1
|
Bedja-Iacona L, Richard E, Marouillat S, Brulard C, Alouane T, Beltran S, Andres CR, Blasco H, Corcia P, Veyrat-Durebex C, Vourc’h P. Post-Translational Variants of Major Proteins in Amyotrophic Lateral Sclerosis Provide New Insights into the Pathophysiology of the Disease. Int J Mol Sci 2024; 25:8664. [PMID: 39201350 PMCID: PMC11354932 DOI: 10.3390/ijms25168664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Post-translational modifications (PTMs) affecting proteins during or after their synthesis play a crucial role in their localization and function. The modification of these PTMs under pathophysiological conditions, i.e., their appearance, disappearance, or variation in quantity caused by a pathological environment or a mutation, corresponds to post-translational variants (PTVs). These PTVs can be directly or indirectly involved in the pathophysiology of diseases. Here, we present the PTMs and PTVs of four major amyotrophic lateral sclerosis (ALS) proteins, SOD1, TDP-43, FUS, and TBK1. These modifications involve acetylation, phosphorylation, methylation, ubiquitination, SUMOylation, and enzymatic cleavage. We list the PTM positions known to be mutated in ALS patients and discuss the roles of PTVs in the pathophysiological processes of ALS. In-depth knowledge of the PTMs and PTVs of ALS proteins is needed to better understand their role in the disease. We believe it is also crucial for developing new therapies that may be more effective in ALS.
Collapse
Affiliation(s)
- Léa Bedja-Iacona
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | - Elodie Richard
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | - Sylviane Marouillat
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | | | | | - Stéphane Beltran
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Neurologie, CHRU de Tours, 37000 Tours, France
| | - Christian R. Andres
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Hélène Blasco
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Philippe Corcia
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Neurologie, CHRU de Tours, 37000 Tours, France
| | - Charlotte Veyrat-Durebex
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- UTTIL, CHRU de Tours, 37000 Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Patrick Vourc’h
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- UTTIL, CHRU de Tours, 37000 Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| |
Collapse
|
2
|
Tamaki Y, Urushitani M. Molecular Dissection of TDP-43 as a Leading Cause of ALS/FTLD. Int J Mol Sci 2022; 23:ijms232012508. [PMID: 36293362 PMCID: PMC9604209 DOI: 10.3390/ijms232012508] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a DNA/RNA binding protein involved in pivotal cellular functions, especially in RNA metabolism. Hyperphosphorylated and ubiquitinated TDP-43-positive neuronal cytoplasmic inclusions are identified in the brain and spinal cord in most cases of amyotrophic lateral sclerosis (ALS) and a substantial proportion of frontotemporal lobar degeneration (FTLD) cases. TDP-43 dysfunctions and cytoplasmic aggregation seem to be the central pathogenicity in ALS and FTLD. Therefore, unraveling both the physiological and pathological mechanisms of TDP-43 may enable the exploration of novel therapeutic strategies. This review highlights the current understanding of TDP-43 biology and pathology, describing the cellular processes involved in the pathogeneses of ALS and FTLD, such as post-translational modifications, RNA metabolism, liquid–liquid phase separation, proteolysis, and the potential prion-like propagation propensity of the TDP-43 inclusions.
Collapse
Affiliation(s)
- Yoshitaka Tamaki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Otsu 520-2192, Japan
- Correspondence:
| |
Collapse
|
3
|
Mohan HM, Trzeciakiewicz H, Pithadia A, Crowley EV, Pacitto R, Safren N, Trotter B, Zhang C, Zhou X, Zhang Y, Basrur V, Paulson HL, Sharkey LM. RTL8 promotes nuclear localization of UBQLN2 to subnuclear compartments associated with protein quality control. Cell Mol Life Sci 2022; 79:176. [PMID: 35247097 PMCID: PMC9376861 DOI: 10.1007/s00018-022-04170-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022]
Abstract
The brain-expressed ubiquilins (UBQLNs) 1, 2 and 4 are a family of ubiquitin adaptor proteins that participate broadly in protein quality control (PQC) pathways, including the ubiquitin proteasome system (UPS). One family member, UBQLN2, has been implicated in numerous neurodegenerative diseases including ALS/FTD. UBQLN2 typically resides in the cytoplasm but in disease can translocate to the nucleus, as in Huntington's disease where it promotes the clearance of mutant Huntingtin. How UBQLN2 translocates to the nucleus and clears aberrant nuclear proteins, however, is not well understood. In a mass spectrometry screen to discover UBQLN2 interactors, we identified a family of small (13 kDa), highly homologous uncharacterized proteins, RTL8, and confirmed the interaction between UBQLN2 and RTL8 both in vitro using recombinant proteins and in vivo using mouse brain tissue. Under endogenous and overexpressed conditions, RTL8 localizes to nucleoli. When co-expressed with UBQLN2, RTL8 promotes nuclear translocation of UBQLN2. RTL8 also facilitates UBQLN2's nuclear translocation during heat shock. UBQLN2 and RTL8 colocalize within ubiquitin-enriched subnuclear structures containing PQC components. The robust effect of RTL8 on the nuclear translocation and subnuclear localization of UBQLN2 does not extend to the other brain-expressed ubiquilins, UBQLN1 and UBQLN4. Moreover, compared to UBQLN1 and UBQLN4, UBQLN2 preferentially stabilizes RTL8 levels in human cell lines and in mouse brain, supporting functional heterogeneity among UBQLNs. As a novel UBQLN2 interactor that recruits UBQLN2 to specific nuclear compartments, RTL8 may regulate UBQLN2 function in nuclear protein quality control.
