1
|
Chen SC, Holmes CJ, Ajayi OM, Goodhart G, Eaton D, Catlett N, Cady T, Tran H, Lutz LE, Wang L, Girard E, Savino J, Bidiwala A, Benoit JB. The impact of sugar diet on humidity preference, survival, and host landing in mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2025:tjaf048. [PMID: 40221846 DOI: 10.1093/jme/tjaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025]
Abstract
Mosquito-borne diseases have caused more than 1 million deaths each year. There is an urgent need to develop an effective way to reduce mosquito-host interaction to mitigate disease transmission. Sugar diets have long been linked to abnormal physiology in animals, making them potential candidates for mosquito control. Here, we show the impact of sugar diets on humidity preference and survival in Aedes aegypti (Gainesville) and Culex pipiens (Buckeye). Two-choice assays with high and low relative humidity (80% and 50% RH) show that the impact of sugar diets on humidity preference is species-specific. In comparison to Cx. pipiens, various sugar diets resulted in marked reductions in humidity avidity and preference in Ae. aegypti, which exhibited significant differences. Among the sugar diets, arabinose significantly reduced the survival rate of mosquitoes at low concentrations. Moreover, we found that host landing was not impacted by feeding on different sugar types. Our study suggests that specific sugar treatments could be applied to mosquito control by dampening their humidity preference and reducing their lifespan, thus reducing mosquito-borne disease transmission.
Collapse
Affiliation(s)
- Shyh-Chi Chen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Oluwaseun M Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Grace Goodhart
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Daniel Eaton
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Nathan Catlett
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Tabitha Cady
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hannah Tran
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Luke E Lutz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lyn Wang
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ella Girard
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jaida Savino
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Amena Bidiwala
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Shannon DM, Richardson N, Lahondère C, Peach D. Mosquito floral visitation and pollination. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101230. [PMID: 38971524 DOI: 10.1016/j.cois.2024.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
We often consider mosquitoes through an 'anthropocentric lens' that disregards their interactions with nonhuman and nonpathogenic organisms, even though these interactions can be harnessed for mosquito control. Mosquitoes have been recognized as floral visitors, and pollinators, for more than a century. However, we know relatively little about mosquito-plant interactions, excepting some nutrition and chemical ecology-related topics, compared with mosquito-host interactions, and frequently use flawed methodology when investigating them. Recent work demonstrates mosquitoes use multimodal sensory cues to locate flowers, including ultraviolet visual cues, and we may underestimate mosquito pollination. This review focuses on current knowledge of how mosquitoes locate flowers, floral visitation assay methodology, mosquito pollination, and implications for technologies such as sterile male mosquito release through genetic control programs or Wolbachia infection.
Collapse
Affiliation(s)
- Danica M Shannon
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Nalany Richardson
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Fralin Life Science Institute Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Center of Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Daniel Peach
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA; Precision One Health Initiative, University of Georgia, University of Georgia, Athens, GA 30602, USA; Center for the Ecology of Infectious Diseases, University of Georgia, University of Georgia, Athens, GA 30602, USA; Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada.
| |
Collapse
|
3
|
Chen SC, Holmes CJ, Ajayi OM, Goodhart G, Eaton D, Catlett N, Cady T, Tran H, Lutz LE, Wang L, Girard E, Savino J, Bidiwala A, Benoit JB. The impact of sugar diet on humidity preference, survival, and host landing in mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.613762. [PMID: 39386524 PMCID: PMC11463526 DOI: 10.1101/2024.09.23.613762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Mosquito-borne diseases have caused more than one million deaths each year. There is an urgent need to develop an effective way to reduce mosquito-host interaction to mitigate disease transmission. Sugar diets have long been linked to abnormal physiology in animals, making them potential candidates for mosquito control. Here, we show the impact of sugar diets on humidity preference and survival in Aedes aegypti and Culex pipiens . With two-choice assays between 100% and 75% relative humidity (RH), we demonstrate that the effect of sugar diets on humidity preference is species-specific where Ae. aegypti showed significant differences and the reduced effects were noted in Cx. pipiens . Among the sugar diets, arabinose significantly reduced the survival rate of mosquitoes even at low concentrations. Moreover, we found that host landing was not impacted by feeding on different sugar types. Our study suggests that specific sugar treatments could be applied to mosquito control by dampening their humidity preference and reducing their lifespan, thus reducing mosquito-borne disease transmission.
