1
|
Buyuktur AG, Cross FL, Platt J, Aramburu J, Movva P, Zhao Z, Cornwall T, Hunt R, McCollum JA, Reyes A, Williams CE, Ramakrishnan A, Israel B, Marsh EE, Woolford SJ. Communities conquering COVID-19: Black and Latinx community perspectives on the impact of COVID-19 in regions of Michigan hardest hit by the pandemic. J Clin Transl Sci 2024; 8:e210. [PMID: 39790476 PMCID: PMC11713430 DOI: 10.1017/cts.2024.591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/10/2024] [Accepted: 08/12/2024] [Indexed: 01/12/2025] Open
Abstract
Introduction In Michigan, the COVID-19 pandemic severely impacted Black and Latinx communities. These communities experienced higher rates of exposure, hospitalizations, and deaths compared to Whites. We examine the impact of the pandemic and reasons for the higher burden on communities of color from the perspectives of Black and Latinx community members across four Michigan counties and discuss recommendations to better prepare for future public health emergencies. Methods Using a community-based participatory research approach, we conducted semi-structured interviews (n = 40) with Black and Latinx individuals across the four counties. Interviews focused on knowledge related to the pandemic, the impact of the pandemic on their lives, sources of information, attitudes toward vaccination and participation in vaccine trials, and perspectives on the pandemic's higher impact on communities of color. Results Participants reported overwhelming effects of the pandemic in terms of worsened physical and mental health, financial difficulties, and lifestyle changes. They also reported some unexpected positive effects. They expressed awareness of the disproportionate burden among Black and Latinx populations and attributed this to a wide range of disparities in Social Determinants of Health. These included racism and systemic inequities, lack of access to information and language support, cultural practices, medical mistrust, and varied individual responses to the pandemic. Conclusion Examining perspectives and experiences of those most impacted by the pandemic is essential for preparing for and effectively responding to public health emergencies in the future. Public health messaging and crisis response strategies must acknowledge the concerns and cultural needs of underrepresented populations.
Collapse
Affiliation(s)
- Ayse G. Buyuktur
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, USA
| | | | - Jodyn Platt
- Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor, USA
| | - Jasmin Aramburu
- School of Social Work, University of Michigan, Ann Arbor, USA
| | - Pranati Movva
- College of Osteopathic Medicine, Michigan State University, East Lansing, USA
| | - Ziyu Zhao
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, USA
| | - Tiffany Cornwall
- Department of Health Management and Policy, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Rebecca Hunt
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, USA
| | | | - Angela Reyes
- Detroit Hispanic Development Corporation, Detroit, USA
| | | | - Arthi Ramakrishnan
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, USA
| | - Barbara Israel
- Department of Health Behavior and Health Education, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Erica E. Marsh
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, USA
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, USA
| | - Susan J. Woolford
- Susan B Meister Child Health Evaluation and Research Center, Department of Pediatrics, University of Michigan, Ann Arbor, USA
| |
Collapse
|
2
|
Moro-López M, Farré R, Otero J, Sunyer R. Trusting the forces of our cell lines. Cells Dev 2024; 179:203931. [PMID: 38852676 DOI: 10.1016/j.cdev.2024.203931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Cells isolated from their native tissues and cultured in vitro face different selection pressures than those cultured in vivo. These pressures induce a profound transformation that reshapes the cell, alters its genome, and transforms the way it senses and generates forces. In this perspective, we focus on the evidence that cells cultured on conventional polystyrene substrates display a fundamentally different mechanobiology than their in vivo counterparts. We explore the role of adhesion reinforcement in this transformation and to what extent it is reversible. We argue that this mechanoadaptation is often understood as a mechanical memory. We propose some strategies to mitigate the effects of on-plastic culture on mechanobiology, such as organoid-inspired protocols or mechanical priming. While isolating cells from their native tissues and culturing them on artificial substrates has revolutionized biomedical research, it has also transformed cellular forces. Only by understanding and controlling them, we can improve their truthfulness and validity.