Collapse
Affiliation(s)
- Harihar Milaganur Mohan
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA.,Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | | | - Amit Pithadia
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Emily V Crowley
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Regina Pacitto
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Nathaniel Safren
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA.,Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Bryce Trotter
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Xiaogen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA. .,Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109-2200, USA.
| | - Lisa M Sharkey
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-2200, USA. .,Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
4
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
5
|
Wood A, Gurfinkel Y, Polain N, Lamont W, Lyn Rea S. Molecular Mechanisms Underlying TDP-43 Pathology in Cellular and Animal Models of ALS and FTLD. Int J Mol Sci 2021; 22:4705. [PMID: 33946763 PMCID: PMC8125728 DOI: 10.3390/ijms22094705] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 02/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative disorders that exist on a disease spectrum due to pathological, clinical and genetic overlap. In up to 97% of ALS cases and ~50% of FTLD cases, the primary pathological protein observed in affected tissues is TDP-43, which is hyperphosphorylated, ubiquitinated and cleaved. The TDP-43 is observed in aggregates that are abnormally located in the cytoplasm. The pathogenicity of TDP-43 cytoplasmic aggregates may be linked with both a loss of nuclear function and a gain of toxic functions. The cellular processes involved in ALS and FTLD disease pathogenesis include changes to RNA splicing, abnormal stress granules, mitochondrial dysfunction, impairments to axonal transport and autophagy, abnormal neuromuscular junctions, endoplasmic reticulum stress and the subsequent induction of the unfolded protein response. Here, we review and discuss the evidence for alterations to these processes that have been reported in cellular and animal models of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Alistair Wood
- School of Molecular Science, University of Western Australia, Nedlands 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
| | - Yuval Gurfinkel
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands 6009, Australia;
| | - Nicole Polain
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
| | - Wesley Lamont
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands 6009, Australia;
| | - Sarah Lyn Rea
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
- Hub for Immersive Visualisation and eResearch, Curtin University, Bentley 6102, Australia
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands 6009, Australia
| |
Collapse
|
6
|
Dangoumau A, Marouillat S, Coelho R, Wurmser F, Brulard C, Haouari S, Laumonnier F, Corcia P, Andres CR, Blasco H, Vourc’h P. Dysregulations of Expression of Genes of the Ubiquitin/SUMO Pathways in an In Vitro Model of Amyotrophic Lateral Sclerosis Combining Oxidative Stress and SOD1 Gene Mutation. Int J Mol Sci 2021; 22:ijms22041796. [PMID: 33670299 PMCID: PMC7918082 DOI: 10.3390/ijms22041796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Protein aggregates in affected motor neurons are a hallmark of amyotrophic lateral sclerosis (ALS), but the molecular pathways leading to their formation remain incompletely understood. Oxidative stress associated with age, the major risk factor in ALS, contributes to this neurodegeneration in ALS. We show that several genes coding for enzymes of the ubiquitin and small ubiquitin-related modifier (SUMO) pathways exhibit altered expression in motor neuronal cells exposed to oxidative stress, such as the CCNF gene mutated in ALS patients. Eleven of these genes were further studied in conditions combining oxidative stress and the expression of an ALS related mutant of the superoxide dismutase 1 (SOD1) gene. We observed a combined effect of these two environmental and genetic factors on the expression of genes, such as Uhrf2, Rbx1, Kdm2b, Ube2d2, Xaf1, and Senp1. Overall, we identified dysregulations in the expression of enzymes of the ubiquitin and SUMO pathways that may be of interest to better understand the pathophysiology of ALS and to protect motor neurons from oxidative stress and genetic alterations.
