1
|
Ullah Z, Yue P, Mao G, Zhang M, Liu P, Wu X, Zhao T, Yang L. A comprehensive review on recent xanthine oxidase inhibitors of dietary based bioactive substances for the treatment of hyperuricemia and gout: Molecular mechanisms and perspective. Int J Biol Macromol 2024; 278:134832. [PMID: 39168219 DOI: 10.1016/j.ijbiomac.2024.134832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Hyperuricemia (HUA) has attained a considerable global health concern, related to the development of other metabolic syndromes. Xanthine oxidase (XO), the main enzyme that catalyzes xanthine and hypoxanthine into uric acid (UA), is a key target for drug development against HUA and gout. Available XO inhibitors are effective, but they come with side effects. Recent, research has identified new XO inhibitors from dietary sources such as flavonoids, phenolic acids, stilbenes, alkaloids, polysaccharides, and polypeptides, effectively reducing UA levels. Structural activity studies revealed that -OH groups and their substitutions on the benzene ring of flavonoids, polyphenols, and stilbenes, cyclic rings in alkaloids, and the helical structure of polysaccharides are crucial for XO inhibition. Polypeptide molecular weight, amino acid sequence, hydrophobicity, and binding mode, also play a significant role in XO inhibition. Molecular docking studies show these bioactive components prevent UA formation by interacting with XO substrates via hydrophobic, hydrogen bonds, and π-π interactions. This review explores the potential bioactive substances from dietary resources with XO inhibitory, and UA lowering potentials detailing the molecular mechanisms involved. It also discusses strategies for designing XO inhibitors and assisting pharmaceutical companies in developing safe and effective treatments for HUA and gout.
Collapse
Affiliation(s)
- Zain Ullah
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
| | - Panpan Yue
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Bio-Prospecting of Crude Leaf Extracts from Thirteen Plants of Brazilian Cerrado Biome on Human Glioma Cell Lines. Molecules 2023; 28:molecules28031394. [PMID: 36771057 PMCID: PMC9921846 DOI: 10.3390/molecules28031394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Malignant gliomas are aggressive tumors characterized by fast cellular growth and highly invasive properties. Despite all biological and clinical advances in therapy, the standard treatment remains essentially palliative. Therefore, searching for alternative therapies that minimize adverse symptoms and improve glioblastoma patients' outcomes is imperative. Natural products represent an essential source in the discovery of such new drugs. Plants from the cerrado biome have been receiving increased attention due to the presence of secondary metabolites with significant therapeutic potential. (2) Aim: This study provides data on the cytotoxic potential of 13 leaf extracts obtained from plants of 5 families (Anacardiaceae, Annonaceae, Fabaceae, Melastomataceae e Siparunaceae) found in the Brazilian cerrado biome on a panel of 5 glioma cell lines and one normal astrocyte. (3) Methods: The effect of crude extracts on cell viability was evaluated by MTS assay. Mass spectrometry (ESI FT-ICR MS) was performed to identify the secondary metabolites classes presented in the crude extracts and partitions. (4) Results: Our results revealed the cytotoxic potential of Melastomataceae species Miconia cuspidata, Miconia albicans, and Miconia chamissois. Additionally, comparing the four partitions obtained from M. chamissois crude extract indicates that the chloroform partition had the greatest cytotoxic activity against the glioma cell lines. The partitions also showed a mean IC50 close to chemotherapy, temozolomide; nevertheless, lower toxicity against normal astrocytes. Analysis of secondary metabolites classes presented in these crude extracts and partitions indicates the presence of phenolic compounds. (5) Conclusions: These findings highlight M. chamissois chloroform partition as a promising component and may guide the search for the development of additional new anticancer therapies.
Collapse
|
3
|
Zhu R, Wen Y, Wu W, Zhang L, Salman Farid M, Shan S, Wen J, Farag MA, Zhang Y, Zhao C. The flavors of edible mushrooms: A comprehensive review of volatile organic compounds and their analytical methods. Crit Rev Food Sci Nutr 2022; 64:5568-5582. [PMID: 36519553 DOI: 10.1080/10408398.2022.2155798] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to their distinctive flavors, edible mushrooms have gained attention in flavor-related research, and the quality of their flavors determines their consumption. The odor is a vital element of food flavor that significantly impacts consumers' perceptions and purchase decisions. The volatile organic compounds (VOCs) of the odorant ingredient is the primary factors affecting scent characteristics. VOCs analysis and identification require technical assistance. The production and use of edible mushrooms can be aided by a broader examination of their volatile constituents. This review discusses the composition of VOCs in edible mushrooms and how they affect flavors. The principles, advantages, and disadvantages of various methods for extraction, isolation, and characterization of the VOCs of edible mushrooms are also highlighted. The numerous VOCs found in edible mushrooms such as primarily C-8 compounds, organic sulfur compounds, aldehydes, ketones, alcohols, and esters are summarized along with their effects on the various characteristics of scent. Combining multiple extraction, isolation, identification, and quantification technologies will facilitate rapid and accurate analysis of VOCs in edible mushrooms as proof of sensory attributes and quality.