Collapse
Affiliation(s)
- Marina Moro-López
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Ramon Farré
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-RES), Barcelona, Spain; Institut Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Jorge Otero
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-RES), Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Raimon Sunyer
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería (CIBER-BBN), Barcelona, Spain.
| |
Collapse
|
3
|
Liu S, Yang H, Heng X, Yao L, Sun W, Zheng Q, Wu Z, Chen H. Integrating Metabolic Oligosaccharide Engineering and SPAAC Click Chemistry for Constructing Fibrinolytic Cell Surfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35874-35886. [PMID: 38954798 DOI: 10.1021/acsami.4c07619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
To effectively solve the problem of significant loss of transplanted cells caused by thrombosis during cell transplantation, this study simulates the human fibrinolytic system and combines metabolic oligosaccharide engineering with strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry to construct a cell surface with fibrinolytic activity. First, a copolymer (POL) of oligoethylene glycol methacrylate (OEGMA) and 6-amino-2-(2-methylamido)hexanoic acid (Lys) was synthesized by reversible addition-fragmentation chain transfer (RAFT) copolymerization, and the dibenzocyclooctyne (DBCO) functional group was introduced into the side chain of the copolymer through an active ester reaction, resulting in a functionalized copolymer DBCO-PEG4-POL with ε-lysine ligands. Then, azide functional groups were introduced onto the surface of HeLa model cells through metabolic oligosaccharide engineering, and DBCO-PEG4-POL was further specifically modified onto the surface of HeLa cells via the SPAAC "click" reaction. In vitro investigations revealed that compared with unmodified HeLa cells, modified cells not only resist the adsorption of nonspecific proteins such as fibrinogen and human serum albumin but also selectively bind to plasminogen in plasma while maintaining good cell viability and proliferative activity. More importantly, upon the activation of adsorbed plasminogen into plasmin, the modified cells exhibited remarkable fibrinolytic activity and were capable of promptly dissolving the primary thrombus formed on their surfaces. This research not only provides a novel approach for constructing transplantable cells with fibrinolytic activity but also offers a new perspective for effectively addressing the significant loss of transplanted cells caused by thrombosis.
Collapse
Affiliation(s)
- Shengjie Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - He Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xingyu Heng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Lihua Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Wei Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Qing Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhaoqiang Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
4
|
Design, Synthesis, and Biological Evaluation of 2-Mercaptobenzoxazole Derivatives as Potential Multi-Kinase Inhibitors. Pharmaceuticals (Basel) 2023; 16:ph16010097. [PMID: 36678593 PMCID: PMC9863562 DOI: 10.3390/ph16010097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
A series of 12 compounds was designed and synthesized, based on 2-mercaptobenzoxazole derivatives containing either the substituted benzenes 4a-d, substituted isatins 5a-f, or heterocycles 6a-b. The in vitro antiproliferative activity of the compounds was evaluated against hepatocellular carcinoma (HepG2), mammary gland cancer (MCF-7), breast cancer (MDA-MB-231), and the epithelioid cervix carcinoma (HeLa) cancer cell lines. Compounds 4b, 4d, 5d, and 6b had the most potent antiproliferative activity, with IC50 values ranging from 2.14 to 19.34 µM, compared to the reference drugs, doxorubicin and sunitinib. Compound 6b revealed a remarkably broad antitumor activity pattern against HepG2 (IC50 6.83 µM), MCF-7 (IC50 3.64 µM), MDA-MB-231 (IC50 2.14 µM), and HeLa (IC50 5.18 µM). In addition, compound 6b showed potent inhibitory activities against EGFR, HER2, VEGFR2, and the CDK2 protein kinase enzymes, with IC50 values of 0.279, 0.224, 0.565, and 0.886 µM, respectively. Moreover, compound 6b induced caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Finally, a molecular docking simulation was performed for compound 6b to predict the potential ligand-protein interactions with the active sites of the EGFR, HER2, and VEGFR2 proteins.
