1
|
Shishido Y, Yoshida T, Oshida K, Uchida M. Plasma and urinary CP I and CP III concentrations in chimeric mice with human hepatocytes after rifampicin administration. Pharmacol Res Perspect 2024; 12:e70017. [PMID: 39312270 PMCID: PMC11418634 DOI: 10.1002/prp2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/16/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
The interest in transporter-mediated drug interactions has been increasing in the field of drug development. In this study, we measured the plasma and urinary concentrations of coproporphyrin (CP) I and CP III as endogenous substrates for organic anion-transporting polypeptide (OATP) using chimeric mice with human hepatocytes (PXB mice) and examined the influence of an OATP inhibitor, rifampicin (RIF). CP I and CP III were actively taken up intracellularly, and RIF inhibited the uptake in a concentration-dependent manner for both CP I and CP III in human hepatocytes (PXB-cells). Single doses of RIF at 10 and 30 mg/kg were orally or intravenously administered to PXB mice and wild-type ICR mice. Plasma concentrations (AUC0-8h) of CP I increased in both mice. However, a marked increase in CP III was only observed in ICR mice, after intravenous administration of RIF at 30 mg/kg. The IC50 values of RIF for intracellular CP I/III uptake and the unbound plasma concentrations of RIF suggested that the increase in plasma CP I is associated with the exposure of RIF to OATPs. The 24-h cumulative urinary excretions of CP I and CP III increased in both mice, but more markedly in PXB mice. Thus, RIF increased the plasma and urinary concentrations of CP I and CP III in the mice, as reported in humans, and CP I may be a more sensitive biomarker of OATP-mediated drug interactions in PXB mice.
Collapse
Affiliation(s)
- Yurina Shishido
- Pharmaceutical Research LaboratoriesToray Industries, Inc.KamakuraKanagawaJapan
| | - Tomohiro Yoshida
- Pharmaceutical Research LaboratoriesToray Industries, Inc.KamakuraKanagawaJapan
| | - Keiyu Oshida
- Pharmaceutical Research LaboratoriesToray Industries, Inc.KamakuraKanagawaJapan
| | - Masashi Uchida
- Pharmaceutical Research LaboratoriesToray Industries, Inc.KamakuraKanagawaJapan
| |
Collapse
|
2
|
Kamimura H, Uehara S, Yoneda N, Suemizu H. Empirical scaling factor for predicting human pharmacokinetic profiles of disproportionate metabolites using the Css-MRTpo method and chimeric mice with humanised livers. Xenobiotica 2023; 53:523-535. [PMID: 37938160 DOI: 10.1080/00498254.2023.2280785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023]
Abstract
Predicting plasma concentration-time profiles of disproportionate metabolites in humans is crucial for evaluating metabolites according to the Safety Testing guidelines. We evaluated Css-MRTpo, an empirical method, using chimeric mice with humanised livers capable of generating human-disproportionate metabolites. Azilsartan and AZ-M2 were administered to humanised chimeric mice, and pharmacokinetic parameters were obtained. Pharmacokinetic data for DS-1971a and DS-M1 in humanised chimeric mice were obtained from the literature. The human plasma concentration-time profiles of these compounds were simulated using the Css-MRTpo method. Azilsartan, DS-1971a, and PF-04937319 produced human disproportionate metabolites, AZ-M2, DS-M1, and PF-M1, respectively. The predicted human pharmacokinetic profiles of PF-04937319 and PF-M1 were obtained from a previous study, and their outcomes were re-evaluated. Our findings revealed that the plasma concentrations of the three metabolites were unexpectedly underpredicted, whereas the three unchanged drugs were reasonably predicted. Further, the introduction of the empirical scaling factor of 3, obtained from six model compounds, improved the predictability of metabolites, suggesting the potential usefulness of the Css-MRTpo method in combination with humanised chimeric mice for predicting the pharmacokinetic profiles of disproportionate metabolites at the early stage of new drug development.
