1
|
Kostyrko B, Rubarth K, Althoff C, Zibell M, Neizert CA, Poch F, Torsello GF, Gebauer B, Lehmann K, Niehues SM, Mews J, Diekhoff T, Pohlan J. Evaluation of Different Registration Algorithms to Reduce Motion Artifacts in CT-Thermography (CTT). Diagnostics (Basel) 2023; 13:2076. [PMID: 37370971 DOI: 10.3390/diagnostics13122076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Computed tomography (CT)-based Thermography (CTT) is currently being investigated as a non-invasive temperature monitoring method during ablation procedures. Since multiple CT scans with defined time intervals were acquired during this procedure, interscan motion artifacts can occur between the images, so registration is required. The aim of this study was to investigate different registration algorithms and their combinations for minimizing inter-scan motion artifacts during thermal ablation. Four CTT datasets were acquired using microwave ablation (MWA) of normal liver tissue performed in an in vivo porcine model. During each ablation, spectral CT volume scans were sequentially acquired. Based on initial reconstructions, rigid or elastic registration, or a combination of these, were carried out and rated by 15 radiologists. Friedman's test was used to compare rating results in reader assessments and revealed significant differences for the ablation probe movement rating only (p = 0.006; range, 5.3-6.6 points). Regarding this parameter, readers assessed rigid registration as inferior to other registrations. Quantitative analysis of ablation probe movement yielded a significantly decreased distance for combined registration as compared with unregistered data. In this study, registration was found to have the greatest influence on ablation probe movement, with connected registration being superior to only one registration process.
Collapse
Affiliation(s)
- Bogdan Kostyrko
- Department of Radiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, 10117 Berlin, Germany
| | - Kerstin Rubarth
- Institute for Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, 10117 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, 10178 Berlin, Germany
| | - Christian Althoff
- Department of Radiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, 10117 Berlin, Germany
| | - Miriam Zibell
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, 12203 Berlin, Germany
| | - Christina Ann Neizert
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, 12203 Berlin, Germany
| | - Franz Poch
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, 12203 Berlin, Germany
| | - Giovanni Federico Torsello
- Department of Radiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, 10117 Berlin, Germany
| | - Bernhard Gebauer
- Department of Radiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, 10117 Berlin, Germany
| | - Kai Lehmann
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, 12203 Berlin, Germany
| | - Stefan Markus Niehues
- Department of Radiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, 10117 Berlin, Germany
| | - Jürgen Mews
- Canon Medical Systems Europe BV, Global Research & Development Center, 2718 RP Zoetermeer, The Netherlands
| | - Torsten Diekhoff
- Department of Radiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, 10117 Berlin, Germany
| | - Julian Pohlan
- Department of Radiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, 10117 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, 10178 Berlin, Germany
| |
Collapse
|
2
|
Song H, Song TK, Kang J. High-contrast spectroscopic photoacoustic characterization of thermal tissue ablation in the visible spectrum. Ultrasonography 2023; 42:249-258. [PMID: 36935599 PMCID: PMC10071053 DOI: 10.14366/usg.22171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE High-contrast tissue characterization of thermal ablation has been desired to evaluate therapeutic outcomes accurately. This paper presents a photoacoustic (PA) characterization of thermal tissue ablation in the visible spectrum, in which higher light absorbance can produce spectral contrast starker than in the near-infrared range. METHODS Ex vivo experiments were performed to measure visible PA spectra (480-700 nm) from fresh porcine liver tissues that received a thermal dose in a range of cumulative equivalent minutes at 43°C (CEM43). The local hemoglobin lobe area between 510-600 nm and wholespectral area under the curve were evaluated to represent the transition of hemoglobin into methemoglobin (MetHb) in the target tissue. RESULTS The thermal process below an estimated therapeutic CEM43 threshold (80-340 minutes) presented a progressive elevation of the PA spectrum and an eventual loss of local hemoglobin peaks in the visible spectrum, closer to the MetHb spectrum. Interestingly, an excessive CEM43 produced a substantial drop in the PA spectrum. In the spectral analysis, the visible spectrum yielded 13.9-34.1 times higher PA sensitivity and 1.42 times higher contrast change than at a near-infrared wavelength. CONCLUSION This novel method of PA tissue characterization in the visible spectrum could be a potential modality to evaluate various thermal therapeutic modalities at high-contrast resolution.
