1
|
Wang J, Wang H, Kang X, Wang X, Li X, Guo J, Jing X, Chu X, Han X. Integrated network pharmacology, molecular docking, and animal experiments to reveal the potential mechanism of hesperetin on COPD. Sci Rep 2025; 15:11024. [PMID: 40164657 PMCID: PMC11958725 DOI: 10.1038/s41598-025-95810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
Hesperetin (HE), a natural flavonoid exhibiting anti-inflammatory and antioxidant properties, holds significant potential in treating chronic obstructive pulmonary disease (COPD). Nonetheless, the precise mechanisms underlying its effects are yet to be fully elucidated. In this study, we aim to explore the role and potential mechanism of HE in treating COPD using network pharmacology, molecular docking and experimental validation. We screened for HE and COPD-related targets from public databases, and then imported potential targets into a STRING database to establish a protein-protein interaction network. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes enrichment analysis were performed to obtain key signaling pathways. We then predicted the binding interactions between HE and core targets using molecular docking. The animal model of COPD was established through lipopolysaccharide and cigarette smoke induction in mice to observe lung function, inflammatory factors, pathology, and the expression of related proteins. Network pharmacology findings unveiled that HE and COPD shared 105 common targets. MAPKs and NF-κB signaling pathways were selected for further validation. In animal experiment, HE enhanced lung function and histopathological morphology, while reducing inflammation levels. The results of Western blot tests indicated that HE treatment considerably inhibited the expression of MAPKs and NF-κB. HE effectively reduced lung inflammation and improved lung function in mice. This mechanism may be achieved by inhibition of MAPKs and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Jingxi Wang
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Industrial Technology Institute for Traditional Chinese Medicine Preparation, Shijiazhuang, China
| | - Hongyang Wang
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xin Kang
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaotian Wang
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xi Li
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jie Guo
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xuan Jing
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China.
- Hebei Industrial Technology Institute for Traditional Chinese Medicine Preparation, Shijiazhuang, China.
| | - Xi Chu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China.
| |
Collapse
|
2
|
Huang H, Wang J, Hussain SA, Gangireddygari VSR, Fan Y. Gossypin exert lipopolysaccharide induced lung inflammation via alteration of Nrf2/HO-1 and NF-κB signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37148149 DOI: 10.1002/tox.23806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
Acute Lung Injury (ALI) is a critical medical condition that induces the injury into the lung tissue, resulting in decreased the oxygen levels in the circulation and finally causes the respiratory failure. In this study, we try to made effort for scrutinized the preventive effect of gossypin against lipopolysaccharide (LPS) induced lung inflammation and explore the underlying mechanism. LPS (7.5 mg/kg) was used for induction the lung inflammation in the rats and rats were received the oral administration of gossypin (5, 10 and 15 mg/kg). The wet to dry weight lung ratio and lung index were estimated. The bronchoalveolar lavage fluid (BALF) were collected to determination the inflammatory cells, total protein, macrophages and neutrophils. ELISA kits were used for the estimation of antioxidant, inflammatory cytokines, inflammatory parameters, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) parameters. Finally, we used the lung tissue for scrutinize the alteration in the lung histopathology. Gossypin treatment significantly (p < .001) reduced the W/D ratio of lung tissue and lung index. Gossypin significantly (p < .001) decreased the total cells, neutrophils, macrophages and total protein in BALF. It is also altered the level of inflammatory cytokines, antioxidant and inflammatory parameters, respectively. Gossypin improved the level of Nrf2 and HO-1 at dose dependent manner. Gossypin treatment remarkably enhance the ALI severity via balancing the structural integrity of lung tissue, decrease the thickness of the alveolar wall, decline the pulmonary interstitial edema, and number of inflammatory cells in the lung tissue. Gossypin is a promising agent for the treatment of LPS induced lung inflammation via altering Nrf2/HO-1 and NF-κB.