Collapse
Affiliation(s)
- Hidetaka Kamimura
- Department of Applied Research for Laboratory Animals, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Shotaro Uehara
- Department of Applied Research for Laboratory Animals, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Nao Yoneda
- Department of Applied Research for Laboratory Animals, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Hiroshi Suemizu
- Department of Applied Research for Laboratory Animals, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| |
Collapse
|
3
|
Asano D, Nakamura K, Nishiya Y, Shiozawa H, Takakusa H, Shibayama T, Inoue SI, Shinozuka T, Hamada T, Yahara C, Watanabe N, Yoshinari K. Physiologically Based Pharmacokinetic Modeling for Quantitative Prediction of Exposure to a Human Disproportionate Metabolite of the Selective Na V1.7 Inhibitor DS-1971a, a Mixed Substrate of Cytochrome P450 and Aldehyde Oxidase, Using Chimeric Mice With Humanized Liver. Drug Metab Dispos 2023; 51:67-80. [PMID: 36273823 DOI: 10.1124/dmd.122.001000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
In a previous study on the human mass balance of DS-1971a, a selective NaV1.7 inhibitor, its CYP2C8-dependent metabolite M1 was identified as a human disproportionate metabolite. The present study assessed the usefulness of pharmacokinetic evaluation in chimeric mice grafted with human hepatocytes (PXB-mice) and physiologically based pharmacokinetic (PBPK) simulation of M1. After oral administration of radiolabeled DS-1971a, the most abundant metabolite in the plasma, urine, and feces of PXB-mice was M1, while those of control SCID mice were aldehyde oxidase-related metabolites including M4, suggesting a drastic difference in the metabolism between these mouse strains. From a qualitative perspective, the metabolite profile observed in PXB-mice was remarkably similar to that in humans, but the quantitative evaluation indicated that the area under the plasma concentration-time curve (AUC) ratio of M1 to DS-1971a (M1/P ratio) was approximately only half of that in humans. A PXB-mouse-derived PBPK model was then constructed to achieve a more accurate prediction, giving an M1/P ratio (1.3) closer to that in humans (1.6) than the observed value in PXB-mice (0.69). In addition, simulated maximum plasma concentration and AUC values of M1 (3429 ng/ml and 17,116 ng·h/ml, respectively) were similar to those in humans (3180 ng/ml and 18,400 ng·h/ml, respectively). These results suggest that PBPK modeling incorporating pharmacokinetic parameters obtained with PXB-mice is useful for quantitatively predicting exposure to human disproportionate metabolites. SIGNIFICANCE STATEMENT: The quantitative prediction of human disproportionate metabolites remains challenging. This paper reports on a successful case study on the practical estimation of exposure (C max and AUC) to DS-1971a and its CYP2C8-dependent, human disproportionate metabolite M1, by PBPK simulation utilizing pharmacokinetic parameters obtained from PXB-mice and in vitro kinetics in human liver fractions. This work adds to the growing knowledge regarding metabolite exposure estimation by static and dynamic models.
Collapse
Affiliation(s)
- Daigo Asano
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
| | - Koichi Nakamura
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
| | - Yumi Nishiya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
| | - Hideyuki Shiozawa
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
| | - Hideo Takakusa
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
| | - Takahiro Shibayama
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
| | - Shin-Ichi Inoue
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
| | - Tsuyoshi Shinozuka
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
| | - Takakazu Hamada
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
| | - Chizuko Yahara
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
| | - Nobuaki Watanabe
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
| | - Kouichi Yoshinari
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (D.A., K.N., N.Y., H.S., H.T., T. Shibayama, S.-i.I., C.Y., N.W.), R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T. Shinozuka), Research Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.H.), Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.)
| |
Collapse
|
4
|
Ren J, Yu D, Wang J, Xu K, Xu Y, Sun R, An P, Li C, Feng G, Zhang Y, Dai X, Zhao H, Wang Z, Han Z, Zhu H, Ding Y, You X, Liu X, Wu M, Luo L, Li Z, Yang YG, Hu Z, Wei HJ, Ge L, Hai T, Li W. Generation of immunodeficient pig with hereditary tyrosinemia type 1 and their preliminary application for humanized liver. Cell Biosci 2022; 12:26. [PMID: 35255981 PMCID: PMC8900390 DOI: 10.1186/s13578-022-00760-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/08/2022] [Indexed: 01/17/2023] Open
Abstract
Background Mice with humanized livers are important models to study drug toxicology testing, development of hepatitis virus treatments, and hepatocyte transplantation therapy. However, the huge difference between mouse and human in size and anatomy limited the application of humanized mice in investigating human diseases. Therefore, it is urgent to construct humanized livers in pigs to precisely investigate hepatocyte regeneration and human hepatocyte therapy. CRISPR/Cas9 system and somatic cell cloning technology were used to generate two pig models with FAH deficiency and exhibiting severe immunodeficiency (FAH/RAG1 and FAH/RAG1/IL2RG deficiency). Human primary hepatocytes were then successfully transplanted into the FG pig model and constructed two pigs with human liver. Results The constructed FAH/RAG1/IL2RG triple-knockout pig models were characterized by chronic liver injury and severe immunodeficiency. Importantly, the FG pigs transplanted with primary human hepatocytes produced human albumin in a time dependent manner as early as 1 week after transplantation. Furthermore, the colonization of human hepatocytes was confirmed by immunochemistry staining. Conclusions We successfully generated pig models with severe immunodeficiency that could construct human liver tissues. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00760-3.