Collapse
|
4
|
Sobhy IS, Berry C. Chemical ecology of nectar-mosquito interactions: recent advances and future directions. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101199. [PMID: 38588943 DOI: 10.1016/j.cois.2024.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Mosquitoes, males and females, rely on sugar-rich resources, including floral nectar as a primary source of sugar to meet their energy and nutritional needs. Despite advancements in understanding mosquito host-seeking and blood-feeding preferences, significant gaps in our knowledge of the chemical ecology mediating mosquito-nectar associations remain. The influence of such association with nectar on mosquito behavior and the resulting effects on their fitness are also not totally understood. It is significant that floral nectar frequently acts as a natural habitat for various microbes (e.g. bacteria and yeast), which substantially alter nectar characteristics, influencing the nutritional ecology of flower-visiting insects, such as mosquitoes. The role of nectar-inhabiting microbes in shaping the nectar-mosquito interactions remains, however, under-researched. This review explores recent advances in understanding the role of such multitrophic interactions on the fitness and life history traits of mosquitoes and outlines future directions for research toward their control as disease vectors.
Collapse
Affiliation(s)
- Islam S Sobhy
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Colin Berry
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
5
|
Boonyuan W, Panthawong A, Thannarin T, Kongratarporn T, Khamvarn V, Chareonviriyaphap T, Nararak J. Irritant and repellent behaviors of sterile male Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes are crucial in the development of disease control strategies applying sterile insect technique. PeerJ 2024; 12:e17038. [PMID: 38529314 PMCID: PMC10962334 DOI: 10.7717/peerj.17038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/12/2024] [Indexed: 03/27/2024] Open
Abstract
The mosquito Aedes aegypti, known to transmit important arboviral diseases, including dengue, chikungunya, Zika and yellow fever. Given the importance of this disease vector, a number of control programs have been proposed involving the use of the sterile insect technique (SIT). However, the success of this technique hinges on having a good understanding of the biology and behavior of the male mosquito. Behavioral responses of Ae. aegypti male populations developed for SIT technology were tested under laboratory conditions against chemical and natural irritants and repellents using an excito-repellency (ER) chamber. The results showed that there were no significant behavioral escape responses in any of the radiation-sterilized male Ae. aegypti test populations when exposed to citronella, DEET, transfluthrin, and deltamethrin, suggesting that SIT did not suppress the expected irritancy and repellency (avoidance) behaviors. The type of information reported in the current study is vital in defining the effects of SIT on vector behavior and understanding how such behavior may influence the success of SIT technology with regard to other vector control interventions.
Collapse
Affiliation(s)
- Wasana Boonyuan
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, Thailand
| | - Amonrat Panthawong
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Thodsapon Thannarin
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, Thailand
| | - Titima Kongratarporn
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, Thailand
| | - Vararas Khamvarn
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, Thailand
| | | | - Jirod Nararak
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
6
|
Aldridge RL, Gibson S, Linthicum KJ. Aedes aegypti Controls AE. Aegypti: SIT and IIT-An Overview. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2024; 40:32-49. [PMID: 38427588 DOI: 10.2987/23-7154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The sterile insect technique (SIT) and the incompatible insect technique (IIT) are emerging and potentially revolutionary tools for controlling Aedes aegypti (L.), a prominent worldwide mosquito vector threat to humans that is notoriously difficult to reduce or eliminate in intervention areas using traditional integrated vector management (IVM) approaches. Here we provide an overview of the discovery, development, and application of SIT and IIT to Ae. aegypti control, and innovations and advances in technology, including transgenics, that could elevate these techniques to a worldwide sustainable solution to Ae. aegypti when combined with other IVM practices.