Collapse
Affiliation(s)
- Audrey Dangoumau
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - Sylviane Marouillat
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - Roxane Coelho
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - François Wurmser
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | | | - Shanez Haouari
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - Frédéric Laumonnier
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - Philippe Corcia
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
- Service de Neurologie, Centre de Référence sur la SLA, CHRU de Tours, 37000 Tours, France
| | - Christian R. Andres
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Hélène Blasco
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Patrick Vourc’h
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
- UTTIL, CHRU de Tours, 37000 Tours, France;
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
- Correspondence: ; Tel.: +33-(0)-234-378-910
| |
Collapse
|
7
|
Pham J, Keon M, Brennan S, Saksena N. Connecting RNA-Modifying Similarities of TDP-43, FUS, and SOD1 with MicroRNA Dysregulation Amidst A Renewed Network Perspective of Amyotrophic Lateral Sclerosis Proteinopathy. Int J Mol Sci 2020; 21:ijms21103464. [PMID: 32422969 PMCID: PMC7278980 DOI: 10.3390/ijms21103464] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Beyond traditional approaches in understanding amyotrophic lateral sclerosis (ALS), multiple recent studies in RNA-binding proteins (RBPs)-including transactive response DNA-binding protein (TDP-43) and fused in sarcoma (FUS)-have instigated an interest in their function and prion-like properties. Given their prominence as hallmarks of a highly heterogeneous disease, this prompts a re-examination of the specific functional interrelationships between these proteins, especially as pathological SOD1-a non-RBP commonly associated with familial ALS (fALS)-exhibits similar properties to these RBPs including potential RNA-regulatory capabilities. Moreover, the cytoplasmic mislocalization, aggregation, and co-aggregation of TDP-43, FUS, and SOD1 can be identified as proteinopathies akin to other neurodegenerative diseases (NDs), eliciting strong ties to disrupted RNA splicing, transport, and stability. In recent years, microRNAs (miRNAs) have also been increasingly implicated in the disease, and are of greater significance as they are the master regulators of RNA metabolism in disease pathology. However, little is known about the role of these proteins and how they are regulated by miRNA, which would provide mechanistic insights into ALS pathogenesis. This review seeks to discuss current developments across TDP-43, FUS, and SOD1 to build a detailed snapshot of the network pathophysiology underlying ALS while aiming to highlight possible novel therapeutic targets to guide future research.
Collapse
Affiliation(s)
- Jade Pham
- Faculty of Medicine, The University of New South Wales, Kensington, Sydney, NSW 2033, Australia;
| | - Matt Keon
- Iggy Get Out, Neurodegenerative Disease Section, Darlinghurst, Sydney, NSW 2010, Australia; (M.K.); (S.B.)
| | - Samuel Brennan
- Iggy Get Out, Neurodegenerative Disease Section, Darlinghurst, Sydney, NSW 2010, Australia; (M.K.); (S.B.)
| | - Nitin Saksena
- Iggy Get Out, Neurodegenerative Disease Section, Darlinghurst, Sydney, NSW 2010, Australia; (M.K.); (S.B.)
- Correspondence:
| |
Collapse
|
8
|
Hergesheimer RC, Chami AA, de Assis DR, Vourc'h P, Andres CR, Corcia P, Lanznaster D, Blasco H. The debated toxic role of aggregated TDP-43 in amyotrophic lateral sclerosis: a resolution in sight? Brain 2020; 142:1176-1194. [PMID: 30938443 PMCID: PMC6487324 DOI: 10.1093/brain/awz078] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/11/2019] [Accepted: 02/16/2019] [Indexed: 12/11/2022] Open
Abstract
Transactive response DNA-binding protein-43 (TDP-43) is an RNA/DNA binding protein that forms phosphorylated and ubiquitinated aggregates in the cytoplasm of motor neurons in amyotrophic lateral sclerosis, which is a hallmark of this disease. Amyotrophic lateral sclerosis is a neurodegenerative condition affecting the upper and lower motor neurons. Even though the aggregative property of TDP-43 is considered a cornerstone of amyotrophic lateral sclerosis, there has been major controversy regarding the functional link between TDP-43 aggregates and cell death. In this review, we attempt to reconcile the current literature surrounding this debate by discussing the results and limitations of the published data relating TDP-43 aggregates to cytotoxicity, as well as therapeutic perspectives of TDP-43 aggregate clearance. We point out key data suggesting that the formation of TDP-43 aggregates and the capacity to self-template and propagate among cells as a 'prion-like' protein, another pathological property of TDP-43 aggregates, are a significant cause of motor neuronal death. We discuss the disparities among the various studies, particularly with respect to the type of models and the different forms of TDP-43 used to evaluate cellular toxicity. We also examine how these disparities can interfere with the interpretation of the results pertaining to a direct toxic effect of TDP-43 aggregates. Furthermore, we present perspectives for improving models in order to better uncover the toxic role of aggregated TDP-43. Finally, we review the recent studies on the enhancement of the cellular clearance mechanisms of autophagy, the ubiquitin proteasome system, and endocytosis in an attempt to counteract TDP-43 aggregation-induced toxicity. Altogether, the data available so far encourage us to suggest that the cytoplasmic aggregation of TDP-43 is key for the neurodegeneration observed in motor neurons in patients with amyotrophic lateral sclerosis. The corresponding findings provide novel avenues toward early therapeutic interventions and clinical outcomes for amyotrophic lateral sclerosis management.