Collapse
Affiliation(s)
- Jilong Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Dawei Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yanan Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renren Sun
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China
| | - Peipei An
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China
| | - Chongyang Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China
| | - Hongye Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhengzhu Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China
| | - Zhiqiang Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Haibo Zhu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China.,Center of Reproductive Medicine and Center of Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130021, China
| | - Yuchun Ding
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China.,Technical Engineering Center for the Development and Utilization of Medical Animal Resources, Chongqing, 402460, China
| | - Xiaoyan You
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China.,Technical Engineering Center for the Development and Utilization of Medical Animal Resources, Chongqing, 402460, China
| | - Xueqin Liu
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China.,Technical Engineering Center for the Development and Utilization of Medical Animal Resources, Chongqing, 402460, China
| | - Meng Wu
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China.,Technical Engineering Center for the Development and Utilization of Medical Animal Resources, Chongqing, 402460, China
| | - Lin Luo
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China.,Technical Engineering Center for the Development and Utilization of Medical Animal Resources, Chongqing, 402460, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China.
| | - Hong-Jiang Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China. .,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China. .,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China. .,Technical Engineering Center for the Development and Utilization of Medical Animal Resources, Chongqing, 402460, China.
| | - Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Uehara S, Yoneda N, Higuchi Y, Yamazaki H, Suemizu H. Oxidative metabolism and pharmacokinetics of the EGFR inhibitor BIBX1382 in chimeric NOG-TKm30 mice transplanted with human hepatocytes. Drug Metab Pharmacokinet 2021; 41:100419. [PMID: 34624627 DOI: 10.1016/j.dmpk.2021.100419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022]
Abstract
The epidermal growth factor receptor inhibitor BIBX1382 has failed in drug development because of poor oral exposure and low bioavailability associated with its extensive metabolism by aldehyde oxidase (AOX) in humans. In this study, we investigated the metabolic profiles and pharmacokinetics of BIBX1382 in chimeric NOG-TKm30 mice with humanized liver (humanized liver mice). After intravenous and oral BIBX1382 administration, increased plasma clearance and decreased oral exposure together with high production of the predominant oxidative metabolite (M1, BIBU1476) and secondary oxidized metabolite (M2) were observed in humanized liver mice. Extensive oxidation rates of BIBX1382 were observed in hepatocytes from humanized liver mice and were suppressed by the typical human AOX1 inhibitors raloxifene and hydralazine. Liver cytosolic fractions from humans, humanized liver mice, cynomolgus monkeys, minipigs, and guinea pigs, but not fractions from dogs, rabbits, rats, and mice, displayed high BIBX1382 clearance and resulted in oxidative metabolite production. These results indicate that humanized liver mice have human-type AOX activity based on the transplanted human liver AOX1 function. Humanized liver mice can be considered an important animal model for understanding the metabolism and pharmacokinetics of AOX drug substrates.
Collapse
Affiliation(s)
- Shotaro Uehara
- Central Institute for Experimental Animals, Kawasaki, Japan.
| | - Nao Yoneda
- Central Institute for Experimental Animals, Kawasaki, Japan
| | | | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | | |
Collapse
|
6
|
Affiliation(s)
- Christine Beedham
- Honorary Senior Lecturer, Faculty of Life Sciences, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
7
|
Bissig KD, Han W, Barzi M, Kovalchuk N, Ding L, Fan X, Pankowicz FP, Zhang QY, Ding X. P450-Humanized and Human Liver Chimeric Mouse Models for Studying Xenobiotic Metabolism and Toxicity. Drug Metab Dispos 2018; 46:1734-1744. [PMID: 30093418 PMCID: PMC6199624 DOI: 10.1124/dmd.118.083303] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023] Open
Abstract
Preclinical evaluation of drug candidates in experimental animal models is an essential step in drug development. Humanized mouse models have emerged as a promising alternative to traditional animal models. The purpose of this mini-review is to provide a brief survey of currently available mouse models for studying human xenobiotic metabolism. Here, we describe both genetic humanization and human liver chimeric mouse models, focusing on the advantages and limitations while outlining their key features and applications. Although this field of biomedical science is relatively young, these humanized mouse models have the potential to transform preclinical drug testing and eventually lead to a more cost-effective and rapid development of new therapies.