Collapse
Affiliation(s)
- Hao Huang
- Department of Cardiothoracic, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Wang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Venkata Subba Reddy Gangireddygari
- Plant Virus Research, Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Yingying Fan
- Department of Anesthesiology, Honghui Hospital, Xi'an, China
| |
Collapse
|
3
|
Jia X, Huang J, Wu B, Yang M, Xu W. A Competitive Endogenous RNA Network Based on Differentially Expressed lncRNA in Lipopolysaccharide-Induced Acute Lung Injury in Mice. Front Genet 2021; 12:745715. [PMID: 34917127 PMCID: PMC8669720 DOI: 10.3389/fgene.2021.745715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
Non-coding RNAs have remarkable roles in acute lung injury (ALI) initiation. Nevertheless, the significance of long non-coding RNAs (lncRNAs) in ALI is still unknown. Herein, we purposed to identify potential key genes in ALI and create a competitive endogenous RNA (ceRNA) modulatory network to uncover possible molecular mechanisms that affect lung injury. We generated a lipopolysaccharide-triggered ALI mouse model, whose lung tissue was subjected to RNA sequencing, and then we conducted bioinformatics analysis to select genes showing differential expression (DE) and to build a lncRNA-miRNA (microRNA)- mRNA (messenger RNA) modulatory network. Besides, GO along with KEGG assessments were conducted to identify major biological processes and pathways, respectively, involved in ALI. Then, RT-qPCR assay was employed to verify levels of major RNAs. A protein-protein interaction (PPI) network was created using the Search Tool for the Retrieval of Interacting Genes (STRING) database, and the hub genes were obtained with the Molecular Complex Detection plugin. Finally, a key ceRNA subnetwork was built from major genes and their docking sites. Overall, a total of 8,610 lncRNAs were identified in the normal and LPS groups. Based on the 308 DE lncRNAs [p-value < 0.05, |log2 (fold change) | > 1] and 3,357 DE mRNAs [p-value < 0.05, |log2 (fold change) | > 1], lncRNA-miRNA and miRNA-mRNA pairs were predicted using miRanda. The lncRNA-miRNA-mRNA network was created from 175 lncRNAs, 22 miRNAs, and 209 mRNAs in ALI. The RT-qPCR data keep in step with the RNA sequencing data. GO along with KEGG analyses illustrated that DE mRNAs in this network were mainly bound up with the inflammatory response, developmental process, cell differentiation, cell proliferation, apoptosis, and the NF-kappa B, PI3K-Akt, HIF-1, MAPK, Jak-STAT, and Notch signaling pathways. A PPI network on the basis of the 209 genes was established, and three hub genes (Nkx2-1, Tbx2, and Atf5) were obtained from the network. Additionally, a lncRNA-miRNA-hub gene subnetwork was built from 15 lncRNAs, 3 miRNAs, and 3 mRNAs. Herein, novel ideas are presented to expand our knowledge on the regulation mechanisms of lncRNA-related ceRNAs in the pathogenesis of ALI.
Collapse
Affiliation(s)
- Xianxian Jia
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinhui Huang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bo Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Miao Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Peritore AF, D’Amico R, Siracusa R, Cordaro M, Fusco R, Gugliandolo E, Genovese T, Crupi R, Di Paola R, Cuzzocrea S, Impellizzeri D. Management of Acute Lung Injury: Palmitoylethanolamide as a New Approach. Int J Mol Sci 2021; 22:ijms22115533. [PMID: 34073872 PMCID: PMC8197255 DOI: 10.3390/ijms22115533] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common and devastating clinical disorders with high mortality and no specific therapy. Lipopolysaccharide (LPS) is usually used intratracheally to induce ALI in mice. The aim of this study was to examine the effects of an ultramicronized preparation of palmitoylethanolamide (um-PEA) in mice subjected to LPS-induced ALI. Histopathological analysis reveals that um-PEA reduced alteration in lung after LPS intratracheal administration. Besides, um-PEA decreased wet/dry weight ratio and myeloperoxidase, a marker of neutrophils infiltration, macrophages and total immune cells number and mast cells degranulation in lung. Moreover, um-PEA could also decrease cytokines release of interleukin (IL)-6, interleukin (IL)-1β, tumor necrosis factor (TNF)-α and interleukin (IL)-18. Furthermore, um-PEA significantly inhibited the phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation in ALI, and at the same time decreased extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38/MAPK) expression, that was increased after LPS administration. Our study suggested that um-PEA contrasted LPS-induced ALI, exerting its potential role as an adjuvant anti-inflammatory therapeutic for treating lung injury, maybe also by p38/NF-κB pathway.
Collapse
Affiliation(s)
- Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98122 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98122 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98122 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy;
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98122 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98122 Messina, Italy; (E.G.); (R.C.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98122 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98122 Messina, Italy; (E.G.); (R.C.)
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98122 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
- Correspondence: (R.D.P.); (S.C.); Tel.: +39-90-6765208 (S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98122 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
- Correspondence: (R.D.P.); (S.C.); Tel.: +39-90-6765208 (S.C.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98122 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
| |
Collapse
|
5
|
Xu J, Yu C, Luo J, Guo Y, Cheng C, Zhang H. The role and mechanism of the annexin A1 peptide Ac2-26 in rats with cardiopulmonary bypass lung injury. Basic Clin Pharmacol Toxicol 2021; 128:719-730. [PMID: 33455036 PMCID: PMC8247988 DOI: 10.1111/bcpt.13561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 11/30/2022]
Abstract
The main causes of lung injury after cardiopulmonary bypass (CPB) are systemic inflammatory response syndrome (SIRS) and pulmonary ischaemia‐reperfusion injury (IR‐I). SIRS and IR‐I are often initiated by a systemic inflammatory response. The present study investigated whether the annexin A1 (ANX‐A1) peptidomimetic Ac2‐26 by binding to formyl peptide receptors (FPRs) inhibit inflammatory cytokines and reduce lung injury after CPB. Male rats were randomized to the following five groups (n = 6, each): sham, exposed to pulmonary ischaemic‐reperfusion (IR‐I), IR‐I plus Ac2‐26, IR‐I plus the FPR antagonist, BoC2 (N‐tert‐butyloxycarbonyl‐Phe‐Leu‐Phe‐Leu‐Phe) and IR‐I plus Ac2‐26 and BoC2. Treatment with Ac2‐26 improved the oxygenation index, an effect blocked by BoC2. Histopathological analysis of the lung tissue revealed that the degree of lung injury was significantly less (P < 0.05) in the Ac2‐26‐treated rats compared to the other experimental groups exposed to IR‐I. Ac2‐26 treatment reduced the levels of the inflammatory cytokines TNF‐α, IL‐1β, ICAM‐1 and NF‐κB‐p65 (P < 0.05) compared to the vehicle‐treated group exposed to IR‐I. In conclusion, the annexin A1 (ANX‐A1) peptidomimetic Ac2‐26 by binding to formyl peptide receptors inhibit inflammatory cytokines and reduce ischaemic‐reperfusion lung injury after cardiopulmonary bypass.