Collapse
Affiliation(s)
| | - Anna A Chami
- UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France
| | | | - Patrick Vourc'h
- UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France.,CHU de Tours, Service de Biochimie et Biologie Moléculaire, Tours, France
| | - Christian R Andres
- UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France.,CHU de Tours, Service de Biochimie et Biologie Moléculaire, Tours, France
| | - Philippe Corcia
- UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France.,CHU de Tours, Service de Neurologie, Tours, France
| | | | - Hélène Blasco
- UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France.,CHU de Tours, Service de Biochimie et Biologie Moléculaire, Tours, France
| |
Collapse
|
9
|
François-Moutal L, Perez-Miller S, Scott DD, Miranda VG, Mollasalehi N, Khanna M. Structural Insights Into TDP-43 and Effects of Post-translational Modifications. Front Mol Neurosci 2019; 12:301. [PMID: 31920533 PMCID: PMC6934062 DOI: 10.3389/fnmol.2019.00301] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Transactive response DNA binding protein (TDP-43) is a key player in neurodegenerative diseases. In this review, we have gathered and presented structural information on the different regions of TDP-43 with high resolution structures available. A thorough understanding of TDP-43 structure, effect of modifications, aggregation and sites of localization is necessary as we develop therapeutic strategies targeting TDP-43 for neurodegenerative diseases. We discuss how different domains as well as post-translational modification may influence TDP-43 overall structure, aggregation and droplet formation. The primary aim of the review is to utilize structural insights as we develop an understanding of the deleterious behavior of TDP-43 and highlight locations of established and proposed post-translation modifications. TDP-43 structure and effect on localization is paralleled by many RNA-binding proteins and this review serves as an example of how structure may be modulated by numerous compounding elements.
Collapse
Affiliation(s)
- Liberty François-Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - David D Scott
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - Victor G Miranda
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - Niloufar Mollasalehi
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States.,Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| |
Collapse
|
10
|
Maurel C, Chami AA, Thépault RA, Marouillat S, Blasco H, Corcia P, Andres CR, Vourc'h P. A role for SUMOylation in the Formation and Cellular Localization of TDP-43 Aggregates in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2019; 57:1361-1373. [PMID: 31728929 DOI: 10.1007/s12035-019-01810-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
In amyotrophic lateral sclerosis, motor neurons undergoing degeneration are characterized by the presence of cytoplasmic aggregates containing TDP-43 protein. SUMOylation, a posttranslational modification of proteins, has been previously implicated in the formation of aggregates positives for SOD1, another protein enriched in a subset of ALS patients. We show in this study that TDP-43 is also a target of SUMOylation. The inhibition of the first step of the SUMOylation process by anacardic acid significantly reduces the presence of TDP-43 aggregates and improves neuritogenesis and cell viability in vitro. Interestingly, the mutation of the unique SUMOylation site on TDP-43, using site-directed mutagenesis, modifies the intracellular localization of TDP-43 aggregates. Instead of being cytoplasmic where they are associated with toxic effects, they are located inside the nucleus. This change of localization results in improvement in cell viability and in global cellular functions. Our results implicate the SUMOylation site of TDP-43 in the formation of cytoplasmic TDP-43 aggregates, a hallmark of ALS, and thus identifies this region as a new target for novel therapeutic strategies.
Collapse
Affiliation(s)
- Cindy Maurel
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | - Anna A Chami
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | | | - Hélène Blasco
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| | - Philippe Corcia
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Neurologie, CHRU de Tours, 37044, Tours, France
| | - Christian R Andres
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| | - Patrick Vourc'h
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| |
Collapse
|
11
|
Fredericksen F, Villalba M, Maldonado N, Payne G, Torres F, Olavarría VH. Sumoylation of nucleoprotein (NP) mediated by activation of NADPH oxidase complex is a consequence of oxidative cellular stress during infection by Infectious salmon anemia (ISA) virus necessary to viral progeny. Virology 2019; 531:269-279. [PMID: 30974383 DOI: 10.1016/j.virol.2019.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 01/22/2023]
Abstract
The study evaluated the effects of nucleoprotein viral and the infectious virus in SHK-1 cells. The results show a strong respiratory burst activation and the induction of p47phox, SOD, GLURED, and apoptotic genes. Additionally, the cells alter the profile of SUMOylated proteins by the effect of transfection and infection experiments. In silico analyses show a set of structural motifs in NP susceptible of post-translational modification by the SUMO protein. Interestingly, the inhibition of the NADPH oxidase complex blocked the production of reactive oxygen species and the high level of cellular ROS due to the nucleoprotein and the ISAv. At the same time, the blocking of the p38MAPK signaling pathway and the use of Aristotelia chilensis, decreased viral progeny production. These results suggest that the NP triggers a strong production of ROS and modifying the post-translational profile mediated by SUMO-2/3, a phenomenon that favors the production of new virions.