Collapse
|
7
|
Harrison RE, Yang X, Eum JH, Martinson VG, Dou X, Valzania L, Wang Y, Boyd BM, Brown MR, Strand MR. The mosquito Aedes aegypti requires a gut microbiota for normal fecundity, longevity and vector competence. Commun Biol 2023; 6:1154. [PMID: 37957247 PMCID: PMC10643675 DOI: 10.1038/s42003-023-05545-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Mosquitoes shift from detritus-feeding larvae to blood-feeding adults that can vector pathogens to humans and other vertebrates. The sugar and blood meals adults consume are rich in carbohydrates and protein but are deficient in other nutrients including B vitamins. Facultatively hematophagous insects like mosquitoes have been hypothesized to avoid B vitamin deficiencies by carryover of resources from the larval stage. However, prior experimental studies have also used adults with a gut microbiota that could provision B vitamins. Here, we used Aedes aegypti, which is the primary vector of dengue virus (DENV), to ask if carryover effects enable normal function in adults with no microbiota. We show that adults with no gut microbiota produce fewer eggs, live longer with lower metabolic rates, and exhibit reduced DENV vector competence but are rescued by provisioning B vitamins or recolonizing the gut with B vitamin autotrophs. We conclude carryover effects do not enable normal function.
Collapse
Affiliation(s)
- Ruby E Harrison
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
- Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Xiushuai Yang
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Jai Hoon Eum
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Vincent G Martinson
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Xiaoyi Dou
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Luca Valzania
- Institut Curie, 20 Rue d'Ulm, 75238, Paris, Cedex 05, France
| | - Yin Wang
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Bret M Boyd
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Mark R Brown
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Michael R Strand
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
8
|
Riske BF, Luckhart S, Riehle MA. Starving the Beast: Limiting Coenzyme A Biosynthesis to Prevent Disease and Transmission in Malaria. Int J Mol Sci 2023; 24:13915. [PMID: 37762222 PMCID: PMC10530615 DOI: 10.3390/ijms241813915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Malaria parasites must acquire all necessary nutrients from the vertebrate and mosquito hosts to successfully complete their life cycle. Failure to acquire these nutrients can limit or even block parasite development and presents a novel target for malaria control. One such essential nutrient is pantothenate, also known as vitamin B5, which the parasite cannot synthesize de novo and is required for the synthesis of coenzyme A (CoA) in the parasite. This review examines pantothenate and the CoA biosynthesis pathway in the human-mosquito-malaria parasite triad and explores possible approaches to leverage the CoA biosynthesis pathway to limit malaria parasite development in both human and mosquito hosts. This includes a discussion of sources for pantothenate for the mosquito, human, and parasite, examining the diverse strategies used by the parasite to acquire substrates for CoA synthesis across life stages and host resource pools and a discussion of drugs and alternative approaches being studied to disrupt CoA biosynthesis in the parasite. The latter includes antimalarial pantothenate analogs, known as pantothenamides, that have been developed to target this pathway during the human erythrocytic stages. In addition to these parasite-targeted drugs, we review studies of mosquito-targeted allosteric enzymatic regulators known as pantazines as an approach to limit pantothenate availability in the mosquito and subsequently deprive the parasite of this essential nutrient.
