1
|
Logeart D, Taille Y, Derumeaux G, Gellen B, Sirol M, Galinier M, Roubille F, Georges JL, Trochu JN, Launay JM, Vodovar N, Bauters C, Vicaut E, Mercadier JJ. Patterns of left ventricular remodeling post-myocardial infarction, determinants, and outcome. Clin Res Cardiol 2024; 113:1670-1681. [PMID: 38261025 DOI: 10.1007/s00392-023-02331-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/20/2023] [Indexed: 01/24/2024]
Abstract
AIM Left ventricular remodeling (LVR) after myocardial infarction (MI) can lead to heart failure, arrhythmia, and death. We aim to describe adverse LVR patterns at 6 months post-MI and their relationships with subsequent outcomes and to determine baseline. METHODS AND RESULTS A multicenter cohort of 410 patients (median age 57 years, 87% male) with reperfused MI and at least 3 akinetic LV segments on admission was analyzed. All patients had transthoracic echocardiography performed 4 days and 6 months post-MI, and 214 also had cardiac magnetic resonance imaging performed on day 4. To predict LVR, machine learning methods were employed in order to handle many variables, some of which may have complex interactions. Six months post-MI, echocardiographic increases in LV end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), and LV ejection fraction (LVEF) were 14.1% [interquartile range 0.0, 32.0], 5.0% [- 14.0, 25.8], and 8.7% [0.0, 19.4], respectively. At 6 months, ≥ 15% or 20% increases in LVEDV were observed in 49% and 42% of patients, respectively, and 37% had an LVEF < 50%. The rate of death or new-onset HF at the end of 5-year follow-up was 8.8%. Baseline variables associated with adverse LVR were determined best by random forest analysis and included stroke volume, stroke work, necrosis size, LVEDV, LVEF, and LV afterload, the latter assessed by Ea or Ea/Ees. In contrast, baseline clinical and biological characteristics were poorly predictive of LVR. After adjustment for predictive baseline variables, LV dilation > 20% and 6-month LVEF < 50% were significantly associated with the risk of death and/or heart failure: hazard ratio (HR) 2.12 (95% confidence interval (CI) 1.05-4.43; p = 0.04) and HR 2.68 (95% CI 1.20-6.00; p = 0.016) respectively. CONCLUSION Despite early reperfusion and cardioprotective therapy, adverse LVR remains frequent after acute MI and is associated with a risk of death and HF. A machine learning approach identified and prioritized early variables that are associated with adverse LVR and which were mainly hemodynamic, combining LV volumes, estimates of systolic function, and afterload.
Collapse
Affiliation(s)
- Damien Logeart
- UMR-S 942 MASCOT, Université Paris Cité and Inserm, Paris, France.
- Assistance Publique Hôpitaux de Paris, Hôpital Lariboisière-Fernand Widal, 75010, Paris, France.
- Université Paris Cité, Paris, France.
| | - Yoann Taille
- Assistance Publique Hôpitaux de Paris, Hôpital Lariboisière-Fernand Widal, 75010, Paris, France
| | - Geneviève Derumeaux
- Assistance Publique Hôpitaux de Paris, Hôpital Henri-Mondor, Créteil, France
| | | | - Marc Sirol
- American Hospital, Neuilly-Sur-Seine, France
| | | | | | | | | | | | - Nicolas Vodovar
- UMR-S 942 MASCOT, Université Paris Cité and Inserm, Paris, France
| | | | - Eric Vicaut
- UMR-S 942 MASCOT, Université Paris Cité and Inserm, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Lariboisière-Fernand Widal, 75010, Paris, France
- Université Paris Cité, Paris, France
| | | |
Collapse
|
2
|
Liu C, Wu X, Vulugundam G, Gokulnath P, Li G, Xiao J. Exercise Promotes Tissue Regeneration: Mechanisms Involved and Therapeutic Scope. SPORTS MEDICINE - OPEN 2023; 9:27. [PMID: 37149504 PMCID: PMC10164224 DOI: 10.1186/s40798-023-00573-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Exercise has well-recognized beneficial effects on the whole body. Previous studies suggest that exercise could promote tissue regeneration and repair in various organs. In this review, we have summarized the major effects of exercise on tissue regeneration primarily mediated by stem cells and progenitor cells in skeletal muscle, nervous system, and vascular system. The