Collapse
Affiliation(s)
- Jiyang Xu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Chengkun Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Junli Luo
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuhan Guo
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Chi Cheng
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Hong Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
Potential therapeutic effects of interleukin-35 on the differentiation of naïve T cells into Helios +Foxp3 + Tregs in clinical and experimental acute respiratory distress syndrome. Mol Immunol 2021; 132:236-249. [PMID: 33494935 PMCID: PMC8058740 DOI: 10.1016/j.molimm.2021.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Regulatory T lymphocytes are important targets for the treatment of acute respiratory distress syndrome (ARDS). IL-35 is a newly identified IL-12 cytokine family member that plays an important protective role in a variety of immune system diseases by regulating Treg cell differentiation; however, the role of IL-35 in the pathogenesis of ARDS is still unclear. Here, we found that IL-35 was significantly elevated in adult patients with ARDS compared to controls. Additionally, IL-35 was positively and significantly correlated with IL-6, IL-10 and the oxygenation index (PaO2/FiO2 ratio) but negatively correlated with TNF-α, IL-1β and APACHE II score during ARDS. Moreover, the proportion of Treg/CD4+ cells in the peripheral blood of ARDS patients and the expression of NF-κB in PMBCs were significantly higher than in healthy individuals. Recombinant IL-35 improved survival in a murine model of CLP-induced ARDS. Additionally, IL-35 administration decreased the inflammatory response, as reflected by lower levels of cytokines (including IL-2, TNF-α, IL-1β and IL-6) and less lung damage in CLP-induced ARDS. Furthermore, recombinant IL-35 reduced the apoptosis of lung tissue and the expression of NF-κB signalling in a CLP-induced ARDS model and increased the proportion of Treg cells in spleen and peripheral blood. In vitro experiments revealed that IL-35 can affect the phosphorylation of STAT5 during differentiation of naïve CD4+ T lymphocytes into Foxp3+Helios+ Tregs. Our findings suggest that IL-35 attenuates ARDS by promoting the differentiation of naïve CD4+ T cells into Foxp3+Helios+ Tregs, thereby providing a novel tool for anti-ARDS therapy.
Collapse
|
7
|
NLRC5 negatively regulates inflammatory responses in LPS-induced acute lung injury through NF-κB and p38 MAPK signal pathways. Toxicol Appl Pharmacol 2020; 403:115150. [PMID: 32710960 DOI: 10.1016/j.taap.2020.115150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Acute lung injury is an acute inflammatory disease with high morbidity rate and high mortality rate. However, there is still no effective clinical treatment to date. Our previous studies found that NLRC5 was significantly increased in acute liver injury model induced by LPS to reduce the secretion of IL-6 and TNF-α. Nevertheless, there is no report on the role of NLRC5 in regulating the development of acute lung injury. In this study we successfully established a model of acute lung injury induced by tracheal instillation of LPS in mice, and found NLRC5 expression was apparently elevated in mouse lung tissue and primary alveolar macrophages. NLRC5 overexpression negatively regulated secretion of inflammatory cytokines in murine alveolar macrophage cells through NF-κB and p38 MAPK pathway inhibition. There is a positively feedback between NLRC5 and NF-κB or p38 MAPK pathway. This study may provide some new ideas for clinical prevention of lung injury.
