1
|
Azman IK, Chan YF, Chua CL, Abd Mutalib ZA, Dass SC, Gill BS, Ismail NH, Jelip J, Wan MK, Lee WC, Vythilingam I, Alphey L, Sam IC. A change in circulating chikungunya virus variant impacts Aedes aegypti vector competence and spatiotemporal distribution of disease in Malaysia. PLoS Negl Trop Dis 2024; 18:e0012632. [PMID: 39480893 PMCID: PMC11556719 DOI: 10.1371/journal.pntd.0012632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 11/12/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND In 2008-2010, Malaysia experienced a nationwide chikungunya virus (CHIKV) outbreak caused by the Indian Ocean lineage E1-226V (valine) variant, adapted to Aedes albopictus. In 2017-2022, transition to an E1-226A (alanine) variant occurred. Ae. albopictus prevails in rural areas, where most cases occurred during the E1-226V outbreak, while Ae. aegypti dominates urban areas. The shift in circulating CHIKV variants from E1-226V to E1-226A (2009-2022) was hypothesized to result in a transition from rural to urban CHIKV distribution, driven by differences in Ae. aegypti vector competence for the two variants. This study aimed to: (1) map the spatiotemporal spread of CHIKV cases in Malaysia between 2009-2022; and (2) compare replication of E1-226A and E1-226V variants in the midguts and head/thoraxes of Ae. aegypti. METHODOLOGY/PRINCIPAL FINDINGS Spatiotemporal analysis of national notified CHIKV case addresses was performed. Between 2009-2022, 12,446 CHIKV cases were reported, with peaks in 2009 and 2020, and a significant shift from predominantly rural cases in 2009-2011 (85.1% rural), to urban areas in 2017-2022 (86.1% urban; p<0.0001). Two Ae. aegypti strains, field-collected MC1 and laboratory Kuala Lumpur (KL) strains, were fed infectious blood containing constructed CHIKV clones, pCMV-p2020A (E1-226A) and pCMV-p2020V (E1-226V) to measure CHIKV replication by real-time PCR and/or virus titration. The pCMV-p2020A clone replicated better in Ae. aegypti cell line Aag2 and showed higher replication, infection and dissemination efficiency in both Ae. aegypti strains, compared to pCMV-p2020V. CONCLUSIONS/SIGNIFICANCE This study revealed that a change in circulating CHIKV variants can be associated with changes in vector competence and outbreak epidemiology. Continued genomic surveillance of arboviruses is important.
Collapse
Affiliation(s)
- Izzati Kausar Azman
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chong Long Chua
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Sarat Chandra Dass
- School of Mathematical & Computer Sciences, Heriot-Watt University Malaysia, Putrajaya, Malaysia
| | - Balvinder Singh Gill
- Institute for Medical Research, National Institutes of Health, Shah Alam, Malaysia
| | - Nor Hayati Ismail
- Molecular Unit, Public Health Laboratory Kota Bharu, Kota Bharu, Malaysia
| | - Jenarun Jelip
- Vector-Borne Disease Section, Disease Control Division, Ministry of Health, Putrajaya, Malaysia
| | - Ming Keong Wan
- Vector-Borne Disease Section, Disease Control Division, Ministry of Health, Putrajaya, Malaysia
| | - Wenn-Chyau Lee
- Department of Parasitology, Universiti Malaya, Kuala Lumpur, Malaysia
- A*STAR Infectious Diseases Labs (A*STAR IDL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Indra Vythilingam
- Department of Parasitology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Luke Alphey
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Adnan R, Ramli M, Othman H, Asha'ri Z, Ismail SS, Samsudin S. The Impact of Sociological and Environmental Factors for Dengue Infection in Kuala Lumpur, Malaysia. Acta Trop 2021; 216:105834. [PMID: 33485870 DOI: 10.1016/j.actatropica.2021.105834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Dengue incidence has grown dramatically around the world in recent years. Vector control is the only method to reduce dengue incidence due to the lack of a vaccine available. By understanding the factors contributed to the vector densities such as environmental and sociological factors, dengue prevention and control may succeed. OBJECTIVE This study is aimed at determining the impact of sociological and environmental factors contributing to dengue cases. METHODS The study surveyed 379 respondents with dengue history. The socio-environmental factors were evaluated by chi-square and binary regression. RESULT The chi-square results revealed sociological factors associated between family with dengue experience such as older age (p =0.012), fewer than four people in the household (p= 0.008), working people (p= 0.004) and apartment/terrace houses (p=0.023). Similarly, there is a significant association between respondent's dengue history and houses that are shaded with vegetation (p= 0.012) and the present of public playground areas near the residential (p = 0.011). CONCLUSION The study identified socio-environmental factors that play an important role in the abundance of Aedes mosquitoes and also for the local dengue control measures.