Collapse
|
5
|
Ghaznavi A, Rychtáriková R, Saberioon M, Štys D. Cell segmentation from telecentric bright-field transmitted light microscopy images using a Residual Attention U-Net: A case study on HeLa line. Comput Biol Med 2022; 147:105805. [PMID: 35809410 DOI: 10.1016/j.compbiomed.2022.105805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/03/2022] [Accepted: 06/26/2022] [Indexed: 11/20/2022]
Abstract
Living cell segmentation from bright-field light microscopy images is challenging due to the image complexity and temporal changes in the living cells. Recently developed deep learning (DL)-based methods became popular in medical and microscopy image segmentation tasks due to their success and promising outcomes. The main objective of this paper is to develop a deep learning, U-Net-based method to segment the living cells of the HeLa line in bright-field transmitted light microscopy. To find the most suitable architecture for our datasets, a residual attention U-Net was proposed and compared with an attention and a simple U-Net architecture. The attention mechanism highlights the remarkable features and suppresses activations in the irrelevant image regions. The residual mechanism overcomes with vanishing gradient problem. The Mean-IoU score for our datasets reaches 0.9505, 0.9524, and 0.9530 for the simple, attention, and residual attention U-Net, respectively. The most accurate semantic segmentation results was achieved in the Mean-IoU and Dice metrics by applying the residual and attention mechanisms together. The watershed method applied to this best - Residual Attention - semantic segmentation result gave the segmentation with the specific information for each cell.
Collapse
Affiliation(s)
- Ali Ghaznavi
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Complex Systems, University of South Bohemia in České Budějovice, Zámek 136, 373 33, Nové Hrady, Czech Republic.
| | - Renata Rychtáriková
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Complex Systems, University of South Bohemia in České Budějovice, Zámek 136, 373 33, Nové Hrady, Czech Republic.
| | - Mohammadmehdi Saberioon
- Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Section 1.4 Remote Sensing and Geoinformatics, Telegrafenberg, Potsdam 14473, Germany.
| | - Dalibor Štys
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Complex Systems, University of South Bohemia in České Budějovice, Zámek 136, 373 33, Nové Hrady, Czech Republic.
| |
Collapse
|
6
|
Yan H, Cacioppo M, Megahed S, Arcudi F, Đorđević L, Zhu D, Schulz F, Prato M, Parak WJ, Feliu N. Influence of the chirality of carbon nanodots on their interaction with proteins and cells. Nat Commun 2021; 12:7208. [PMID: 34893594 PMCID: PMC8664908 DOI: 10.1038/s41467-021-27406-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/11/2021] [Indexed: 12/26/2022] Open
Abstract
Carbon nanodots with opposite chirality possess the same major physicochemical properties such as optical features, hydrodynamic diameter, and colloidal stability. Here, a detailed analysis about the comparison of the concentration of both carbon nanodots is carried out, putting a threshold to when differences in biological behavior may be related to chirality and may exclude effects based merely on differences in exposure concentrations due to uncertainties in concentration determination. The present study approaches this comparative analysis evaluating two basic biological phenomena, the protein adsorption and cell internalization. We find how a meticulous concentration error estimation enables the evaluation of the differences in biological effects related to chirality.
Collapse
Affiliation(s)
- Huijie Yan
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany
| | - Michele Cacioppo
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Saad Megahed
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany
- Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Francesca Arcudi
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Luka Đorđević
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Dingcheng Zhu
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, PR China
| | - Florian Schulz
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy.
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastian, Spain.
- Basque Foundation for Science, Ikerbasque, 48013, Bilbao, Spain.
| | - Wolfgang J Parak
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany.
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastian, Spain.
| | - Neus Feliu
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany.