Collapse
|
8
|
Wu Y, Wang Y, Liu B, Cheng Y, Qian H, Yang H, Li X, Yang G, Zheng X, Shen F. SN50 attenuates alveolar hypercoagulation and fibrinolysis inhibition in acute respiratory distress syndrome mice through inhibiting NF-κB p65 translocation. Respir Res 2020; 21:130. [PMID: 32460750 PMCID: PMC7251840 DOI: 10.1186/s12931-020-01372-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background It has been confirmed that NF-κB p65 signaling pathway is involved in the regulation of alveolar hypercoagulation and fibrinolysis inhibition in acute respiratory distress syndrome (ARDS). Whether SN50, a NF-κB cell permeable inhibitor, could attenuate alveolar hypercoagulation and fibrinolysis inhibition in ARDS remains to be elucidated. Purpose We explored the efficacy and potential mechanism of SN50 on alveolar hypercoagulation and fibrinolysis inhibition in ARDS in mice. Materials and methods Mouse ARDS was made by 50 μl of lipopolysaccharide (LPS) (4 mg/ml) inhalation. Male BALB/c mice were intraperitoneally injected with different does of SN50 1 h before LPS inhalation. Lung tissues were collected for hematoxylin-eosin (HE) staining, wet/dry ratio. Pulmonary expressions of tissue factor (TF), plasminogen activator inhibitor-1 (PAI-1), collagen III, as well as phosphorylated p65 (p-p65), p65 in nucleus (p’-p65), IκBα and IKKα/β were measured. Bronchoalveolar lavage fluid (BALF) was gathered to test the concentrations of TF, PAI-1, activated protein C (APC) and thrombinantithrombin complex (TAT). DNA binding activity of NF-κB p65 was also determined. Results After LPS stimulation, pulmonary edema and exudation and alveolar collapse occured. LPS also stimulated higher expressions of TF and PAI-1 in lung tissues, and higher secretions of TF, PAI-1, TAT and low level of APC in BALF. Pulmonary collagen III expression was obviously enhanced after LPS inhalation. At same time, NF-κB signaling pathway was activated with LPS injury, shown by higher expressions of p-p65, p’-p65, p-IKKα/β, p-Iκα in pulmonary tissue and higher level p65 DNA binding activity. SN50 dose-dependently inhibited TF, PAI-1 and collagen IIIexpressions, and decreased TF, PAI-1, TAT but increased APC in BALF. SN50 treatment attenuated pulmonary edema, exudation and reduced lung tissue damage as well. SN50 application significantly reduced p’-p65 expression and weakened p65 DNA binding activity, but expressions of p-p65, p-IKKα/β, p-Iκα in cytoplasm of pulmonary tissue were not affected. Conclusions SN 50 attenuates alveolar hypercoagulation and fibrinolysis inhibition in ARDS via inhibition of NF-κB p65 translocation. Our data demonstrates that NF-κB p65 pathway is a viable new therapeutic target for ARDS treatment.
Collapse
Affiliation(s)
- Yanqi Wu
- Department of Critical Care Medicine, Guizhou Medical University Affiliated Hospital, Guiyang, 550001, China
| | - Yahui Wang
- The People's Hospital of Weining County, Bijie, 553100, Guizhou Province, China
| | - Bo Liu
- Department of Critical Care Medicine, Guizhou Medical University Affiliated Hospital, Guiyang, 550001, China
| | - Yumei Cheng
- Department of Critical Care Medicine, Guizhou Medical University Affiliated Hospital, Guiyang, 550001, China
| | - Hong Qian
- Guizhou Medical University, Guiyang, 550001, China
| | - Huilin Yang
- Guizhou Medical University, Guiyang, 550001, China
| | - Xiang Li
- Guizhou Medical University, Guiyang, 550001, China
| | - Guixia Yang
- Guizhou Medical University, Guiyang, 550001, China
| | | | - Feng Shen
- Department of Critical Care Medicine, Guizhou Medical University Affiliated Hospital, Guiyang, 550001, China.
| |
Collapse
|
9
|
Zheng H, Liang W, He W, Huang C, Chen Q, Yi H, Long L, Deng Y, Zeng M. Ghrelin attenuates sepsis-induced acute lung injury by inhibiting the NF-κB, iNOS, and Akt signaling in alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 2019; 317:L381-L391. [PMID: 31242025 DOI: 10.1152/ajplung.00253.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ghrelin has proven to be protective against sepsis-induced acute lung injury (ALI) via anti-inflammatory effects. However, its mechanisms remain poorly understood. Alveolar macrophages (AMs) play a key role in mediating inflammatory responses during sepsis-induced ALI by secretion of cytokines and chemokines. This study was undertaken to investigate whether ghrelin suppresses inflammatory effects of AMs and therefore may help to attenuate sepsis-induced ALI. A sepsis model in rats was achieved using cecal ligation and puncture. Ghrelin treatment markedly improved histopathological changes in the lungs and reduced pulmonary inflammation in septic rats. NF-κB translocation and p-Akt and inducible nitric oxide synthase (iNOS) activities in AMs from septic rats were suppressed by ghrelin. In vitro data indicated that ghrelin decreased the levels of LPS-induced IL-1β, TNF-α, and IL-6, NF-κB translocation, and iNOS and Akt activities of AMs. Furthermore, the NF-κB/iNOS pathway or Akt signaling was positively correlated with LPS-induced inflammatory production of AMs in vitro. In conclusion, ghrelin exerts a protective role against sepsis-induced ALI probably by reducing the production of inflammatory cytokines from AMs via inhibition of the NF-κB/iNOS pathway or Akt signaling.