Collapse
Affiliation(s)
- Hyunjae Song
- Department of Electronic Engineering, Sogang University,
Korea
| | - Tai-Kyong Song
- Department of Electronic Engineering, Sogang University,
Korea
| | - Jeeun Kang
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD,
USA
| |
Collapse
|
3
|
Heinrich A, Schenkl S, Buckreus D, Güttler FV, Teichgräber UKM. CT-based thermometry with virtual monoenergetic images by dual-energy of fat, muscle and bone using FBP, iterative and deep learning-based reconstruction. Eur Radiol 2021; 32:424-431. [PMID: 34327575 PMCID: PMC8660750 DOI: 10.1007/s00330-021-08206-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Objectives The aim of this study was to evaluate the sensitivity of CT-based thermometry for clinical applications regarding a three-component tissue phantom of fat, muscle and bone. Virtual monoenergetic images (VMI) by dual-energy measurements and conventional polychromatic 120-kVp images with modern reconstruction algorithms adaptive statistical iterative reconstruction-Volume (ASIR-V) and deep learning image reconstruction (DLIR) were compared. Methods A temperature-regulating water circuit system was developed for the systematic evaluation of the correlation between temperature and Hounsfield units (HU). The measurements were performed on a Revolution CT with gemstone spectral imaging technology (GSI). Complementary measurements were performed without GSI (voltage 120 kVp, current 130–545 mA). The measured object was a tissue equivalent phantom in a temperature range of 18 to 50°C. The evaluation was carried out for VMI at 40 to 140 keV and polychromatic 120-kVp images. Results The regression analysis showed a significant inverse linear dependency between temperature and average HU regardless of ASIR-V and DLIR. VMI show a higher temperature sensitivity compared to polychromatic images. The temperature sensitivities were 1.25 HU/°C (120 kVp) and 1.35 HU/°C (VMI at 140 keV) for fat, 0.38 HU/°C (120 kVp) and 0.47 HU/°C (VMI at 40 keV) for muscle and 1.15 HU/°C (120 kVp) and 3.58 HU/°C (VMI at 50 keV) for bone. Conclusions Dual-energy with VMI enables a higher temperature sensitivity for fat, muscle and bone. The reconstruction with ASIR-V and DLIR has no significant influence on CT-based thermometry, which opens up the potential of drastic dose reductions. Key Points • Virtual monoenergetic images (VMI) enable a higher temperature sensitivity for fat (8%), muscle (24%) and bone (211%) compared to conventional polychromatic 120-kVp images. • With VMI, there are parameters, e.g. monoenergy and reconstruction kernel, to modulate the temperature sensitivity. In contrast, there are no parameters to influence the temperature sensitivity for conventional polychromatic 120-kVp images. • The application of adaptive statistical iterative reconstruction-Volume (ASIR-V) and deep learning–based image reconstruction (DLIR) has no effect on CT-based thermometry, opening up the potential of drastic dose reductions in clinical applications.
Collapse
Affiliation(s)
- Andreas Heinrich
- Department of Radiology, Jena University Hospital - Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany.
| | - Sebastian Schenkl
- Institute of Forensic Medicine, Jena University Hospital - Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - David Buckreus
- Department of Radiology, Jena University Hospital - Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - Felix V Güttler
- Department of Radiology, Jena University Hospital - Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - Ulf K-M Teichgräber
- Department of Radiology, Jena University Hospital - Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
4
|
Zaltieri M, Massaroni C, Cauti FM, Schena E. Techniques for Temperature Monitoring of Myocardial Tissue Undergoing Radiofrequency Ablation Treatments: An Overview. SENSORS (BASEL, SWITZERLAND) 2021; 21:1453. [PMID: 33669692 PMCID: PMC7922285 DOI: 10.3390/s21041453] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Cardiac radiofrequency ablation (RFA) has received substantial attention for the treatment of multiple arrhythmias. In this scenario, there is an ever-growing demand for monitoring the temperature trend inside the tissue as it may allow an accurate control of the treatment effects, with a consequent improvement of the clinical outcomes. There are many methods for monitoring temperature in tissues undergoing RFA, which can be divided into invasive and non-invasive. This paper aims to provide an overview of the currently available techniques for temperature detection in this clinical scenario. Firstly, we describe the heat generation during RFA, then we report the principle of work of the most popular thermometric techniques and their features. Finally, we introduce their main applications in the field of cardiac RFA to explore the applicability in clinical settings of each method.