Collapse
Affiliation(s)
- Karl-Dimiter Bissig
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Weiguo Han
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Mercedes Barzi
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Nataliia Kovalchuk
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Liang Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xiaoyu Fan
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Francis P Pankowicz
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Qing-Yu Zhang
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xinxin Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| |
Collapse
|
8
|
Sanoh S, Ohta S. [Contribution of chimeric mice with a humanized liver to the evaluation of pharmacology, toxicity, and pharmacokinetics in drug discovery and development]. Nihon Yakurigaku Zasshi 2018; 151:213-220. [PMID: 29760366 DOI: 10.1254/fpj.151.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To develop new drugs with high efficacy and safety, it is important to predict the pharmacological, toxicological, and pharmacokinetic profiles of drug candidates in humans. Chimeric mice with a humanized liver are mice in which human hepatocytes have been transplanted, such that mouse liver cells are replaced with human hepatocytes; these mice have been used as prediction models. Studies performed thus far indicate that chimeric mice with a humanized liver can be used for the prediction of human-specific metabolite formation and plasma concentration-time curves for several drugs. Furthermore, studies advocate the utility of chimeric mice with a humanized liver for modelling drug-induced hepatotoxicity and disease such as hepatitis virus infection in safety and pharmacological evaluations respectively. Taken together, these findings indicate that chimeric mice with a humanized liver can be used to evaluate the relationship between pharmacokinetics, toxicity, and efficacy; the contribution by active metabolites may also be assessed. In recent years, new and improved animal models have been developed to overcome the disadvantages of chimeric mice with a humanized liver. It is expected that their usefulness for optimization of drug candidates and translational research in drug discovery and development will further increase.
Collapse
Affiliation(s)
- Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
9
|
A novel humanized mouse lacking murine P450 oxidoreductase for studying human drug metabolism. Nat Commun 2017; 8:39. [PMID: 28659616 PMCID: PMC5489481 DOI: 10.1038/s41467-017-00049-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/02/2017] [Indexed: 12/30/2022] Open
Abstract
Only one out of 10 drugs in development passes clinical trials. Many fail because experimental animal models poorly predict human xenobiotic metabolism. Human liver chimeric mice are a step forward in this regard, as the human hepatocytes in chimeric livers generate human metabolites, but the remaining murine hepatocytes contain an expanded set of P450 cytochromes that form the major class of drug-metabolizing enzymes. We therefore generated a conditional knock-out of the NADPH-P450 oxidoreductase (Por) gene combined with Il2rg− /−/Rag2− /−/Fah− /− (PIRF) mice. Here we show that homozygous PIRF mouse livers are readily repopulated with human hepatocytes, and when the murine Por gene is deleted (<5%), they predominantly use human cytochrome metabolism. When given the anticancer drug gefitinib or the retroviral drug atazanavir, the Por-deleted humanized PIRF mice develop higher levels of the major human metabolites than current models. Humanized, murine Por-deficient PIRF mice can thus predict human drug metabolism and should be useful for preclinical drug development. Human liver chimeric mice are increasingly used for drug testing in preclinical development, but express residual murine p450 cytochromes. Here the authors generate mice lacking the Por gene in the liver, and show that human cytochrome metabolism is used following repopulation with human hepatocytes.