Collapse
Affiliation(s)
- Ruiyu Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Weihao Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lizhu Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Shuo Shan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jiahui Wen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Wu W, Zhang L, Zheng X, Huang Q, Farag MA, Zhu R, Zhao C. Emerging applications of metabolomics in food science and future trends. Food Chem X 2022; 16:100500. [DOI: 10.1016/j.fochx.2022.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
|
5
|
Sui M, Feng S, Liu G, Chen B, Li Z, Shao P. Deep eutectic solvent on extraction of flavonoid glycosides from Dendrobium officinale and rapid identification with UPLC-Triple-TOF/MS. Food Chem 2022; 401:134054. [DOI: 10.1016/j.foodchem.2022.134054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022]
|
6
|
Cheng L, Wang F, Cao Y, Cai G, Wei Q, Shi S, Guo Y. Screening of potent α-glucosidase inhibitory and antioxidant polyphenols in Prunella vulgaris L. by bioreaction-HPLC-quadrupole-time-of-flight-MS/MS and in silico analysis. J Sep Sci 2022; 45:3393-3403. [PMID: 35819998 DOI: 10.1002/jssc.202200374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Prunella vulgaris L. is a well-known traditional Chinese medicine for blood glucose homeostasis and antioxidant potential. Ethyl acetate fraction of P. vulgaris L. demonstrated higher phenolic content (85.53 ± 6.74 mg gallic acid equivalents per gram dry weight), α-glucosidase inhibitory (IC50 , 69.13 ± 2.86 μg/mL), and antioxidant (IC50 , 8.68 ± 1.01 μg/mL) activities. However, the bioactive polyphenols responsible for the beneficial properties remain unclear. Here, bioreaction-HPLC-quadrupole-time-of-flight-MS/MS method was developed for rapid, accurate, and efficient screening and identification of polyphenols with α-glucosidase inhibitory and antioxidant activities from P. vulgaris L. Bioactive polyphenols can specifically bind with α-glucosidase or react with 1,1-diphenyl-2-picryl-hydrazyl radical, which was easily discriminated from nonactive compounds. Subsequently, twenty bioactive polyphenols (sixteen phenyl propionic acid derivatives and four flavonoids) were screened and identified. Furthermore, molecular docking analysis revealed that screened twenty polyphenols bind with the active sites of α-glucosidase through hydrogen bonding and π-π stacking. Density functional theory calculations demonstrated their electron transport ability and chemical reactivity. The in silico analysis confirmed the screened results. In summary, this study provided a valuable strategy for rapid discovering bioactive compounds from complex natural products, and offered scientific evidence for further development and application of P. vulgaris L. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Li Cheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China.,College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Fang Wang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| | - Yuanxin Cao
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, P. R. China
| | - Guihan Cai
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Qisheng Wei
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, P. R. China
| | - Shuyun Shi
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China.,College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.,Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, P. R. China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, China
| |
Collapse
|
7
|
Youssef FS, Sobeh M, Dmirieh M, Bogari HA, Koshak AE, Wink M, Ashour ML, Elhady SS. Metabolomics-Based Profiling of Clerodendrum speciosum (Lamiaceae) Leaves Using LC/ESI/MS-MS and In Vivo Evaluation of Its Antioxidant Activity Using Caenorhabditis elegans Model. Antioxidants (Basel) 2022; 11:antiox11020330. [PMID: 35204212 PMCID: PMC8868248 DOI: 10.3390/antiox11020330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
We investigated the antioxidant activity of the total methanol extract of C. speciosum leaves (CST), the ethyl acetate (CSE), and the remaining aqueous (CSR) fractions in vitro, in vivo using Caenorhabditis elegans model, and in silico. LC-ESI-MS/MS analysis was employed for metabolic profiling of CST. ADME/TOPAKT prediction was performed to determine the potential pharmacokinetic, pharmacodynamic, and toxicity properties of the major identified phytoconstituents. All examined samples showed considerable antioxidant activity where CST, CSE, and CSR displayed EC50 values of 27.1, 16.2, and 21.3 µg/mL, respectively, in 2,2-diphenyl-1-picrylhydrazyl (DPPH•) assay, whereas they showed 11.44, 16.27, and 12.16 Fe2+ equivalents/mg of sample, respectively, in ferric reducing antioxidant power (FRAP) assay. CST, CSE, and CSR displayed total phenolic content of 262, 326, and 289 mg GAE/g sample, respectively. In vivo antioxidant study revealed that CST at 150 μg/mL increased the survival rate of C. elegans by 71.88% compared to untreated group. Regarding intracellular reactive oxygen species (ROS), worms treated with 150 μg/mL of CSE exhibited 60.42% reduction of ROS compared to the untreated group. Quantitation of hsp-16.2/GFP expression in Caenorhabditis elegans showed that worms treated with 150 μg/mL of CSR exerted 40.43% reduction in fluorescence with respect to the untreated group. LC-ESI-MS/MS of CST revealed the presence of sixteen secondary metabolites belonging mainly to polyphenolics with phenyl propanoids constituting the major detected class. The in silico study showed that rosmarinic acid displayed the best fitting within the active sites of Daf-2 protein with considerable safety profile and limited pharmacokinetic and pharmacodynamic that could be slightly enhanced by certain treatment.