Collapse
Affiliation(s)
- Martina Zaltieri
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.Z.); (C.M.)
| | - Carlo Massaroni
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.Z.); (C.M.)
| | - Filippo Maria Cauti
- Arrhythmology Unit, Cardiology Division, S. Giovanni Calibita Hospital, Isola Tiberina, 00186 Rome, Italy;
| | - Emiliano Schena
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.Z.); (C.M.)
| |
Collapse
|
5
|
Trujillo M, Prakash P, Faridi P, Radosevic A, Curto S, Burdio F, Berjano E. How large is the periablational zone after radiofrequency and microwave ablation? Computer-based comparative study of two currently used clinical devices. Int J Hyperthermia 2020; 37:1131-1138. [PMID: 32996794 PMCID: PMC7714001 DOI: 10.1080/02656736.2020.1823022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Purpose: To compare the size of the coagulation (CZ) and periablational (PZ) zones created with two commercially available devices in clinical use for radiofrequency (RFA) and microwave ablation (MWA), respectively. Methods: Computer models were used to simulate RFA with a 3-cm Cool-tip applicator and MWA with an Amica-Gen applicator. The Arrhenius model was used to compute the damage index (Ω). CZ was considered when Ω> 4.6 (>99% of damaged cells). Regions with 0.6<Ω< 2.1 were considered as the PZ (tissue that has undergone moderate sub-ablative hyperthermia). The ratio of PZ volume to CZ volume (PZ/CZ) was regarded as a measure of performance, since a low value implies achieving a large CZ while keeping the PZ small. Results: Ten-min RFA (51 W) created smaller periablational zones than 10-min MWA (11.3 cm3 vs. 17.2 22.9 cm3, for 60 100 W MWA, respectively). Prolonging duration from 5 to 10 min increased the PZ in MWA more than in RFA (2.7 cm3 for RFA vs. 8.3–11.9 cm3 for 60–100 W MWA, respectively). PZ/CZ for RFA were relatively high (65–69%), regardless of ablation time, while those for MWA were highly dependent on the duration (increase of up to 25% between 5 and 10 min) and on the applied power (smaller values as power was raised, 102% for 60 W vs. 81% for 100 W, both for 10 min). The lowest PZ/CZ across all settings was 56%, obtained with 100 W-5 min MWA. Conclusions: Although RFA creates smaller periablational zones than MWA, 100 W-5 min MWA provides the lowest PZ/CZ.
Collapse
Affiliation(s)
- Macarena Trujillo
- BioMIT, Department of Applied Mathematics, Universitat Politècnica de València, Valencia, Spain
| | - Punit Prakash
- Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | - Pegah Faridi
- Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | | | - Sergio Curto
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Enrique Berjano
- BioMIT, Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
6
|
Raiko J, Koskensalo K, Sainio T. Imaging-based internal body temperature measurements: The journal Temperature toolbox. Temperature (Austin) 2020; 7:363-388. [PMID: 33251282 PMCID: PMC7678923 DOI: 10.1080/23328940.2020.1769006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022] Open
Abstract
Noninvasive imaging methods of internal body temperature are in high demand in both clinical medicine and physiological research. Thermography and thermometry can be used to assess tissue temperature during thermal therapies: ablative and hyperthermia treatments to ensure adequate temperature rise in target tissues but also to avoid collateral damage by heating healthy tissues. In research use, measurement of internal body temperature enables us the production of thermal maps on muscles, internal organs, and other tissues of interest. The most used methods for noninvasive imaging of internal body temperature are based on different parameters acquired with magnetic resonance imaging, ultrasound, computed tomography, microwave radiometry, photoacoustic imaging, and near-infrared spectroscopy. In the current review, we examine the aforementioned imaging methods, their use in estimating internal body temperature in vivo with their advantages and disadvantages, and the physical phenomena the thermography or thermometry modalities are based on.