- Fraunhofer Center for Applied Nanotechnology (CAN), 20146, Hamburg, Germany.
| |
Collapse
|
7
|
Prasher A, Shrivastava R, Dahl D, Sharma-Huynh P, Maturavongsadit P, Pridgen T, Schorzman A, Zamboni W, Ban J, Blikslager A, Dellon ES, Benhabbour SR. Steroid Eluting Esophageal-Targeted Drug Delivery Devices for Treatment of Eosinophilic Esophagitis. Polymers (Basel) 2021; 13:557. [PMID: 33668571 PMCID: PMC7917669 DOI: 10.3390/polym13040557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 01/08/2023] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic atopic disease that has become increasingly prevalent over the past 20 years. A first-line pharmacologic option is topical/swallowed corticosteroids, but these are adapted from asthma preparations such as fluticasone from an inhaler and yield suboptimal response rates. There are no FDA-approved medications for the treatment of EoE, and esophageal-specific drug formulations are lacking. We report the development of two novel esophageal-specific drug delivery platforms. The first is a fluticasone-eluting string that could be swallowed similar to the string test "entero-test" and used for overnight treatment, allowing for a rapid release along the entire length of esophagus. In vitro drug release studies showed a target release of 1 mg/day of fluticasone. In vivo pharmacokinetic studies were carried out after deploying the string in a porcine model, and our results showed a high local level of fluticasone in esophageal tissue persisting over 1 and 3 days, and a minimal systemic absorption in plasma. The second device is a fluticasone-eluting 3D printed ring for local and sustained release of fluticasone in the esophagus. We designed and fabricated biocompatible fluticasone-loaded rings using a top-down, Digital Light Processing (DLP) Gizmo 3D printer. We explored various strategies of drug loading into 3D printed rings, involving incorporation of drug during the print process (pre-loading) or after printing (post-loading). In vitro drug release studies of fluticasone-loaded rings (pre and post-loaded) showed that fluticasone elutes at a constant rate over a period of one month. Ex vivo pharmacokinetic studies in the porcine model also showed high tissue levels of fluticasone and both rings and strings were successfully deployed into the porcine esophagus in vivo. Given these preliminary proof-of-concept data, these devices now merit study in animal models of disease and ultimately subsequent translation to testing in humans.
Collapse
Affiliation(s)
- Alka Prasher
- Department of Biomedical Engineering, UNC Chapel Hill & North Carolina State University, Chapel Hill, NC 27599-3290, USA; (A.P.); (R.S.); (D.D.); (P.M.)
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Roopali Shrivastava
- Department of Biomedical Engineering, UNC Chapel Hill & North Carolina State University, Chapel Hill, NC 27599-3290, USA; (A.P.); (R.S.); (D.D.); (P.M.)
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Denali Dahl
- Department of Biomedical Engineering, UNC Chapel Hill & North Carolina State University, Chapel Hill, NC 27599-3290, USA; (A.P.); (R.S.); (D.D.); (P.M.)
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Preetika Sharma-Huynh
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA;
| | - Panita Maturavongsadit
- Department of Biomedical Engineering, UNC Chapel Hill & North Carolina State University, Chapel Hill, NC 27599-3290, USA; (A.P.); (R.S.); (D.D.); (P.M.)
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Tiffany Pridgen
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (T.P.); (A.B.)
| | - Allison Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-3290, USA; (A.S.); (W.Z.); (J.B.)
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599-3290, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599-3290, USA
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, Chapel Hill, NC 27599-3290, USA
| | - William Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-3290, USA; (A.S.); (W.Z.); (J.B.)
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599-3290, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599-3290, USA
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, Chapel Hill, NC 27599-3290, USA
| | - Jisun Ban
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-3290, USA; (A.S.); (W.Z.); (J.B.)
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599-3290, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599-3290, USA
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, Chapel Hill, NC 27599-3290, USA
| | - Anthony Blikslager
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (T.P.); (A.B.)
| | - Evan S. Dellon
- Division of Gastroenterology and Hepatology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599-3290, USA;
| | - Soumya Rahima Benhabbour
- Department of Biomedical Engineering, UNC Chapel Hill & North Carolina State University, Chapel Hill, NC 27599-3290, USA; (A.P.); (R.S.); (D.D.); (P.M.)