Collapse
Affiliation(s)
- Fadia S. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
- Correspondence: (F.S.Y.); (M.L.A.)
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Lot 660–Hay MoulayRachid, Ben-Guerir 43150, Morocco; (M.S.); (M.W.)
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany;
| | - Malak Dmirieh
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany;
| | - Hanin A. Bogari
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Abdulrahman E. Koshak
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.E.K.); (S.S.E.)
| | - Michael Wink
- AgroBioSciences, Mohammed VI Polytechnic University, Lot 660–Hay MoulayRachid, Ben-Guerir 43150, Morocco; (M.S.); (M.W.)
| | - Mohamed L. Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Correspondence: (F.S.Y.); (M.L.A.)
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.E.K.); (S.S.E.)
| |
Collapse
|
8
|
Shi F, Tong C, He C, Shi S, Cao Y, Wei Q. Diagnostic ion filtering targeted screening and isolation of anti-inflammatory iridoid glycosides from Hedyotis diffusa. J Sep Sci 2021; 44:2612-2619. [PMID: 33884739 DOI: 10.1002/jssc.202100074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/03/2021] [Accepted: 04/18/2021] [Indexed: 11/07/2022]
Abstract
Efficient and targeted screening and isolation of bioactive compounds from complex natural products is still a challenging work. Herein, diagnostic ion filtering based high-performance liquid chromatography-quadrupole time-of-flight-tandem mass spectrometry was firstly developed to screen six main iridoid glycosides from Hedyotis diffusa. Then, online extraction-high-speed counter current chromatography was proposed for targeted enrichment and preparative isolation using ethyl acetate/n-butanol/water (4.5:0.5:5, v/v/v) as solvent system. After that, Sephadex LH-20 column chromatography using methanol as solvent system was selected for further purification of six iridoid glycosides with purities over 98%. They were finally identified as monotropein, desacetylasperuloside acid, asperuloside, 6-O-(Z)-p-coumaroyl scandoside methyl ester, 6-O-(Z)-feruloyl scandoside methyl ester, and 6-O-(E)-p-coumaroyl scandoside methyl ester. And their anti-inflammatory activities were evaluated and confirmed by lipopolysaccharide activated RAW 264.7 macrophages. Obviously, the results provide a scientific basis for the potential applications of H. diffusa, and the developed methodology is efficient and reliable for targeted screening and isolation of bioactive compounds from natural products.
Collapse
Affiliation(s)
- Fangying Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.,Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, P. R. China
| | - Chaoying Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Chengxin He
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, P. R. China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.,Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, P. R. China
| | - Yuanxin Cao
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, P. R. China
| | - Qisheng Wei
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, P. R. China
| |
Collapse
|
9
|
Rapid and comprehensive profiling of α-glucosidase inhibitors in Buddleja Flos by ultrafiltration HPLC-QTOF-MS/MS with diagnostic ions filtering strategy. Food Chem 2020; 344:128651. [PMID: 33243557 DOI: 10.1016/j.foodchem.2020.128651] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022]
Abstract
Buddleja Flos is used as yellow rice colorant and a well-known traditional Chinese medicine. But its biochemical profiling is still lack due to complex matrix. Here, ultrafiltration high-performance liquid chromatograph-quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF-MS/MS) with diagnostic ions filtering strategy was proposed for rapid and comprehensive investigation of its α-glucosidase inhibitors. As a result, 33 bioactive compounds (13 phenylethanoid glycosides and 20 flavonoids) were successfully screened and identified. In addition, α-glucosidase inhibitory activities of twenty-two references were verified. Six flavonoid aglycones (4, 28, and 30-33) showed excellent α-glucosidase inhibitory activities (IC50, from 5.11 ± 0.85 to 32.49 ± 9.76 μg/mL), much higher than that of acarbose (IC50, 195.49 ± 10.05 μg/mL). Five flavonoid-monoglycosides (7, 12, 13, 20, and 22) presented moderate inhibitory activities with IC50 from 160.98 ± 23.19 to 249.37 ± 35.83 μg/mL. Results showcased the high efficiency of proposed strategy in profiling of bioactive compounds from natural products.
Collapse
|