Collapse
Affiliation(s)
- Juho Raiko
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | - Kalle Koskensalo
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Teija Sainio
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| |
Collapse
|
7
|
Nagarajan VK, Ward JM, Yu B. Association of Liver Tissue Optical Properties and Thermal Damage. Lasers Surg Med 2020; 52:779-787. [PMID: 31919868 DOI: 10.1002/lsm.23209] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVES Complete thermocoagulation of tumors is vital to minimize the risk of local tumor recurrence after a thermal ablation. Histological assessments are not real-time and require experienced pathologists to grade the thermal damage (histopathology) [Correction added on 21 January, 2020 after first online publication: After thermal damage in the preceding sentence, (histopathology) was added]. Real-time assessment of thermal tissue damage during an ablation is necessary to achieve optimal tumor ablation. In our previous studies, we found that continuous monitoring of the wavelength-averaged (435-630 nm) tissue absorption coefficient (µa ) and the reduced scattering coefficient ( μ s ' ) during heating of a porcine liver at 100°C follows a sigmoidal growth curve. Therefore, we concluded that increases in the tissue µa and μ s ' during thermocoagulation were correlated with true thermal damage. The goal of this study was to determine if increases in the tissue µa and μ s ' during thermocoagulation are correlated with true thermal damage. STUDY DESIGN/MATERIALS AND METHODS In this paper, continuously measured values of µa and μ s ' during heating of the porcine liver tissue were compared with the histology-assessed thermal damage scores at four different temperature points (37°C, 55°C, 65°C, and 75°C). RESULTS The damage scores for the tissues in Group 3 (65°C) and Group 4 (75°C) were significantly different from each other and from the other groups. The damage scores were not significantly different between Group 1 (37°C) and Group 2 (55°C). CONCLUSION The results indicate that relative changes in µa and μ s ' can be used to classify thermal damage (histopathology) scores with an overall accuracy of 72.5% up to 75°C. [Correction added on 21 January, 2020 after first online publication: After thermal damage in the preceding sentence, (histopathology) was added]. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vivek Krishna Nagarajan
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, 53045
| | - Jerrold M Ward
- Global Vet Pathology, Montgomery Village, Maryland, 20886
| | - Bing Yu
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, 53045
| |
Collapse
|
8
|
Strigari L, Minosse S, D'Alessio D, Farina L, Cavagnaro M, Cassano B, Pinto R, Vallati G, Lopresto V. Microwave thermal ablation using CT-scanner for predicting the variation of ablated region over time: advantages and limitations. Phys Med Biol 2019; 64:115021. [PMID: 30995620 DOI: 10.1088/1361-6560/ab1a67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aims at investigating in real-time the structural and dynamical changes occurring in an ex vivo tissue during a microwave thermal ablation (MTA) procedure. The experimental set-up was based on ex vivo liver tissue inserted in a dedicated box, in which 3 fibre-optic (FO) temperature probes were introduced to measure the temperature increase over time. Computed tomography (CT) imaging technique was exploited to experimentally study in real-time the Hounsfield Units (HU) modification occurring during MTA. The collected image data were processed with a dedicated MATLAB tool, developed to analyse the FO positions and HU modifications from the CT images acquired over time before and during the ablation procedures. The radial position of a FO temperature probe (rFO) and the value of HU in the region of interest (ROI) containing the probe (HUo), along with the corresponding value of HU in the contralateral ROI with respect to the MTA antenna applicator (HUc), were determined and registered over time during and after the MTA procedure. Six experiments were conducted to confirm results. The correlation between temperature and the above listed predictors was investigated using univariate and multivariate analysis. At the multivariate analysis, the time, rFO and HUc resulted significant predictive factors of the logarithm of measured temperature. The correlation between predicted and measured temperatures was 0.934 (p < 0.001). The developed tool allows identifying and registering the image-based parameters useful for predicting the temperature variation over time in each investigated voxel by taking into consideration the HU variation.