Collapse
|
3
|
Huang CC, Tam TYT, Chern YR, Lung SCC, Chen NT, Wu CD. Spatial Clustering of Dengue Fever Incidence and Its Association with Surrounding Greenness. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1869. [PMID: 30158475 PMCID: PMC6163306 DOI: 10.3390/ijerph15091869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/21/2018] [Accepted: 08/27/2018] [Indexed: 11/25/2022]
Abstract
With more than 58,000 cases reported by the country's Centers for Disease Control, the dengue outbreaks from 2014 to 2015 seriously impacted the southern part of Taiwan. This study aims to assess the spatial autocorrelation of the dengue fever (DF) outbreak in southern Taiwan in 2014 and 2015, and to further understand the effects of green space (such as forests, farms, grass, and parks) allocation on DF. In this study, two different greenness indexes were used. The first green metric, the normalized difference vegetation index (NDVI), was provided by the long-term NASA MODIS satellite NDVI database, which quantifies and represents the overall vegetation greenness. The latest 2013 land use survey GIS database completed by the National Land Surveying and Mapping Center was obtained to access another green metric, green land use in Taiwan. We first used Spearman's rho to find out the relationship between DF and green space, and then three spatial autocorrelation methods, including Global Moran's I, high/low clustering, and Hot Spot were employed to assess the spatial autocorrelation of DF outbreak. In considering the impact of social and environmental factors in DF, we used generalized linear mixed models (GLMM) to further clarify the relationship between different types of green land use and dengue cases. Results of spatial autocorrelation analysis showed a high aggregation of dengue epidemic in southern Taiwan, and the metropolitan areas were the main hotspots. Results of correlation analysis and GLMM showed a positive correlation between parks and dengue fever, and the other five green space metrics and land types revealed a negative association with DF. Our findings may be an important asset for improving surveillance and control interventions for dengue.
Collapse
Affiliation(s)
- Chi-Chieh Huang
- Department of Forestry and Natural Resources, National Chiayi University, Chiayi 60004, Taiwan.
| | - Tuen Yee Tiffany Tam
- Department of Forestry and Natural Resources, National Chiayi University, Chiayi 60004, Taiwan.
| | - Yinq-Rong Chern
- Department of Forestry and Natural Resources, National Chiayi University, Chiayi 60004, Taiwan.
| | - Shih-Chun Candice Lung
- Research Center for Environmental Changes, Academia Sinica, Taipei 11529, Taiwan.
- Department of Atmospheric Sciences, National Taiwan University, Taipei 10617, Taiwan.
- Institute of Environmental Health, National Taiwan University, Taipei 10055, Taiwan.
| | - Nai-Tzu Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35053, Taiwan.
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
4
|
Hashim NA, Ahmad AH, Talib A, Athaillah F, Krishnan KT. Co-breeding Association of Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus) (Diptera: Culicidae) in Relation to Location and Container Size. Trop Life Sci Res 2018; 29:213-227. [PMID: 29644025 PMCID: PMC5893233 DOI: 10.21315/tlsr2018.29.1.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The occurrence of major outbreaks of dengue, and other vector borne diseases such as chikungunya and zika in tropical and subtropical regions has rendered control of the diseases a top-priority for many affected countries including Malaysia. Control of the mosquito vectors Aedes aegypti and Aedes albopictus through the reduction of breeding sites and the application of insecticides to kill immature forms and adults are the main control efforts to combat these diseases. The present study describes the association between Ae. albopictus and Ae. aegypti in shared breeding sites. This study is important given that any measure taken against one species may affect the other. A yearlong larval survey was conducted in four dengue endemic areas of Penang Island. Sorenson’s coefficient index indicated that no association between number of the immatures of the two species regardless of container size and study location. Therefore, the mean number Ae. albopictus immature was not decreased in the presence of Ae. aegypti in shared breeding container. However Ae. aegypti appeared to prefer breeding in habitats not occupied by Ae. albopictus, the two species sharing breeding sites only where available containers were limited. In control efforts, eliminating the preferred breeding containers for one species might not affect or reduce the population of the other species.