Collapse
|
10
|
Wilkinson DJ, Southall RL, Li M, Wright LM, Corfield LJ, Heeley TA, Bratby B, Mannu R, Johnson SL, Shaw V, Friett HL, Blakeburn LA, Kendrick JS, Otteneder MB. Minipig and Human Metabolism of Aldehyde Oxidase Substrates: In Vitro–In Vivo Comparisons. AAPS JOURNAL 2017; 19:1163-1174. [DOI: 10.1208/s12248-017-0087-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
|
11
|
Scheer N, Wilson ID. A comparison between genetically humanized and chimeric liver humanized mouse models for studies in drug metabolism and toxicity. Drug Discov Today 2015; 21:250-63. [PMID: 26360054 DOI: 10.1016/j.drudis.2015.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 12/12/2022]
Abstract
Mice that have been genetically humanized for proteins involved in drug metabolism and toxicity and mice engrafted with human hepatocytes are emerging and promising in vivo models for an improved prediction of the pharmacokinetic, drug-drug interaction and safety characteristics of compounds in humans. The specific advantages and disadvantages of these models should be carefully considered when using them for studies in drug discovery and development. Here, an overview on the corresponding genetically humanized and chimeric liver humanized mouse models described to date is provided and illustrated with examples of their utility in drug metabolism and toxicity studies. We compare the strength and weaknesses of the two different approaches, give guidance for the selection of the appropriate model for various applications and discuss future trends and perspectives.
Collapse
Affiliation(s)
| | - Ian D Wilson
- Imperial College London, South Kensington, London SW7 2AZ, UK.
| |
Collapse
|
12
|
Sanoh S, Tayama Y, Sugihara K, Kitamura S, Ohta S. Significance of aldehyde oxidase during drug development: Effects on drug metabolism, pharmacokinetics, toxicity, and efficacy. Drug Metab Pharmacokinet 2015; 30:52-63. [DOI: 10.1016/j.dmpk.2014.10.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 12/28/2022]
|
13
|
Jaiswal S, Sharma A, Shukla M, Vaghasiya K, Rangaraj N, Lal J. Novel pre-clinical methodologies for pharmacokinetic drug-drug interaction studies: spotlight on "humanized" animal models. Drug Metab Rev 2014; 46:475-93. [PMID: 25270219 DOI: 10.3109/03602532.2014.967866] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Poly-therapy is common due to co-occurrence of several ailments in patients, leading to the elevated possibility of drug-drug interactions (DDI). Pharmacokinetic DDI often accounts for severe adverse drug reactions in patients resulting in withdrawal of drug from the market. Hence, the prediction of DDI is necessary at pre-clinical stage of drug development. Several human tissue and cell line-based in vitro systems are routinely used for screening metabolic and transporter pathways of investigational drugs and for predicting their clinical DDI potentials. However, ample constraints are associated with the in vitro systems and sometimes in vitro-in vivo extrapolation (IVIVE) fail to assess the risk of DDI in clinic. In vitro-in vivo correlation model in animals combined with human in vitro studies may be helpful in better prediction of clinical outcome. Native animal models vary remarkably from humans in drug metabolizing enzymes and transporters, hence, the interpretation of results from animal DDI studies is difficult. With the advent of modern molecular biology and engineering tools, novel pre-clinical animal models, namely, knockout rat/mouse, transgenic rat/mouse with humanized drug metabolizing enzymes and/or transporters and chimeric rat/mouse with humanized liver are developed. These models nearly simulate human-like drug metabolism and help to validate the in vivo relevance of the in vitro human DDI data. This review briefly discusses the application of such novel pre-clinical models for screening various type of DDI along with their advantages and limitations.
Collapse
Affiliation(s)
- Swati Jaiswal
- Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute , Lucknow , India
| | | | | | | | | | | |
Collapse
|
14
|
Wilson EM, Bial J, Tarlow B, Bial G, Jensen B, Greiner DL, Brehm MA, Grompe M. Extensive double humanization of both liver and hematopoiesis in FRGN mice. Stem Cell Res 2014; 13:404-12. [PMID: 25310256 PMCID: PMC7275629 DOI: 10.1016/j.scr.2014.08.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/21/2014] [Accepted: 08/27/2014] [Indexed: 11/21/2022] Open
Abstract
Preclinical research in animals often fails to adequately predict the outcomes observed in human patients. Chimeric animals bearing individual human tissues have been developed to provide improved models of human-specific cellular processes. Mice transplanted with human hematopoietic stem cells can be used to study human immune responses, infections of blood cells and processes of hematopoiesis. Animals with humanized livers are useful for modeling hepatotropic infections as well as drug metabolism and hepatotoxicity. However, many pathophysiologic processes involve both the liver and the hematolymphoid system. Examples include hepatitis C/HIV co-infection, immune mediated liver diseases, liver injuries with inflammation such as steatohepatitis and alcoholic liver disease. We developed a robust protocol enabling the concurrent double-humanization of mice with mature hepatocytes and human blood. Immune-deficient, fumarylacetoacetate hydrolase (Fah−/−), Rag2−/− and Il2rg−/− deficient animals on the NOD-strain background (FRGN) were simultaneously co-transplanted with adult human hepatocytes and hematopoietic stem cells after busulfan and Ad:uPA pre-conditioning. Four months after transplantation the average human liver repopulation exceeded 80% and hematopoietic chimerism also was high (40–80% in bone marrow). Importantly, human macrophages (Kupffer cells) were present in the chimeric livers. Double-chimeric FRGN mice will serve as a new model for disease processes that involve interactions between hepatocytes and hematolymphoid cells.