Collapse
Affiliation(s)
- L Strigari
- Laboratory of Medical Physics and Expert Systems, IRCCS Regina Elena National Cancer Institute, IFO, via Elio Chianesi, 53, 00144, Rome, Italy. Current address: Department of Medical Physics, St. Orsola-Malpighi University Hospital, via Massarenti 9 40138 Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Saccomandi P, Lapergola A, Longo F, Schena E, Quero G. Thermal ablation of pancreatic cancer: A systematic literature review of clinical practice and pre-clinical studies. Int J Hyperthermia 2018; 35:398-418. [PMID: 30428728 DOI: 10.1080/02656736.2018.1506165] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Pancreatic cancer is a challenging malignancy with low treatment option and poor life expectancy. Thermal ablation techniques were proposed as alternative treatment options, especially in advanced stages and for unfit-for-surgery patients. This systematic review describes the thermal ablative techniques -i.e., Laser (LA), Radiofrequency (RFA), Microwave (MWA) Ablation, High-Intensity Focused Ultrasound (HIFU) and cryoablation- available for pancreatic cancer treatment. Additionally, an analysis of the efficacy, complication rate and overall survival for each technique is conducted. MATERIAL AND METHODS This review collects the ex vivo, preclinical and clinical studies presenting the use of thermal techniques in the pancreatic cancer treatment, searched up to March 2018 in PubMed and Medline. Abstracts, letters-to-the-editor, expert opinions, reviews and non-English language manuscripts were excluded. RESULTS Sixty-five papers were included. For the ex vivo and preclinical studies, there are: 12 records for LA, 8 for RFA, 0 for MWA, 6 for HIFU, 1 for cryoablation and 3 for hybrid techniques. For clinical studies, 1 paper for LA, 14 for RFA, 1 for MWA, 17 for HIFU, 1 for cryoablation and 1 for hybrid techniques. CONCLUSIONS Important technological advances are presented in ex vivo and preclinical studies, as the real-time thermometry, nanotechnology and hybrid techniques to enhance the thermal outcome. Conversely, a lack of standardization in the clinical employment of the procedures emerged, leading to contrasting results on the safety and feasibility of some analyzed techniques. Uniform conclusions on the safety and feasibility of these techniques for pancreatic cancer will require further structured investigation.
Collapse
Affiliation(s)
- Paola Saccomandi
- a IHU-Strasbourg Institute of Image-Guided Surgery , Strasbourg , France.,b Departement of Mechanical Engineering, Politecnico di Milano , Milan , Italy
| | - Alfonso Lapergola
- a IHU-Strasbourg Institute of Image-Guided Surgery , Strasbourg , France.,c Università G. D'Annunzio , Chieti , Italy
| | - Fabio Longo
- a IHU-Strasbourg Institute of Image-Guided Surgery , Strasbourg , France.,d Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Rome , Italy
| | | | - Giuseppe Quero
- d Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Rome , Italy
| |
Collapse
|
10
|
Paul J, Vogl TJ, Chacko A. Dual energy computed tomography thermometry during hepatic microwave ablation in an ex-vivo porcine model. Phys Med 2015; 31:683-91. [DOI: 10.1016/j.ejmp.2015.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 12/16/2022] Open
|
11
|
Weiss N, Sosna J, Goldberg SN, Azhari H. Non-invasive temperature monitoring and hyperthermic injury onset detection using X-ray CT during HIFU thermal treatment in ex vivo fatty tissue. Int J Hyperthermia 2015; 30:119-25. [PMID: 24571175 DOI: 10.3109/02656736.2014.883466] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE This paper examines X-ray CT, to serve as an image-guiding thermal monitoring modality for high intensity focused ultrasound (HIFU) treatment of fatty tissues. MATERIALS AND METHODS Six ex vivo porcine fat tissue specimens were scanned by X-ray CT simultaneously with the application of HIFU. Images were acquired during both heating and post-ablation stages. The temperature at the focal zone was measured simultaneously using a thermocouple. The mean values of the Hounsfield units (HU) at the focal zone were registered and plotted as a function of temperature. RESULTS In all specimens studied, the HU versus temperature curves measured during the heating stage depicted a characteristic non-linear parabolic trajectory (R(2) > 0.87). The HU-temperature trajectory initially decreased to a minimum value at about 44.5 °C and then increased substantially as the heating progressed. The occurrence of this nadir point during the heating stage was clearly detectable. During post-ablation cooling, on the other hand, the HU increased monotonically with the decreasing temperature and depicted a clearly linear trajectory (R(2) ≥ 0.9). CONCLUSIONS Our results demonstrate that the HU-temperature curve during HIFU treatment has a characteristic parabolic trajectory for fat tissue that might potentially be utilised for thermal monitoring during HIFU ablation treatments. The clear detection of 44.5 °C, presumably marking the onset of hyperthermic injury, can be detected non-invasively as an occurrence of a minimum on the HU-time curve without any need to relate the HU directly to temperature. Such features may be helpful in monitoring and optimising HIFU thermal treatment for clinically applicable indications such as in the breast by providing a non-invasive monitoring of tissue damage.