Collapse
Affiliation(s)
- Nur Aida Hashim
- School of Food Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Abu Hassan Ahmad
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Anita Talib
- School of Distance Education, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Farida Athaillah
- Faculty of Veterinary Medicine, Syiah Kuala University, Banda Aceh, Indonesia
| | - Kumara Thevan Krishnan
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
| |
Collapse
|
5
|
Habitat productivity and pyrethroid susceptibility status of Aedes aegypti mosquitoes in Dar es Salaam, Tanzania. Infect Dis Poverty 2017; 6:102. [PMID: 28595653 PMCID: PMC5465599 DOI: 10.1186/s40249-017-0316-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 05/12/2017] [Indexed: 01/05/2023] Open
Abstract
Background Aedes aegypti (Diptera: Culicidae) is the main vector of the dengue virus globally. Dengue vector control is mainly based on reducing the vector population through interventions, which target potential breeding sites. However, in Tanzania, little is known about this vector’s habitat productivity and insecticide susceptibility status to support evidence-based implementation of control measures. The present study aimed at assessing the productivity and susceptibility status of A. aegypti mosquitoes to pyrethroid-based insecticides in Dar es Salaam, Tanzania. Methods An entomological assessment was conducted between January and July 2015 in six randomly selected wards in Dar es Salaam, Tanzania. Habitat productivity was determined by the number of female adult A. aegypti mosquitoes emerged per square metre. The susceptibility status of adult A. aegypti females after exposure to 0.05% deltamethrin, 0.75% permethrin and 0.05% lambda-cyhalothrin was evaluated using the standard WHO protocols. Mortality rates were recorded after 24 h exposure and the knockdown effect was recorded at the time points of 10, 15, 20, 30, 40, 50 and 60 min to calculate the median knockdown times (KDT50 and KDT95). Results The results suggest that disposed tyres had the highest productivity, while water storage tanks had the lowest productivity among the breeding habitats Of A. aegypti mosquitoes. All sites demonstrated reduced susceptibility to deltamethrin (0.05%) within 24 h post exposure, with mortalities ranging from 86.3 ± 1.9 (mean ± SD) to 96.8 ± 0.9 (mean ± SD). The lowest and highest susceptibilities were recorded in Mikocheni and Sinza wards, respectively. Similarly, all sites demonstrated reduced susceptibility permethrin (0.75%) ranging from 83.1 ± 2.1% (mean ± SD) to 96.2 ± 0.9% (mean ± SD), in Kipawa and Sinza, respectively. Relatively low mortality rates were observed in relation to lambda-cyhalothrin (0.05%) at all sites, ranging from 83.1 ± 0.7 (mean ± SD) to 86.3 ± 1.4 (mean ± SD). The median KDT50 for deltamethrin, permethrin and lambda-cyhalothrin were 24.9–30.3 min, 24.3–34.4 min and 26.7–32.8 min, respectively. The KDT95 were 55.2–90.9 min for deltamethrin, 54.3–94.6 min for permethrin and 64.5–69.2 min for lambda-cyhalothrin. Conclusions The productive habitats for A. aegypti mosquitoes found in Dar es Salaam were water storage containers, discarded tins and tyres. There was a reduced susceptibility of A. aegypti to and emergence of resistance against pyrethroid-based insecticides. The documented differences in the resistance profiles of A. aegypti mosquitoes warrants regular monitoring the pattern concerning resistance against pyrethroid-based insecticides and define dengue vector control strategies. Electronic supplementary material The online version of this article (doi:10.1186/s40249-017-0316-0) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Che Dom N, Faiz Madzlan M, Nadira Yusoff SN, Hassan Ahmad A, Ismail R, Nazrina Camalxaman S. Profile distribution of juvenileAedesspecies in an urban area of Malaysia. Trans R Soc Trop Med Hyg 2016; 110:237-45. [DOI: 10.1093/trstmh/trw015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/17/2016] [Indexed: 02/01/2023] Open
|
7
|
A probabilistic spatial dengue fever risk assessment by a threshold-based-quantile regression method. PLoS One 2014; 9:e106334. [PMID: 25302582 PMCID: PMC4193740 DOI: 10.1371/journal.pone.0106334] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 08/04/2014] [Indexed: 11/19/2022] Open