Collapse
Affiliation(s)
- Haichong Zheng
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenjie Liang
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wanmei He
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chunrong Huang
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qingui Chen
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui Yi
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lingli Long
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yubin Deng
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mian Zeng
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
10
|
Liu J, Dong S, Li L, Wang H, Zhao J, Zhao Y. The E3 ubiquitin ligase HECW1 targets thyroid transcription factor 1 (TTF1/NKX2.1) for its degradation in the ubiquitin-proteasome system. Cell Signal 2019; 58:91-98. [PMID: 30849519 DOI: 10.1016/j.cellsig.2019.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022]
Abstract
Thyroid transcription factor 1 (TTF1/NKX2.1), is a nuclear protein member of the NKX2 family of homeodomain transcription factors. It plays a critical role in regulation of multiple organ functions by promoting gene expression, such as thyroid hormone in thyroid and surfactant proteins in the lung. However, molecular regulation of TTF1 has not been well investigated, especially regarding its protein degradation. Here we show that protein kinase C agonist, phorbol esters (PMA), reduces TTF1 protein levels in time- and dose-dependent manners, without altering TTF1 mRNA levels. TTF1 is ubiquitinated and degraded in the proteasome in response to PMA, suggesting that PMA induces TTF1 degradation in the ubiquitin-proteasome system. Furthermore, we demonstrate that an E3 ubiquitin ligase, named HECT, C2 and WW domain containing E3 ubiquitin protein ligase 1 (HECW1), targets TTF1 for its ubiquitination and degradation, while downregulation of HECW1 attenuates PMA-induced TTF1 ubiquitination and degradation. A lysine residue lys151 was identified as the ubiquitin acceptor site within the TTF1. A lys151 to arginine mutant of TTF1 (TTF1K151R) is resistant to PMA- or HECW1-mediated ubiquitination and degradation. Further, we reveal that overexpression of TTF1 increases lung epithelial cell migration and proliferation, while the effects are reversed by HECW1. This study is the first to demonstrate that the E3 ubiquitin ligase HECW1 regulates TTF1 degradation by site-specific ubiquitination. This study will provide a new direction to clarify the molecular regulation of TTF1 in lung and its role in lung epithelial remodeling after injury.
Collapse
Affiliation(s)
- Jia Liu
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, China; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Su Dong
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, Jilin, China; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Lian Li
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Heather Wang
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
11
|
Liu B, Wu Y, Wang Y, Cheng Y, Yao L, Liu Y, Qian H, Yang H, Shen F. NF-κB p65 Knock-down inhibits TF, PAI-1 and promotes activated protein C production in lipopolysaccharide-stimulated alveolar epithelial cells type II. Exp Lung Res 2018; 44:241-251. [PMID: 30449218 DOI: 10.1080/01902148.2018.1505975] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose/aim: Activated coagulation and reduced fibrinolysis in alveolar compartment are an important characteristics in acute respiratory distress syndrome (ARDS). Alveolar epithelial cell type II (AECII) participates in regulating the intra-alveolar abnormalities of coagulation and fibrinolysis mainly through adjusting the productions of tissue factor (TF), plasminogen activator inhibitor (PAI)-1 and activated protein C (APC) in ARDS. NF-κB signal pathway may be involved in coagulation regulation in sepsis-induced ALI. The purpose of this study was to testify the hypothesis that NF-κB p65 (p65) knock-down would improve the abnormalities of coagulation and fibrinolysis mediated by lipopolysaccharide (LPS) stimulation in AECII. MATERIALS AND METHODS p65 gene knock-down in AECII was achieved by small interfering RNA (siRNA) transfection. Rat AECII (RLE-6TN) with or without p65 gene knock-down were stimulated by LPS for 24 hours. And then cytolysate was used for TF, PAI-1 expression examination, and supernatant was collected for TF, PAI-1 and PC concentrations determination. Activation of NF-κB canonical pathway was simultaneously checked by western-blotting, RT-PCR and immunofluorescence respectively. RESULTS TF, PAI-1 expressions in normal cells obviously increased under LPS stimulation with NF-κB canonical pathway activation represented by high levels of p65, p-p65, p-IκB with increased nuclear translocation of p-p65. Cells with NF-κB p65 knock-down, however, showed significant decreases in TF, PAI-1, p65, p-p65, p-IκB expressions following LPS stimulation with significant reduction in p-p65 nuclear translocation as compared to normal and siRNA control cells. The high concentrations of TF, PAI-1 and low level of APC in supernatant induced by LPS in normal cells were significantly reversed through p65 knock-down. CONCLUSIONS The experimental findings demonstrate that NF-kB signaling pathway is involved in regulating the expressions of coagulation and fibrinolysis factors in LPS-stimulated AECII, which suggest that NF-kB signaling pathway may be a new target to correct intra-alveolar coagulation and fibrinolytic abnormalities in ARDS.