Collapse
Affiliation(s)
- Noam Weiss
- Department of Biomedical Engineering, Technion - Israel Institute of Technology , Haifa , Israel
| | | | | | | |
Collapse
|
12
|
Schena E, Fani F, Saccomandi P, Massaroni C, Frauenfelder G, Giurazza F, Silvestri S. Feasibility assessment of CT-based thermometry for temperature monitoring during thermal procedure: Influence of ROI size and scan setting on metrological properties. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:7893-7896. [PMID: 26738122 DOI: 10.1109/embc.2015.7320222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Computed tomography (CT) thermometry belongs to the wide class of non-invasive temperature monitoring techniques, which includes ultrasound and Magnetic Resonance thermometry. Non-invasive techniques are particularly attractive to be used in hyperthermal procedures for their ability to produce a three-dimensional temperature map and because they overcome the risks related to the insertion of sensing elements.
Collapse
|
13
|
Evolution of Thermal Dosimetry for Application of Hyperthermia to Treat Cancer. ADVANCES IN HEAT TRANSFER 2015. [DOI: 10.1016/bs.aiht.2015.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Fani F, Schena E, Saccomandi P, Silvestri S. CT-based thermometry: An overview. Int J Hyperthermia 2014; 30:219-27. [DOI: 10.3109/02656736.2014.922221] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Alphandéry E. Perspectives of breast cancer thermotherapies. J Cancer 2014; 5:472-9. [PMID: 24959300 PMCID: PMC4066359 DOI: 10.7150/jca.8693] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/08/2014] [Indexed: 01/08/2023] Open
Abstract
In this article, the use of different types of thermotherapies to treat breast cancer is reviewed. While hyperthermia is most commonly used as an adjuvant in combination with radiotherapy, chemotherapy, targeted therapy or cryotherapy to enhance the therapeutic effect of these therapies, thermoablation is usually carried out alone to eradicate small breast tumors. A recently developed thermotherapy, called magnetic hyperthermia, which involves localized heating of nanoparticles under the application of an alternating magnetic field, is also presented. The advantages and drawbacks of these different thermotherapies are highlighted.
Collapse
Affiliation(s)
- Edouard Alphandéry
- 1. Nanobacterie SARL, 36 boulevard Flandrin, 75116, Paris, France. ; 2. Institut de Minéralogie et de Physique des Milieux Condensés, Université Pierre et Marie Curie, 4 Place Jussieu, 75005, Paris, France
| |
Collapse
|
16
|
Weiss N, Goldberg SN, Sosna J, Azhari H. Temperature–density hysteresis in X-ray CT during HIFU thermal ablation: Heating and cooling phantom study. Int J Hyperthermia 2013; 30:27-35. [DOI: 10.3109/02656736.2013.860241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
17
|
Saccomandi P, Schena E, Silvestri S. Techniques for temperature monitoring during laser-induced thermotherapy: an overview. Int J Hyperthermia 2013; 29:609-19. [PMID: 24032415 DOI: 10.3109/02656736.2013.832411] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Laser-induced thermotherapy (LITT) is a hyperthermic procedure recently employed to treat cancer in several organs. The amount of coagulated tissue depends on the temperature distribution around the applicator, which plays a crucial role for an optimal outcome: the removal of the whole neoplastic tissue, whilst preventing damage to the surrounding healthy tissue. Although feedback concerning tissue temperature could be useful to drive the physician in the adjustment of laser settings and treatment duration, LITT is usually performed without real-time monitoring of tissue temperature. During recent decades, many thermometric techniques have been developed to be used during thermal therapies. This paper provides an overview of techniques and sensors employed for temperature measurement during tissue hyperthermia, focusing on LITT, and an investigation of their performances in this application. The paper focuses on the most promising and widespread temperature monitoring techniques, splitting them into two groups: the former includes invasive techniques based on the use of thermocouples and fibre-optic sensors; the second analyses non-invasive methods, i.e. magnetic resonance imaging-, computerised tomography- and ultrasound-based thermometry. Background information on measuring principle, medical applications, advantages and weaknesses of each method are provided and discussed.