Abstract
Understanding the spatial characteristics of dengue fever (DF) incidences is crucial for governmental agencies to implement effective disease control strategies. We investigated the associations between environmental and socioeconomic factors and DF geographic distribution, are proposed a probabilistic risk assessment approach that uses threshold-based quantile regression to identify the significant risk factors for DF transmission and estimate the spatial distribution of DF risk regarding full probability distributions. To interpret risk, return period was also included to characterize the frequency pattern of DF geographic occurrences. The study area included old Kaohsiung City and Fongshan District, two areas in Taiwan that have been affected by severe DF infections in recent decades. Results indicated that water-related facilities, including canals and ditches, and various types of residential area, as well as the interactions between them, were significant factors that elevated DF risk. By contrast, the increase of per capita income and its associated interactions with residential areas mitigated the DF risk in the study area. Nonlinear associations between these factors and DF risk were present in various quantiles, implying that water-related factors characterized the underlying spatial patterns of DF, and high-density residential areas indicated the potential for high DF incidence (e.g., clustered infections). The spatial distributions of DF risks were assessed in terms of three distinct map presentations: expected incidence rates, incidence rates in various return periods, and return periods at distinct incidence rates. These probability-based spatial risk maps exhibited distinct DF risks associated with environmental factors, expressed as various DF magnitudes and occurrence probabilities across Kaohsiung, and can serve as a reference for local governmental agencies.
Collapse
|
8
|
Dom NC, Ahmad AH, Ishak AR, Ismail R. Assessing the Risk of Dengue Fever based on the Epidemiological, Environmental and Entomological Variables. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.sbspro.2013.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Trewin BJ, Kay BH, Darbro JM, Hurst TP. Increased container-breeding mosquito risk owing to drought-induced changes in water harvesting and storage in Brisbane, Australia. Int Health 2013; 5:251-8. [PMID: 24225151 DOI: 10.1093/inthealth/iht023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Extended drought conditions in south-east Queensland during the early 2000s have resulted in a culture of water harvesting and legislated water restrictions. Aedes notoscriptus is a container-breeding mosquito vector of Ross River and Barmah Forest viruses. METHODS From 2008-2009, the larval habitats and seasonal abundance of domestic container-breeding mosquitoes were recorded from three suburbs of Brisbane. A knowledge, attitudes and practice questionnaire was administered to householders. A low-cost, desktop methodology was used to predict the proportion of shaded premises compared with front-of-property estimates. RESULTS We highlight changes in the frequency of container categories for A. notoscriptus as a response to human behavioural changes to drought. Garden accoutrements, discarded household items and water storage containers accounted for 66.2% (525/793) of positive containers and 77.5% (73 441/94 731) of all immature mosquitoes. Of all household premises surveyed, 52.6% (550/1046) contained rainwater tanks and 29.4% (308/1046) harvested water in other containers, contrasting with a previous 1995 survey where neither category was observed. Both Premise Condition Index and shade directly correlated with positive premises. CONCLUSIONS Human response to drought has resulted in new habitats for domestic container-breeding mosquitoes. This recent trend of prolific water storage is similar to earlier years (1904-1943) in Brisbane when Aedes aegypti was present and dengue epidemics occurred.
Collapse
Affiliation(s)
- Brendan J Trewin
- Mosquito Control Laboratory, QIMR Berghofer Institute of Medical Research, 300 Herston Road, Brisbane, QLD 4006, Australia
| | | | | | | |
Collapse
|