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA;
| |
Collapse
|
8
|
Babayan N, Vorobyeva N, Grigoryan B, Grekhova A, Pustovalova M, Rodneva S, Fedotov Y, Tsakanova G, Aroutiounian R, Osipov A. Low Repair Capacity of DNA Double-Strand Breaks Induced by Laser-Driven Ultrashort Electron Beams in Cancer Cells. Int J Mol Sci 2020; 21:ijms21249488. [PMID: 33327380 PMCID: PMC7764904 DOI: 10.3390/ijms21249488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022] Open
Abstract
Laser-driven accelerators allow to generate ultrashort (from femto- to picoseconds) high peak dose-rate (up to tens of GGy/s) accelerated particle beams. However, the radiobiological effects of ultrashort pulsed irradiation are still poorly studied. The aim of this work was to compare the formation and elimination of γH2AX and 53BP1 foci (well known markers for DNA double-strand breaks (DSBs)) in Hela cells exposed to ultrashort pulsed electron beams generated by Advanced Research Electron Accelerator Laboratory (AREAL) accelerator (electron energy 3.6 MeV, pulse duration 450 fs, pulse repetition rates 2 or 20 Hz) and quasi-continuous radiation generated by Varian accelerator (electron energy 4 MeV) at doses of 250–1000 mGy. Additionally, a study on the dose–response relationships of changes in the number of residual γH2AX foci in HeLa and A549 cells 24 h after irradiation at doses of 500–10,000 mGy were performed. We found no statistically significant differences in γH2AX and 53BP1 foci yields at 1 h after exposure to 2 Hz ultrashort pulse vs. quasi-continuous radiations. In contrast, 20 Hz ultrashort pulse irradiation resulted in 1.27-fold higher foci yields as compared to the quasi-continuous one. After 24 h of pulse irradiation at doses of 500–10,000 mGy the number of residual γH2AX foci in Hela and A549 cells was 1.7–2.9 times higher compared to that of quasi-continuous irradiation. Overall, the obtained results suggest the slower repair rate for DSBs induced by ultrashort pulse irradiation in comparison to DSBs induced by quasi-continuous irradiation.
Collapse
Affiliation(s)
- Nelly Babayan
- Institute of Molecular Biology NASRA, 7 Hasratyan, Yerevan 0014, Armenia; (N.B.); (G.T.)
- Faculty of Biology, Yerevan State University, 1 Manoogian, Yerevan 0025, Armenia;
| | - Natalia Vorobyeva
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 46 Zhivopisnaya, 123182 Moscow, Russia; (N.V.); (S.R.); (Y.F.)
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina, 119991 Moscow, Russia
| | - Bagrat Grigoryan
- CANDLE Synchrotron Research Institute, 31 Acharyan, Yerevan 0040, Armenia;
| | - Anna Grekhova
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina, 119991 Moscow, Russia
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, 4 Kosygina, 119991 Moscow, Russia;
| | - Margarita Pustovalova
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, 141700 Moscow, Russia;
| | - Sofya Rodneva
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 46 Zhivopisnaya, 123182 Moscow, Russia; (N.V.); (S.R.); (Y.F.)
| | - Yuriy Fedotov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 46 Zhivopisnaya, 123182 Moscow, Russia; (N.V.); (S.R.); (Y.F.)
| | - Gohar Tsakanova
- Institute of Molecular Biology NASRA, 7 Hasratyan, Yerevan 0014, Armenia; (N.B.); (G.T.)
- CANDLE Synchrotron Research Institute, 31 Acharyan, Yerevan 0040, Armenia;
| | - Rouben Aroutiounian
- Faculty of Biology, Yerevan State University, 1 Manoogian, Yerevan 0025, Armenia;
| | - Andreyan Osipov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 46 Zhivopisnaya, 123182 Moscow, Russia; (N.V.); (S.R.); (Y.F.)
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, 141700 Moscow, Russia;
- Correspondence: ; Tel.: +7-499-190-96-83
| |
Collapse
|