protective function of exercise-induced stem cell activation under pathological conditions and aging in different organs have also been discussed in detail. Moreover, we have described the primary molecular mechanisms involved in exercise-induced tissue regeneration, including the roles of growth factors, signaling pathways, oxidative stress, metabolic factors, and non-coding RNAs. We have also summarized therapeutic approaches that target crucial signaling pathways and molecules responsible for exercise-induced tissue regeneration, such as IGF1, PI3K, and microRNAs. Collectively, the comprehensive understanding of exercise-induced tissue regeneration will facilitate the discovery of novel drug targets and therapeutic strategies.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xinying Wu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | | | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
3
|
Leancă SA, Crișu D, Petriș AO, Afrăsânie I, Genes A, Costache AD, Tesloianu DN, Costache II. Left Ventricular Remodeling after Myocardial Infarction: From Physiopathology to Treatment. Life (Basel) 2022; 12:1111. [PMID: 35892913 PMCID: PMC9332014 DOI: 10.3390/life12081111] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/11/2022] Open
Abstract
Myocardial infarction (MI) is the leading cause of death and morbidity worldwide, with an incidence relatively high in developed countries and rapidly growing in developing countries. The most common cause of MI is the rupture of an atherosclerotic plaque with subsequent thrombotic occlusion in the coronary circulation. This causes cardiomyocyte death and myocardial necrosis, with subsequent inflammation and fibrosis. Current therapies aim to restore coronary flow by thrombus dissolution with pharmaceutical treatment and/or intravascular stent implantation and to counteract neurohormonal activation. Despite these therapies, the injury caused by myocardial ischemia leads to left ventricular remodeling; this process involves changes in cardiac geometry, dimension and function and eventually progression to heart failure (HF). This review describes the pathophysiological mechanism that leads to cardiac remodeling and the therapeutic strategies with a role in slowing the progression of remodeling and improving cardiac structure and function.
Collapse
Affiliation(s)
- Sabina Andreea Leancă
- Department of Cardiology, Emergency Clinical Hospital “Sf. Spiridon”, Bd. Independentei nr. 1, 700111 Iasi, Romania; (S.A.L.); (A.O.P.); (I.A.); (A.G.); (D.N.T.); (I.I.C.)
| | - Daniela Crișu
- Department of Cardiology, Emergency Clinical Hospital “Sf. Spiridon”, Bd. Independentei nr. 1, 700111 Iasi, Romania; (S.A.L.); (A.O.P.); (I.A.); (A.G.); (D.N.T.); (I.I.C.)
| | - Antoniu Octavian Petriș
- Department of Cardiology, Emergency Clinical Hospital “Sf. Spiridon”, Bd. Independentei nr. 1, 700111 Iasi, Romania; (S.A.L.); (A.O.P.); (I.A.); (A.G.); (D.N.T.); (I.I.C.)
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Str. University nr. 16, 700083 Iasi, Romania;
| | - Irina Afrăsânie
- Department of Cardiology, Emergency Clinical Hospital “Sf. Spiridon”, Bd. Independentei nr. 1, 700111 Iasi, Romania; (S.A.L.); (A.O.P.); (I.A.); (A.G.); (D.N.T.); (I.I.C.)
| | - Antonia Genes
- Department of Cardiology, Emergency Clinical Hospital “Sf. Spiridon”, Bd. Independentei nr. 1, 700111 Iasi, Romania; (S.A.L.); (A.O.P.); (I.A.); (A.G.); (D.N.T.); (I.I.C.)
| | - Alexandru Dan Costache
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Str. University nr. 16, 700083 Iasi, Romania;
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Dan Nicolae Tesloianu
- Department of Cardiology, Emergency Clinical Hospital “Sf. Spiridon”, Bd. Independentei nr. 1, 700111 Iasi, Romania; (S.A.L.); (A.O.P.); (I.A.); (A.G.); (D.N.T.); (I.I.C.)
| | - Irina Iuliana Costache
- Department of Cardiology, Emergency Clinical Hospital “Sf. Spiridon”, Bd. Independentei nr. 1, 700111 Iasi, Romania; (S.A.L.); (A.O.P.); (I.A.); (A.G.); (D.N.T.); (I.I.C.)
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Str. University nr. 16, 700083 Iasi, Romania;
| |
Collapse
|