Collapse
Affiliation(s)
- Brendan F. Riske
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA;
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843, USA;
- Department of Biological Sciences, University of Idaho, Moscow, ID 83843, USA
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
9
|
Abstract
Insects are highly successful in colonizing a wide spectrum of ecological niches and in feeding on a wide diversity of diets. This is notably linked to their capacity to get from their microbiota any essential component lacking in the diet such as vitamins and amino acids. Over a century of research based on dietary analysis, antimicrobial treatment, gnotobiotic rearing, and culture-independent microbe detection progressively generated a wealth of information about the role of the microbiota in specific aspects of insect fitness. Thanks to the recent increase in sequencing capacities, whole-genome sequencing of a number of symbionts has facilitated tracing of biosynthesis pathways, validation of experimental data and evolutionary analyses. This field of research has generated a considerable set of data in a diversity of hosts harboring specific symbionts or nonspecific microbiota members. Here, we review the current knowledge on the involvement of the microbiota in insect and tick nutrition, with a particular focus on B vitamin provision. We specifically question if there is any specificity of B vitamin provision by symbionts compared to the redundant yet essential contribution of nonspecific microbes. We successively highlight the known aspects of microbial vitamin provision during three main life stages of invertebrates: postembryonic development, adulthood, and reproduction.
Collapse
|
10
|
Mohanty AK, de Souza C, Harjai D, Ghavanalkar P, Fernandes M, Almeida A, Walke J, Manoharan SK, Pereira L, Dash R, Mascarenhas A, Gomes E, Thita T, Chery L, Anvikar AR, Kumar A, Valecha N, Rathod PK, Patrapuvich R. Optimization of Plasmodium vivax sporozoite production from Anopheles stephensi in South West India. Malar J 2021; 20:221. [PMID: 34006297 PMCID: PMC8129701 DOI: 10.1186/s12936-021-03767-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Efforts to study the biology of Plasmodium vivax liver stages, particularly the latent hypnozoites, have been hampered by the limited availability of P. vivax sporozoites. Anopheles stephensi is a major urban malaria vector in Goa and elsewhere in South Asia. Using P. vivax patient blood samples, a series of standard membrane-feeding experiments were performed with An. stephensi under the US NIH International Center of Excellence for Malaria Research (ICEMR) for Malaria Evolution in South Asia (MESA). The goal was to understand the dynamics of parasite development in mosquitoes as well as the production of P. vivax sporozoites. To obtain a robust supply of P. vivax sporozoites, mosquito-rearing and mosquito membrane-feeding techniques were optimized, which are described here. METHODS Membrane-feeding experiments were conducted using both wild and laboratory-colonized An. stephensi mosquitoes and patient-derived P. vivax collected at the Goa Medical College and Hospital. Parasite development to midgut oocysts and salivary gland sporozoites was assessed on days 7 and 14 post-feeding, respectively. The optimal conditions for mosquito rearing and feeding were evaluated to produce high-quality mosquitoes and to yield a high sporozoite rate, respectively. RESULTS Laboratory-colonized mosquitoes could be starved for a shorter time before successful blood feeding compared with wild-caught mosquitoes. Optimizing the mosquito-rearing methods significantly increased mosquito survival. For mosquito feeding, replacing patient plasma with naïve serum increased sporozoite production > two-fold. With these changes, the sporozoite infection rate was high (> 85%) and resulted in an average of ~ 22,000 sporozoites per mosquito. Some mosquitoes reached up to 73,000 sporozoites. Sporozoite production could not be predicted from gametocyte density but could be predicted by measuring oocyst infection and oocyst load. CONCLUSIONS Optimized conditions for the production of high-quality P. vivax sporozoite-infected An. stephensi were established at a field site in South West India. This report describes techniques for producing a ready resource of P. vivax sporozoites. The improved protocols can help in future research on the biology of P. vivax liver stages, including hypnozoites, in India, as well as the development of anti-relapse interventions for vivax malaria.
