiological status of the mosquitoes was different. The estimated infection rate in mosquitoes collected in light traps was considerably higher than in mosquitoes collected in gravid traps, so light traps can be a useful tool for xenomonitoring work in Tanzania.
Collapse
Affiliation(s)
- Seth R Irish
- London School of Hygiene and Tropical Medicine, London, United Kingdom; National Institute for Medical Research, Muheza, Tanzania
| | - William M B Stevens
- London School of Hygiene and Tropical Medicine, London, United Kingdom; National Institute for Medical Research, Muheza, Tanzania
| | - Yahya A Derua
- London School of Hygiene and Tropical Medicine, London, United Kingdom; National Institute for Medical Research, Muheza, Tanzania
| | - Thomas Walker
- London School of Hygiene and Tropical Medicine, London, United Kingdom; National Institute for Medical Research, Muheza, Tanzania
| | - Mary M Cameron
- London School of Hygiene and Tropical Medicine, London, United Kingdom; National Institute for Medical Research, Muheza, Tanzania
| |
Collapse
|
10
|
A mixed method to evaluate burden of malaria due to flooding and waterlogging in Mengcheng County, China: a case study. PLoS One 2014; 9:e97520. [PMID: 24830808 PMCID: PMC4022516 DOI: 10.1371/journal.pone.0097520] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/20/2014] [Indexed: 11/19/2022] Open
Abstract
Background Malaria is a highly climate-sensitive vector-borne infectious disease that still represents a significant public health problem in Huaihe River Basin. However, little comprehensive information about the burden of malaria caused by flooding and waterlogging is available from this region. This study aims to quantitatively assess the impact of flooding and waterlogging on the burden of malaria in a county of Anhui Province, China. Methods A mixed method evaluation was conducted. A case-crossover study was firstly performed to evaluate the relationship between daily number of cases of malaria and flooding and waterlogging from May to October 2007 in Mengcheng County, China. Stratified Cox models were used to examine the lagged time and hazard ratios (HRs) of the risk of flooding and waterlogging on malaria. Years lived with disability (YLDs) of malaria attributable to flooding and waterlogging were then estimated based on the WHO framework of calculating potential impact fraction in the Global Burden of Disease study. Results A total of 3683 malaria were notified during the study period. The strongest effect was shown with a 25-day lag for flooding and a 7-day lag for waterlogging. Multivariable analysis showed that an increased risk of malaria was significantly associated with flooding alone [adjusted hazard ratio (AHR) = 1.467, 95% CI = 1.257, 1.713], waterlogging alone (AHR = 1.879, 95% CI = 1.696, 2.121), and flooding and waterlogging together (AHR = 2.926, 95% CI = 2.576, 3.325). YLDs per 1000 of malaria attributable to flooding alone, waterlogging alone and flooding and waterlogging together were 0.009 per day, 0.019 per day and 0.022 per day, respectively. Conclusion Flooding and waterlogging can lead to higher burden of malaria in the study area. Public health action should be taken to avoid and control a potential risk of malaria epidemics after these two weather disasters.
Collapse
|
11
|
Andreadis TG. The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2012; 28:137-151. [PMID: 23401954 DOI: 10.2987/8756-971x-28.4s.137] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Mosquitoes within the Culex pipiens complex have been implicated as major vectors of West Nile virus (WNV) in North America due to their seasonal abundance, vector competence and high field infection rates. However, the role of Cx. p. pipiens complex mosquitoes in enzootic amplification of WNV among avian hosts and epidemic transmission to humans varies throughout its geographical distribution. In the northeastern United States, Cx. p. pipiens is recognized as the primary enzootic vector responsible for amplification of virus among wild bird populations. However, because this mosquito is strongly ornithophilic, its role in transmission to humans appears to be more limited in this region. In the north central and Mid-Atlantic States by contrast, Cx. p. pipiens shows an increased affinity for human hosts and has been incriminated as a key bridge vector. In southern regions of the United States, Culex p. quinquefasciatus are more opportunistic feeders, and are thought to be principal enzootic and epidemic vectors. In western regions of the United States where Culex tarsalis predominates, especially in rural areas, Cx. p. pipiens and Cx. p. quinquefasciatus play roles that are more limited and are recognized as secondary vectors. In the southwestern United States Cx. p. quinquefasciatus also appears to be the predominant vector in urban habitats, but only a secondary vector in more rural environs. The direct involvement of Cx. p. pipiens form molestus in WNV transmission is largely unknown, but human-biting Cx. p. pipiens are more likely to have a probability of genetic ancestry with Cx. p. pipiens form molestus. The detection of WNV from overwintering populations of diapausing Cx. p. pipiens and non-diapausing Cx. p. quinquefaciatus and their role in local overwintering of WNV are addressed.
Collapse
Affiliation(s)
- Theodore G Andreadis
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511, USA
| |
Collapse
|
12
|
Hashizume M, Dewan AM, Sunahara T, Rahman MZ, Yamamoto T. Hydroclimatological variability and dengue transmission in Dhaka, Bangladesh: a time-series study. BMC Infect Dis 2012; 12:98. [PMID: 22530873 PMCID: PMC3528427 DOI: 10.1186/1471-2334-12-98] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 03/21/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While floods can potentially increase the transmission of dengue, only few studies have reported the association of dengue epidemics with flooding. We estimated the effects of river levels and rainfall on the hospital admissions for dengue fever at 11 major hospitals in Dhaka, Bangladesh. METHODS We examined time-series of the number of hospital admissions of dengue fever in relation to river levels from 2005 to 2009 using generalized linear Poisson regression models adjusting for seasonal, between-year variation, public holidays and temperature. RESULTS There was strong evidence for an increase in dengue fever at high river levels. Hospitalisations increased by 6.9% (95% CI: 3.2, 10.7) for each 0.1 metre increase above a threshold (3.9 metres) for the average river level over lags of 0-5 weeks. Conversely, the number of hospitalisations increased by 29.6% (95% CI: 19.8, 40.2) for a 0.1 metre decrease below the same threshold of the average river level over lags of 0-19 weeks. CONCLUSIONS Our findings provide evidence that factors associated with both high and low river levels increase the hospitalisations of dengue fever cases in Dhaka.
Collapse
Affiliation(s)
- Masahiro Hashizume
- Institute of Tropical Medicine (NEKKEN) and the Global Center of Excellence program, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Japan.
| | | | | | | | | |
Collapse
|