Collapse
Affiliation(s)
- Fernanda Fredericksen
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Melina Villalba
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Nicolas Maldonado
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Gardenia Payne
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Francisco Torres
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Víctor H Olavarría
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile.
| |
Collapse
|
12
|
Free d-aspartate triggers NMDA receptor-dependent cell death in primary cortical neurons and perturbs JNK activation, Tau phosphorylation, and protein SUMOylation in the cerebral cortex of mice lacking d-aspartate oxidase activity. Exp Neurol 2019; 317:51-65. [PMID: 30822420 DOI: 10.1016/j.expneurol.2019.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/19/2019] [Accepted: 02/24/2019] [Indexed: 11/23/2022]
Abstract
In mammals, free d-aspartate (D-Asp) is abundant in the embryonic brain, while levels remain very low during adulthood as a result of the postnatal expression and activity of the catabolizing enzyme d-aspartate oxidase (DDO). Previous studies have shown that long-lasting exposure to nonphysiological, higher D-Asp concentrations in Ddo knockout (Ddo-/-) mice elicits a precocious decay of synaptic plasticity and cognitive functions, along with a dramatic age-dependent expression of active caspase 3, associated with increased cell death in different brain regions, including hippocampus, prefrontal cortex, and substantia nigra pars compacta. Here, we investigate the yet unclear molecular and cellular events associated with the exposure of abnormally high D-Asp concentrations in cortical primary neurons and in the brain of Ddo-/- mice. For the first time, our in vitro findings document that D-Asp induces in a time-, dose-, and NMDA receptor-dependent manner alterations in JNK and Tau phosphorylation levels, associated with pronounced cell death in primary cortical neurons. Moreover, observations obtained in Ddo-/- animals confirmed that high in vivo levels of D-Asp altered cortical JNK signaling, Tau phosphorylation and enhanced protein SUMOylation, indicating a robust indirect role of DDO activity in regulating these biochemical NMDA receptor-related processes. Finally, no gross modifications in D-Asp concentrations and DDO mRNA expression were detected in the cortex of patients with Alzheimer's disease when compared to age-matched healthy controls.
Collapse
|
13
|
Sharma S, Young RJ, Chen J, Chen X, Oh EC, Schiller MR. Minimotifs dysfunction is pervasive in neurodegenerative disorders. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:414-432. [PMID: 30225339 PMCID: PMC6139474 DOI: 10.1016/j.trci.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Minimotifs are modular contiguous peptide sequences in proteins that are important for posttranslational modifications, binding to other molecules, and trafficking to specific subcellular compartments. Some molecular functions of proteins in cellular pathways can be predicted from minimotif consensus sequences identified through experimentation. While a role for minimotifs in regulating signal transduction and gene regulation during disease pathogenesis (such as infectious diseases and cancer) is established, the therapeutic use of minimotif mimetic drugs is limited. In this review, we discuss a general theme identifying a pervasive role of minimotifs in the pathomechanism of neurodegenerative diseases. Beyond their longstanding history in the genetics of familial neurodegeneration, minimotifs are also major players in neurotoxic protein aggregation, aberrant protein trafficking, and epigenetic regulation. Generalizing the importance of minimotifs in neurodegenerative diseases offers a new perspective for the future study of neurodegenerative mechanisms and the investigation of new therapeutics.
Collapse
Affiliation(s)
- Surbhi Sharma
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Richard J. Young
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- Department of Psychology, Las Vegas, NV, USA
| | - Edwin C. Oh
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| |
Collapse
|
14
|
D'Ambrosi N, Cozzolino M, Carrì MT. Neuroinflammation in Amyotrophic Lateral Sclerosis: Role of Redox (dys)Regulation. Antioxid Redox Signal 2018; 29:15-36. [PMID: 28895473 DOI: 10.1089/ars.2017.7271] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Amyotrophic lateral sclerosis (ALS) is due to degeneration of upper and lower motor neurons in the anterior horn of the spinal cord and in the motor cortex. Mechanisms leading to motor neuron death are complex and currently the disease is untreatable. Recent Advances: Work in genetic models of ALS indicates that an imbalance in the cross talk that physiologically exists between motor neurons and the surrounding cells is eventually detrimental to motor neurons. In particular, the cascade of events collectively known as neuroinflammation and mainly characterized by a reactive phenotype of astrocytes and microglia, moderate infiltration of peripheral immune cells, and elevated levels of inflammatory mediators has been consistently observed in motor regions of the central nervous system (CNS) in sporadic and familial ALS, constituting a hallmark of the disease. Resident glial cells and infiltrated immune cells are considered among the major producers of reactive species of oxygen and nitrogen in pathological conditions of the CNS, including motor neuron diseases. CRITICAL ISSUES The timing and exact role of oxidative stress-mediated neuroinflammation and damage to motor neurons in ALS are still not fully elucidated. FUTURE DIRECTIONS It is clear that a major challenge in the next future will be to envisage effective strategies to modulate the neuroinflammatory response in the symptomatic stage of disease, to prevent progression of neurodegeneration through the propagation of oxidative damage. Antioxid. Redox Signal. 29, 15-36.