Collapse
Affiliation(s)
- Bo Liu
- a Department of Critical Care Medicine , The Affiliated Hospital of Guizhou Medical University , Guiyang , China
| | - Yanqi Wu
- a Department of Critical Care Medicine , The Affiliated Hospital of Guizhou Medical University , Guiyang , China
| | - Yahui Wang
- a Department of Critical Care Medicine , The Affiliated Hospital of Guizhou Medical University , Guiyang , China
| | - Yumei Cheng
- a Department of Critical Care Medicine , The Affiliated Hospital of Guizhou Medical University , Guiyang , China
| | - Ling Yao
- b Department of Critical Care Medicine , The Second Affiliated Hospital of Guizhou Medical University , Kaili China
| | - Yuqin Liu
- c Department of Critical Care Medicine , The Fourth People's Hospital of Zhenjiang Ctiy , Zhenjiang , China
| | - Hong Qian
- a Department of Critical Care Medicine , The Affiliated Hospital of Guizhou Medical University , Guiyang , China
| | - Huilin Yang
- a Department of Critical Care Medicine , The Affiliated Hospital of Guizhou Medical University , Guiyang , China
| | - Feng Shen
- a Department of Critical Care Medicine , The Affiliated Hospital of Guizhou Medical University , Guiyang , China
| |
Collapse
|
12
|
Chen M, Zhou H, Xu Y, Qiu L, Hu Z, Qin X, Chen S, Zhang Y, Cao Q, Abu-Amer Y, Ying Z. From the Cover: Lung-Specific Overexpression of Constitutively Active IKK2 Induces Pulmonary and Systemic Inflammations but Not Hypothalamic Inflammation and Glucose Intolerance. Toxicol Sci 2018; 160:4-14. [PMID: 29036520 DOI: 10.1093/toxsci/kfx154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The lung is constantly exposed to ambient pollutants such as ambient fine particulate matter (PM2.5), making it one of the most frequent locations of inflammation in the body. Given the establishment of crucial role of inflammation in the pathogenesis of cardiometabolic diseases, pulmonary inflammation is thus widely believed to be an important risk factor for cardiometabolic diseases. However, the causality between them has not yet been well established. To determine if pulmonary inflammation is sufficient to cause adverse cardiometabolic effects, SFTPC-rtTA+/-tetO-cre+/-pROSA-inhibitor κB kinase 2(IKK2)ca+/- (LungIKK2ca) and littermate SFTPC-rtTA+/-tetO-cre-/-pROSA-IKK2ca+/- wildtype (WT) mice were fed with doxycycline diet to induce constitutively active Ikk2 (Ikk2ca) overexpression in the lung and their pulmonary, systemic, adipose, and hypothalamic inflammations, vascular function, and glucose homeostasis were assessed. Feeding with doxycycline diet resulted in IKK2ca overexpression in the lungs of LungIKK2ca but not WT mice. This induction of IKK2ca was accompanied by marked pulmonary inflammation as evidenced by significant increases in bronchoalveolar lavage fluid leukocytes, pulmonary macrophage infiltration, and pulmonary mRNA expression of tumor necrosis factor α (Tnfα) and interleukin-6 (Il-6). This pulmonary inflammation due to lung-specific overexpression of IKK2ca was sufficient to increase circulating TNFα and IL-6 levels, adipose expression of Tnfα and Il-6 mRNA, aortic endothelial dysfunction, and systemic insulin resistance. Unexpectedly, no significant alteration in hypothalamic expression of Tnfα and Il-6 mRNA and glucose intolerance were observed in these mice. Pulmonary inflammation is sufficient to induce systemic inflammation, endothelial dysfunction, and insulin resistance, but not hypothalamic inflammation and glucose intolerance.
Collapse
Affiliation(s)
- Minjie Chen
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huifen Zhou
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Pathology, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Lianglin Qiu
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Occupational and Environmental Health, School of Public Health, Nantong University, Nantong 226019, China
| | - Ziying Hu
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Endocrinology, The People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, Henan 450003, China
| | - Xiaobo Qin
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Sufang Chen
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yuhao Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yousef Abu-Amer
- Orthopedics and Cell Biology & Physiology, Washington University School of Medicine, St Louis, Missouri63110
| | - Zhekang Ying
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
13
|
Barreto TR, Costola-de-Souza C, Margatho RO, Queiroz-Hazarbassanov N, Rodrigues SC, Felício LF, Palermo-Neto J, Zager A. Repeated Domperidone treatment modulates pulmonary cytokines in LPS-induced acute lung injury in mice. Int Immunopharmacol 2018; 56:43-50. [DOI: 10.1016/j.intimp.2018.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 11/27/2022]
|
14
|
Wan L, Meng D, Wang H, Wan S, Jiang S, Huang S, Wei L, Yu P. Preventive and Therapeutic Effects of Thymol in a Lipopolysaccharide-Induced Acute Lung Injury Mice Model. Inflammation 2018; 41:183-192. [PMID: 29019091 DOI: 10.1007/s10753-017-0676-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome which causes a high mortality rate worldwide. In traditional medicine, lots of aromatic plants-such as some Thymus species-are used for treatment of various lung diseases including pertussis, bronchitis, and asthma. Thymol, one of the primary active constituent derived from Thymus vulgaris (thyme), has been reported to exhibit potent anti-microbial, anti-oxidant, and anti-inflammatory activities in vivo and in vitro. The present study aims to investigate the protective effects of thymol in lipopolysaccharide (LPS)-induced lung injury mice model. In LPS-challenged mice, treatment with thymol (100 mg/kg) before or after LPS challenge significantly improved pathological changes in lung tissues. Thymol also inhibited the LPS-induced inflammatory cells influx, TNF-α and IL-6 releases, and protein concentration in bronchoalveolar lavage fluid (BALF). Additionally, thymol markedly inhibited LPS-induced elevation of MDA and MPO levels, as well as reduction of SOD activity. Further study demonstrated that thymol effectively inhibited the NF-κB activation in the lung. Taken together, these results suggested that thymol might be useful in the therapy of acute lung injury.