Collapse
Affiliation(s)
| | - J Bial
- Yecuris Corp., Tigard, OR, USA
| | | | - G Bial
- Yecuris Corp., Tigard, OR, USA
| | | | - D L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - M A Brehm
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
15
|
Bateman TJ, Reddy VGB, Kakuni M, Morikawa Y, Kumar S. Application of chimeric mice with humanized liver for study of human-specific drug metabolism. Drug Metab Dispos 2014; 42:1055-65. [PMID: 24700822 DOI: 10.1124/dmd.114.056978] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Human-specific or disproportionately abundant human metabolites of drug candidates that are not adequately formed and qualified in preclinical safety assessment species pose an important drug development challenge. Furthermore, the overall metabolic profile of drug candidates in humans is an important determinant of their drug-drug interaction susceptibility. These risks can be effectively assessed and/or mitigated if human metabolic profile of the drug candidate could reliably be determined in early development. However, currently available in vitro human models (e.g., liver microsomes, hepatocytes) are often inadequate in this regard. Furthermore, the conduct of definitive radiolabeled human ADME studies is an expensive and time-consuming endeavor that is more suited for later in development when the risk of failure has been reduced. We evaluated a recently developed chimeric mouse model with humanized liver on uPA/SCID background for its ability to predict human disposition of four model drugs (lamotrigine, diclofenac, MRK-A, and propafenone) that are known to exhibit human-specific metabolism. The results from these studies demonstrate that chimeric mice were able to reproduce the human-specific metabolite profile for lamotrigine, diclofenac, and MRK-A. In the case of propafenone, however, the human-specific metabolism was not detected as a predominant pathway, and the metabolite profiles in native and humanized mice were similar; this was attributed to the presence of residual highly active propafenone-metabolizing mouse enzymes in chimeric mice. Overall, the data indicate that the chimeric mice with humanized liver have the potential to be a useful tool for the prediction of human-specific metabolism of xenobiotics and warrant further investigation.
Collapse
Affiliation(s)
- Thomas J Bateman
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Rahway, New Jersey (T.J.B, V.G.B.R., S.K.); and PhoenixBio Corporation Limited, Higashi-Hiroshima, Japan (M.K., Y.M.)
| | | | | | | | | |
Collapse
|
16
|
Grompe M, Strom S. Mice with human livers. Gastroenterology 2013; 145:1209-14. [PMID: 24042096 DOI: 10.1053/j.gastro.2013.09.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/04/2013] [Accepted: 09/04/2013] [Indexed: 12/28/2022]
Abstract
Animal models are used to study many aspects of human disease and to test therapeutic interventions. However, some very important features of human biology cannot be replicated in animals, even in nonhuman primates or transgenic rodents engineered with human genes. Most human microbial pathogens do not infect animals and the metabolism of many xenobiotics is different between human beings and animals. The advent of transgenic immune-deficient mice has made it possible to generate chimeric animals harboring human tissues and cells, including hepatocytes. The liver plays a central role in many human-specific biological processes and mice with humanized livers can be used to model human metabolism, liver injury, gene regulation, drug toxicity, and hepatotropic infections.
Collapse
Affiliation(s)
- Markus Grompe
- Oregon Stem Cell Center, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon.
| | | |
Collapse
|
17
|
Sanoh S, Ohta S. Chimeric mice transplanted with human hepatocytes as a model for prediction of human drug metabolism and pharmacokinetics. Biopharm Drug Dispos 2013; 35:71-86. [DOI: 10.1002/bdd.1864] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/09/2013] [Accepted: 09/21/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Seigo Sanoh
- Graduate School of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
| |
Collapse
|