Collapse
Affiliation(s)
- Paola Saccomandi
- Unit of Measurements and Biomedical Instrumentation, Centre for Integrated Research, University Campus Bio-Medico , Rome , Italy
| | | | | |
Collapse
|
18
|
Schena E, Saccomandi P, Giurazza F, Caponero MA, Mortato L, Di Matteo FM, Panzera F, Del Vescovo R, Beomonte Zobel B, Silvestri S. Experimental assessment of CT-based thermometry during laser ablation of porcine pancreas. Phys Med Biol 2013; 58:5705-16. [DOI: 10.1088/0031-9155/58/16/5705] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Pandeya GD, Greuter MJW, Schmidt B, Flohr T, Oudkerk M. Assessment of thermal sensitivity of CT during heating of liver: an ex vivo study. Br J Radiol 2012; 85:e661-5. [PMID: 22919016 DOI: 10.1259/bjr/23942179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES The purpose of this study was to assess the thermal sensitivity of CT during heating of ex-vivo animal liver. METHODS Pig liver was indirectly heated from 20 to 90 °C by passage of hot air through a plastic tube. The temperature in the heated liver was measured using calibrated thermocouples. In addition, image acquisition was performed with a multislice CT scanner before and during heating of the liver sample. The reconstructed CT images were then analysed to assess the change of CT number as a function of temperature. RESULTS During heating, a decrease in CT numbers was observed as a hypodense area on the CT images. In addition, the hypodense area extended outward from the heat source during heating. The analysis showed a linear decrease of CT number as a function of temperature. From this relationship, we derived a thermal sensitivity of CT for pig liver tissue of -0.54±0.03 HU °C(-1) with an r(2) value of 0.91. CONCLUSIONS The assessment of the thermal sensitivity of CT in ex-vivo pig liver tissue showed a linear dependency on temperature ≤90 °C. This result may be beneficial for the application of isotherms or thermal maps in CT images of liver tissue.
Collapse
Affiliation(s)
- G D Pandeya
- Department of Radiology, UMC Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
20
|
Bruners P, Pandeya GD, Levit E, Roesch E, Penzkofer T, Isfort P, Schmidt B, greuter MJ, Oudkerk M, Schmitz-Rode T, Kuhl CK, Mahnken AH. CT-based temperature monitoring during hepatic RF ablation: Feasibility in an animal model. Int J Hyperthermia 2012; 28:55-61. [DOI: 10.3109/02656736.2011.619155] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
21
|
Feasibility of Noninvasive Temperature Assessment During Radiofrequency Liver Ablation on Computed Tomography. J Comput Assist Tomogr 2011; 35:356-60. [DOI: 10.1097/rct.0b013e318217121d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Pandeya GD, Klaessens JHGM, Greuter MJW, Schmidt B, Flohr T, van Hillegersberg R, Oudkerk M. Feasibility of computed tomography based thermometry during interstitial laser heating in bovine liver. Eur Radiol 2011; 21:1733-8. [PMID: 21432022 PMCID: PMC3128258 DOI: 10.1007/s00330-011-2106-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/17/2011] [Accepted: 01/20/2011] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To assess the feasibility of computed tomography (CT) based thermometry during interstitial laser heating in the bovine liver. METHODS Four freshly exercised cylindrical blocks of bovine tissue were heated using a continuous laser of Nd:YAG (wavelength: 1064 nm, active length: 30 mm, power: 10-30 W). All tissues were imaged at least once before and 7 times during laser heating using CT and temperatures were simultaneously measured with 5 calibrated thermal sensors. The dependency of the average CT numbers as a function of temperature was analysed with regression analysis and a CT thermal sensitivity was derived. RESULTS During laser heating, the growing hypodense area was observed around the laser source and that area showed an increase as a function of time. The formation of hypodense area was caused by declining in CT numbers at increasing temperatures. The regression analysis showed an inverse linear dependency between temperature and average CT number with -0.65 ± 0.048 HU/°C (R(2) = 0.75) for the range of 18-85°C in bovine liver. CONCLUSIONS The non-invasive CT based thermometry during interstitial laser heating is feasible in the bovine liver. CT based thermometry could be further developed and may be of potential use during clinical LITT of the liver.
Collapse
Affiliation(s)
- G D Pandeya
- Department of Radiology, UMC Groningen, University of Groningen, Hanzeplein 1, PO Box 30001, 9700 RB, Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|