Collapse
Affiliation(s)
- Nadia D'Ambrosi
- 1 Department of Biology, University of Rome Tor Vergata , Rome, Italy
| | - Mauro Cozzolino
- 2 Institute of Translational Pharmacology , CNR, Rome, Italy
| | - Maria Teresa Carrì
- 1 Department of Biology, University of Rome Tor Vergata , Rome, Italy .,3 Fondazione Santa Lucia , IRCCS, Rome, Italy
| |
Collapse
|
15
|
Maurel C, Dangoumau A, Marouillat S, Brulard C, Chami A, Hergesheimer R, Corcia P, Blasco H, Andres CR, Vourc'h P. Causative Genes in Amyotrophic Lateral Sclerosis and Protein Degradation Pathways: a Link to Neurodegeneration. Mol Neurobiol 2018; 55:6480-6499. [PMID: 29322304 DOI: 10.1007/s12035-017-0856-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease caused by the degeneration of motor neurons (MNs) leading to progressive muscle weakness and atrophy. Several molecular pathways have been implicated, such as glutamate-mediated excitotoxicity, defects in cytoskeletal dynamics and axonal transport, disruption of RNA metabolism, and impairments in proteostasis. ALS is associated with protein accumulation in the cytoplasm of cells undergoing neurodegeneration, which is a hallmark of the disease. In this review, we focus on mechanisms of proteostasis, particularly protein degradation, and discuss how they are related to the genetics of ALS. Indeed, the genetic bases of the disease with the implication of more than 30 genes associated with familial ALS to date, together with the important increase in understanding of endoplasmic reticulum (ER) stress, proteasomal degradation, and autophagy, allow researchers to better understand the mechanisms underlying the selective death of motor neurons in ALS. It is clear that defects in proteostasis are involved in this type of cellular degeneration, but whether or not these mechanisms are primary causes or merely consequential remains to be clearly demonstrated. Novel cellular and animal models allowing chronic expression of mutant proteins, for example, are required. Further studies linking genetic discoveries in ALS to mechanisms of protein clearance will certainly be crucial in order to accelerate translational and clinical research towards new therapeutic targets and strategies.
Collapse
Affiliation(s)
- C Maurel
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - A Dangoumau
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - S Marouillat
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - C Brulard
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - A Chami
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - R Hergesheimer
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - P Corcia
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
- Service de Neurologie, CHRU de Tours, 37044, Tours, France
| | - H Blasco
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| | - C R Andres
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| | - P Vourc'h
- UMR INSERM U1253, Université de Tours, 37032, Tours, France.
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France.
| |
Collapse
|
16
|
Lapucci A, Cavone L, Buonvicino D, Felici R, Gerace E, Zwergel C, Valente S, Mai A, Chiarugi A. Effect of Class II HDAC inhibition on glutamate transporter expression and survival in SOD1-ALS mice. Neurosci Lett 2017; 656:120-125. [PMID: 28732762 DOI: 10.1016/j.neulet.2017.07.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
Abstract
Transcriptional deregulation emerges as a key pathogenetic mechanism in ALS pathogenesis, and non-class-specific histone deacetylase (HDACs) inhibitors proved of therapeutic efficacy in preclinical models of ALS. When tested in patients, however, these drugs failed, probably because of a lack of selectivity toward pathogenetic HDACs. Here, we studied the effects of MC1568, an inhibitor of Class-II HDACs which have been reported to contribute to ALS pathogenesis. We focused on transcriptional regulation of glutamate transporter EAAT2, whose reduced expression may contribute to motor neuron degeneration in ALS. We report that MC1568 highly increased EAAT2 transcripts in primary cultures of mouse glia, but these increases did not correlate with increased glutamate uptake capacity. Accordingly, we found that MC1568 augmented protein expression of EAAT2 together with its sumoylation, a post-translational modification typically altering protein function and localization. When tested in SOD1G93A mice, however, MC1568 fully restored the reduced spinal cord expression of EAAT2 and glutamate uptake up to control levels. A prolonged treatment with MC1568 (from onset to end stage) was unable to prolong survival of mice. Data reveal a key role of Class-II HDACs in expression and function of glutamate transporter, further corroborating preclinical and clinical evidence that the sole restoration of glutamate uptake is not of therapeutic relevance to ALS therapy.
Collapse
Affiliation(s)
- Andrea Lapucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Leonardo Cavone
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy.