Collapse
Affiliation(s)
- Ajeet Kumar Mohanty
- Field Unit, National Institute of Malaria Research, Campal, Goa, 403001, India.
| | - Charles de Souza
- Field Unit, National Institute of Malaria Research, Campal, Goa, 403001, India
| | - Deepika Harjai
- Field Unit, National Institute of Malaria Research, Campal, Goa, 403001, India
| | | | - Mezia Fernandes
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India.,Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Anvily Almeida
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India.,Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Jayashri Walke
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India.,Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Suresh Kumar Manoharan
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India.,Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ligia Pereira
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India.,Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Rashmi Dash
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India.,Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Anjali Mascarenhas
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India.,Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Edwin Gomes
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India
| | - Thanyapit Thita
- Drug Research Unit for Malaria (DRUM), Center of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Laura Chery
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Anupkumar R Anvikar
- National Institute of Malaria Research (ICMR), Sector 8, Dwarka, New Delhi, 110077, India
| | - Ashwani Kumar
- Field Unit, National Institute of Malaria Research, Campal, Goa, 403001, India.,ICMR-Vector Control Research Centre, Medical Complex, VCRC Road, Indra Nagar, Priyadarshini Nagar, Puducherry, 605006, India
| | - Neena Valecha
- National Institute of Malaria Research (ICMR), Sector 8, Dwarka, New Delhi, 110077, India
| | | | - Rapatbhorn Patrapuvich
- Drug Research Unit for Malaria (DRUM), Center of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
11
|
Nascimento DAS, Trindade FTT, Silva ADAE. Dietary Supplementation With Vitamins and Minerals Improves Larvae and Adult Rearing Conditions of Anopheles darlingi (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:71-78. [PMID: 32865210 DOI: 10.1093/jme/tjaa173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Several experiments with Anopheles darlingi Root, an important malaria vector in the Amazon region, were carried out in the laboratory, depending on the large-scale production of viable larvae and adults. Certainly, improvements in rearing conditions, including dietary requirements, can strongly affect mosquito production. In order to increase the production of this species in the laboratory, we first supplemented the regular larval diet (TetraMin Tropical Flakes) with different concentrations of vitamins and minerals and recorded several biological variables: survival and larval development time, emergence ratio, and adult longevity under a small-scale rearing condition. Second, we established an experimental design under regular lab-rearing conditions based on the concentration of vitamins and minerals that best contributed to the development of these anophelines, and evaluated the biological parameters already mentioned. Moreover, under regular rearing conditions, we recorded sex ratio, adult size, and longevity of adults fed with supplemented sucrose. The lowest concentration of vitamins (V5) and the average concentration of minerals (M3) increased larval survival and decreased larval development time compared with the control. Under regular rearing conditions, minerals provided higher larval survival and increased the longevity of adults fed with supplemented sucrose. Supplementing the regular larval diet and sucrose solutions with vitamins and minerals increased the production of immatures and the longevity of An. darlingi adults.
Collapse
Affiliation(s)
| | | | - Alexandre de Almeida E Silva
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia, Porto Velho, RO, Brasil
- Laboratório de Bioecologia de Insetos, Universidade Federal de Rondônia, Porto Velho, RO, Brasil
| |
Collapse
|
12
|
Barredo E, DeGennaro M. Not Just from Blood: Mosquito Nutrient Acquisition from Nectar Sources. Trends Parasitol 2020; 36:473-484. [PMID: 32298634 DOI: 10.1016/j.pt.2020.02.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 01/01/2023]
Abstract
Anthropophilic female mosquitoes are well known for their strong attraction to human hosts, but plant nectar is a common energy source in their diets. When sugar sources are scarce, female mosquitoes of some species can compensate by taking larger and more frequent blood meals. Male mosquitoes are exclusively dependent on plant nectar or alternative sugar sources. Plant preference is likely driven by an innate attraction that may be enhanced by experience, as mosquitoes learn to recognize available sugar rewards. Nectar-seeking involves the integration of at least three sensory systems: olfaction, vision and taste. The prevention of vector-borne illnesses, the determination of the mosquitoes' ecological role, and the design of efficient sugar-baited traps will all benefit from understanding the molecular basis of nectar-seeking.
Collapse
Affiliation(s)
- Elina Barredo
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Matthew DeGennaro
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|