Collapse
Affiliation(s)
- Limei Wan
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Dongmei Meng
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, China
| | - Shunjun Jiang
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shanshan Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Li Wei
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Pengjiu Yu
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
15
|
Murtha LA, Schuliga MJ, Mabotuwana NS, Hardy SA, Waters DW, Burgess JK, Knight DA, Boyle AJ. The Processes and Mechanisms of Cardiac and Pulmonary Fibrosis. Front Physiol 2017; 8:777. [PMID: 29075197 PMCID: PMC5643461 DOI: 10.3389/fphys.2017.00777] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/22/2017] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is the formation of fibrous connective tissue in response to injury. It is characterized by the accumulation of extracellular matrix components, particularly collagen, at the site of injury. Fibrosis is an adaptive response that is a vital component of wound healing and tissue repair. However, its continued activation is highly detrimental and a common final pathway of numerous disease states including cardiovascular and respiratory disease. Worldwide, fibrotic diseases cause over 800,000 deaths per year, accounting for ~45% of total deaths. With an aging population, the incidence of fibrotic disease and subsequently the number of fibrosis-related deaths will rise further. Although, fibrosis is a well-recognized cause of morbidity and mortality in a range of disease states, there are currently no viable therapies to reverse the effects of chronic fibrosis. Numerous predisposing factors contribute to the development of fibrosis. Biological aging in particular, interferes with repair of damaged tissue, accelerating the transition to pathological remodeling, rather than a process of resolution and regeneration. When fibrosis progresses in an uncontrolled manner, it results in the irreversible stiffening of the affected tissue, which can lead to organ malfunction and death. Further investigation into the mechanisms of fibrosis is necessary to elucidate novel, much needed, therapeutic targets. Fibrosis of the heart and lung make up a significant proportion of fibrosis-related deaths. It has long been established that the heart and lung are functionally and geographically linked when it comes to health and disease, and thus exploring the processes and mechanisms that contribute to fibrosis of each organ, the focus of this review, may help to highlight potential avenues of therapeutic investigation.
Collapse
Affiliation(s)
- Lucy A Murtha
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Michael J Schuliga
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Nishani S Mabotuwana
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Sean A Hardy
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - David W Waters
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Janette K Burgess
- Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD, W. J. Kolff Research Institute, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Respiratory Cellular and Molecular Biology Group, Woolcock Institute of Medical Research, Glebe, NSW, Australia.,Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia
| | - Darryl A Knight
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BS, Canada.,Department of Medicine, University of Western Australia, Perth, WA, Australia.,Research and Innovation Conjoint, Hunter New England Health, Newcastle, NSW, Australia
| | - Andrew J Boyle
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
16
|
Abstract
Bacterial pneumonias exact unacceptable morbidity on patients with cancer. Although the risk is often most pronounced among patients with treatment-induced cytopenias, the numerous contributors to life-threatening pneumonias in cancer populations range from derangements of lung architecture and swallow function to complex immune defects associated with cytotoxic therapies and graft-versus-host disease. These structural and immunologic abnormalities often make the diagnosis of pneumonia challenging in patients with cancer and impact the composition and duration of therapy. This article addresses host factors that contribute to pneumonia susceptibility, summarizes diagnostic recommendations, and reviews current guidelines for management of bacterial pneumonia in patients with cancer.