| | - Roberta Felici
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Elisabetta Gerace
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Italy
| | - Antonello Mai
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| |
Collapse
|
17
|
Bozzo F, Mirra A, Carrì M. Oxidative stress and mitochondrial damage in the pathogenesis of ALS: New perspectives. Neurosci Lett 2017; 636:3-8. [DOI: 10.1016/j.neulet.2016.04.065] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/05/2016] [Accepted: 04/29/2016] [Indexed: 02/07/2023]
|
18
|
Dangoumau A, Marouillat S, Burlaud Gaillard J, Uzbekov R, Veyrat-Durebex C, Blasco H, Arnoult C, Corcia P, Andres CR, Vourc'h P. Inhibition of Pathogenic Mutant SOD1 Aggregation in Cultured Motor Neuronal Cells by Prevention of Its SUMOylation on Lysine 75. NEURODEGENER DIS 2015; 16:161-71. [PMID: 26605782 DOI: 10.1159/000439254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/07/2015] [Indexed: 11/19/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective death of motor neurons. Mutations in the SOD1 gene encoding the superoxide dismutase 1 are present in 15% of familial ALS cases and in 2% of sporadic cases. These mutations are associated with the formation of SOD1-positive aggregates. The mechanisms of aggregation remain unknown, but posttranslational modifications of SOD1 may be involved. Here, we report that NSC-34 motor neuronal cells expressing mutant SOD1 contained aggregates positive for small ubiquitin modifier-1 (SUMO-1), and in parallel a reduced level of free SUMO-1. CLEM (correlative light and electron microscopy) analysis showed nonorganized cytosolic aggregates for all mutations tested (SOD1A4V, SOD1V31A, and SOD1G93C). We next show that preventing the SUMOylation of mutant SOD1 by the substitution of lysine 75, the SUMOylation site of SOD1, significantly reduces the number of motor neuronal cells with aggregates. These results support the need for further research on the SUMOylation pathways, which may be a potential therapeutic target in ALS.
Collapse
Affiliation(s)
- Audrey Dangoumau
- UMR INSERM U930, Universitx00E9; Franx00E7;ois-Rabelais, Tours, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yavuz AS, Sezerman OU. Predicting sumoylation sites using support vector machines based on various sequence features, conformational flexibility and disorder. BMC Genomics 2014; 15 Suppl 9:S18. [PMID: 25521314 PMCID: PMC4290605 DOI: 10.1186/1471-2164-15-s9-s18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sumoylation, which is a reversible and dynamic post-translational modification, is one of the vital processes in a cell. Before a protein matures to perform its function, sumoylation may alter its localization, interactions, and possibly structural conformation. Abberations in protein sumoylation has been linked with a variety of disorders and developmental anomalies. Experimental approaches to identification of sumoylation sites may not be effective due to the dynamic nature of sumoylation, laborsome experiments and their cost. Therefore, computational approaches may guide experimental identification of sumoylation sites and provide insights for further understanding sumoylation mechanism. RESULTS In this paper, the effectiveness of using various sequence properties in predicting sumoylation sites was investigated with statistical analyses and machine learning approach employing support vector machines. These sequence properties were derived from windows of size 7 including position-specific amino acid composition, hydrophobicity, estimated sub-window volumes, predicted disorder, and conformational flexibility. 5-fold cross-validation results on experimentally identified sumoylation sites revealed that our method successfully predicts sumoylation sites with a Matthew's correlation coefficient, sensitivity, specificity, and accuracy equal to 0.66, 73%, 98%, and 97%, respectively. Additionally, we have showed that our method compares favorably to the existing prediction methods and basic regular expressions scanner. CONCLUSIONS By using support vector machines, a new, robust method for sumoylation site prediction was introduced. Besides, the possible effects of predicted conformational flexibility and disorder on sumoylation site recognition were explored computationally for the first time to our knowledge as an additional parameter that could aid in sumoylation site prediction.
Collapse
|
20
|
Genetic dys-regulation of astrocytic glutamate transporter EAAT2 and its implications in neurological disorders and manganese toxicity. Neurochem Res 2014; 40:380-8. [PMID: 25064045 DOI: 10.1007/s11064-014-1391-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/09/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022]
Abstract
Astrocytic glutamate transporters, the excitatory amino acid transporter (EAAT) 2 and EAAT1 (glutamate transporter 1 and glutamate aspartate transporter in rodents, respectively), are the main transporters for maintaining optimal glutamate levels in the synaptic clefts by taking up more than 90% of glutamate from extracellular space thus preventing excitotoxic neuronal death. Reduced expression and function of these transporters, especially EAAT2, has been reported in numerous neurological disorders, including amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, schizophrenia and epilepsy. The mechanism of down-regulation of EAAT2 in these diseases has yet to be fully established. Genetic as well as transcriptional dys-regulation of these transporters by various modes, such as single nucleotide polymorphisms and epigenetics, resulting in impairment of their functions, might play an important role in the etiology of neurological diseases. Consequently, there has been an extensive effort to identify molecular targets for enhancement of EAAT2 expression as a potential therapeutic approach. Several pharmacological agents increase expression of EAAT2 via nuclear factor κB and cAMP response element binding protein at the transcriptional level. However, the negative regulatory mechanisms of EAAT2 have yet to be identified. Recent studies, including those from our laboratory, suggest that the transcriptional factor yin yang 1 plays a critical role in the repressive effects of various neurotoxins, such as manganese (Mn), on EAAT2 expression. In this review, we will focus on transcriptional epigenetics and translational regulation of EAAT2.
Collapse
|
21
|
de Oliveira GP, Alves CJ, Chadi G. Early gene expression changes in spinal cord from SOD1(G93A) Amyotrophic Lateral Sclerosis animal model. Front Cell Neurosci 2013; 7:216. [PMID: 24302897 PMCID: PMC3831149 DOI: 10.3389/fncel.2013.00216] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/29/2013] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is an adult-onset and fast progression neurodegenerative disease that leads to the loss of motor neurons. Mechanisms of selective motor neuron loss in ALS are unknown. The early events occurring in the spinal cord that may contribute to motor neuron death are not described, neither astrocytes participation in the pre-symptomatic phases of the disease. In order to identify ALS early events, we performed a microarray analysis employing a whole mouse genome platform to evaluate the gene expression pattern of lumbar spinal cords of transgenic SOD1G93A mice and their littermate controls at pre-symptomatic ages of 40 and 80 days. Differentially expressed genes were identified by means of the Bioconductor packages Agi4×44Preprocess and limma. FunNet web based tool was used for analysis of over-represented pathways. Furthermore, immunolabeled astrocytes from 40 and 80 days old mice were submitted to laser microdissection and RNA was extracted for evaluation of a selected gene by qPCR. Statistical analysis has pointed to 492 differentially expressed genes (155 up and 337 down regulated) in 40 days and 1105 (433 up and 672 down) in 80 days old ALS mice. KEGG analysis demonstrated the over-represented pathways tight junction, antigen processing and presentation, oxidative phosphorylation, endocytosis, chemokine signaling pathway, ubiquitin mediated proteolysis and glutamatergic synapse at both pre-symptomatic ages. Ube2i gene expression was evaluated in astrocytes from both transgenic ages, being up regulated in 40 and 80 days astrocytes enriched samples. Our data points to important early molecular events occurring in pre-symptomatic phases of ALS in mouse model. Early SUMOylation process linked to astrocytes might account to non-autonomous cell toxicity in ALS. Further studies on the signaling pathways presented here may provide new insights to better understand the events triggering motor neuron death in this devastating disorder.
Collapse
Affiliation(s)
- Gabriela P de Oliveira
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine São Paulo, Brazil
| | | | | |
Collapse
|
22
|
Feligioni M, Nisticò R. SUMO: a (oxidative) stressed protein. Neuromolecular Med 2013; 15:707-19. [PMID: 24052421 DOI: 10.1007/s12017-013-8266-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/10/2013] [Indexed: 02/07/2023]
Abstract
Redox species are produced during the physiological cellular metabolism of a normal tissue. In turn, their presence is also attributed to pathological conditions including neurodegenerative diseases. Many are the molecular changes that occur during the unbalance of the redox homeostasis. Interestingly, posttranslational protein modifications (PTMs) play a remarkable role. In fact, several target proteins are modified in their activation, localization, aggregation, and expression after the cellular stress. Among PTMs, protein SUMOylation represents a very important molecular modification pathway during "oxidative stress". It has been reported that this ubiquitin-like modification is a fine sensor for redox species. Indeed, SUMOylation pathway efficiency is affected by the exposure to oxidative species in a different manner depending on the concentration and time of application. Thus, we here report updated evidence that states the role of SUMOylation in several pathological conditions, and we also outline the key involvement of c-Jun N-terminal kinase and small ubiquitin modifier pathway cross talk.
Collapse
Affiliation(s)
- Marco Feligioni
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI "Rita Levi-Montalcini" Foundation, Via del Fosso di Fiorano 64/65, 00143, Rome, Italy,
| | | |
Collapse
|
23
|
Novel SOD1 mutation p.V31A identified with a slowly progressive form of amyotrophic lateral sclerosis. Neurobiol Aging 2013; 35:266.e1-4. [PMID: 23954173 DOI: 10.1016/j.neurobiolaging.2013.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/02/2013] [Accepted: 07/15/2013] [Indexed: 11/21/2022]
Abstract
The SOD1 gene encoding the superoxide dismutase 1 (SOD1) protein is mutated in approximately 15% of familial amyotrophic lateral sclerosis (ALS) and 3% of sporadic ALS. We identified a novel mutation in SOD1 in a man who presented at age 49 with lower limb stiffness, and at age 53, a spastic paraparesia with distal muscular atrophy in the lower limbs and fasciculations in the quadriceps. A diagnosis of ALS was established. Eleven years after disease onset his condition continues gradually and slowly to deteriorate. The heterozygous mutation observed in exon 2 resulted in a valine to alanine substitution at position 31 in the β-barrel domain of the SOD1 protein. Functional analysis in NSC34 cells showed that the overexpression of the mutant form of SOD1(V31A) induced aggregates and decreased cell viability. This mutation is located outside of the regions carrying most of the ALS-related mutations (i.e., the catalytic center, the region of dimerization, and the loops between the β-strands of the β-barrel). In conclusion, we identified a novel SOD1 mutation in a patient with slow disease progression and supported the idea that different SOD1 mutations can lead to distinct ALS phenotypes.
Collapse
|