Collapse
Affiliation(s)
- Justin L Wong
- Division of Internal Medicine, Department of Pulmonary, Critical Care and Sleep Medicine, The University of Texas Health Sciences Center, 6431 Fannin Street, MSB 1.434, Houston, TX 77030, USA
| | - Scott E Evans
- Division of Internal Medicine, Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1100, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Yu PJ, Wan LM, Wan SH, Chen WY, Xie H, Meng DM, Zhang JJ, Xiao XL. Standardized myrtol attenuates lipopolysaccharide induced acute lung injury in mice. PHARMACEUTICAL BIOLOGY 2016; 54:3211-3216. [PMID: 27569254 DOI: 10.1080/13880209.2016.1216132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 04/18/2016] [Accepted: 07/12/2016] [Indexed: 12/25/2022]
Abstract
CONTEXT Standardized myrtol, an essential oil containing primarily cineole, limonene and α-pinene, has been used for treating nasosinusitis, bronchitis and chronic obstructive pulmonary disease (COPD). OBJECTIVE To investigate the effects of standardized myrtol in a model of acute lung injury (ALI) induced by lipopolysaccharides (LPS). MATERIALS AND METHODS Male BALB/c mice were treated with standardized myrtol for 1.5 h prior to exposure of atomized LPS. Six hours after LPS challenge, lung injury was determined by the neutrophil recruitment, cytokine levels and total protein concentration in the bronchoalveolar lavage fluid (BALF) and myeloperoxidase (MPO) activity in the lung tissue. Additionally, pathological changes and NF-κB activation in the lung were examined by haematoxylin and eosin staining and western blot, respectively. RESULTS In LPS-challenged mice, standardized myrtol at a dose of 1200 mg/kg significantly inhibited the neutrophile counts (from 820.97 ± 142.44 to 280.42 ± 65.45, 103/mL), protein concentration (from 0.331 ± 0.02 to 0.183 ± 0.01, mg/mL) and inflammatory cytokines level (TNF-α: from 6072.70 ± 748.40 to 2317.70 ± 500.14, ng/mL; IL-6: from 1184.85 ± 143.58 to 509.57 ± 133.03, ng/mL) in BALF. Standardized myrtol also attenuated LPS-induced MPO activity (from 0.82 ± 0.04 to 0.48 ± 0.06, U/g) and pathological changes (lung injury score: from 11.67 ± 0.33 to 7.83 ± 0.79) in the lung. Further study demonstrated that standardized myrtol prevented LPS-induced NF-κB activation in lung tissues. DISCUSSION AND CONCLUSION Together, these data suggest that standardized myrtol has the potential to protect against LPS-induced airway inflammation in a model of ALI.
Collapse
Affiliation(s)
- Peng-Jiu Yu
- a Department of Pharmacy , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Li-Mei Wan
- b Department of Respiratory Medicine , The First Affiliated Hospital of Guangdong Pharmaceutical University , Guangzhou , China
| | - Shan-He Wan
- c Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University , Guangzhou , China
| | - Wen-Ying Chen
- a Department of Pharmacy , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Hui Xie
- a Department of Pharmacy , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Dong-Mei Meng
- a Department of Pharmacy , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Jia-Jie Zhang
- c Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University , Guangzhou , China
| | - Xiang-Lin Xiao
- a Department of Pharmacy , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| |
Collapse
|
18
|
Guo J, Liu Z, Sun H, Huang Y, Albrecht E, Zhao R, Yang X. Lipopolysaccharide challenge significantly influences lipid metabolism and proteome of white adipose tissue in growing pigs. Lipids Health Dis 2015; 14:68. [PMID: 26152344 PMCID: PMC4493945 DOI: 10.1186/s12944-015-0067-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/26/2015] [Indexed: 12/11/2022] Open
Abstract
Background White adipose tissue is recognized as a highly active organ, which is closely related to a large number of physiological and metabolic processes besides storing triglycerides. However, little is known regarding the response of adipose tissue to acute inflammation. Therefore, in this study we employed growing pigs to investigate the changes of lipid metabolism and proteome in white adipose tissue after lipopolysaccharide (LPS) stimulation as a model for bacterial infection. Methods The expression of lipid metabolism and inflammation related genes was determined by quantitative real-time polymerase chain reaction. Label-free proteomics analysis was used to investigate changes of the protein profile in white adipose tissue and western blot was used to verify changes of selected adipokines. Results The results indicated that LPS significantly increased the expression of toll-like receptor (TLR) 2/4 pathway-related genes and pro-inflammatory factors. Lipid metabolism related genes, including acetyl-CoA carboxylase 1 (ACACA), fatty acid synthase (FASN), stearoyl-CoA desaturase (SCD), uncoupling protein 2 (UCP2), and 11 β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), were down-regulated and the lipolytic enzyme activity was decreased after LPS injection. Proteome analysis revealed 47 distinct proteins with > 2-fold changes. The down-regulation of two proteins (cAMP-dependent protein kinase type II-alpha regulatory subunit and β-tubulin) has been verified by western blot analysis. In addition, the abundance of two adipokines (adiponectin and zinc-α2-glycoprotein) was significantly increased after LPS injection. Conclusion In conclusion, LPS challenge can cause acute inflammation in white adipose tissue. Concurrently, lipid metabolism was significantly suppressed and the abundance of several proteins changed in white adipose tissue. The results provide new clues to understand the adipose dysfunction during inflammation. Electronic supplementary material The online version of this article (doi:10.1186/s12944-015-0067-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Guo
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Zhiqing Liu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Hailin Sun
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Yanping Huang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Elke Albrecht
- Institute of Muscle Biology and Growth, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|