1
|
Hosseinikhah SM, Farhoudi L, Mirzavi F, Vahdat-Lasemi F, Arabi L, Gheybi F, Sazgarnia A, Alavizadeh SH, Jaafari MR. Ultrasound-assisted efficient targeting of doxorubicin to the tumor microenvironment by lyso-thermosensitive liposomes of varying phase transition temperatures. Eur J Pharm Sci 2025; 206:107024. [PMID: 39863136 DOI: 10.1016/j.ejps.2025.107024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/04/2025] [Accepted: 01/23/2025] [Indexed: 01/27/2025]
Abstract
Premature drug release is the primary hindrance to the effective function of the lyso-thermosensitive liposomes (LTSLs) of doxorubicin (Dox), known as ThermoDox® for the treatment of cancer. Herein, we have optimized LTSLs by using a combination of phospholipids (PLs) with high transition temperatures (Tm) to improve the therapeutic outcome in an assisted ultrasound approach. For this, several Dox LTSLs were prepared using the remote loading method at varying molar ratios (0 to 90 %) of DPPC (Tm 41 °C) and HSPC (Tm 54.5 °C), as well as a constant molar ratio of MSPC (10 %), DSPE-mPEG2000 (4 %). The treatment efficacy was explored by using ultrasound as external hyperthermia (HT) (40-42℃) in mice bearing C26 murine colon carcinoma. All the formulations had an average diameter of around 110 nm, PDI ≤ 0.15, zeta potential of around -12 mV, and Dox encapsulation of >90 %. The cytotoxicity results indicated a higher IC50 value of Dox-LTSLs compared to the ThermoDox® (F0: DPPC:MSPC:DSPE-mPEG2000, 90:10:4), attributed to the faster Dox release in F0 formulation devoid of HSPC. Among various formulations, F25 (DPPC: MSPC: DSPE-mPEG2000: HSPC, 65:10:4:25) showed the highest cellular uptake at 42℃ and significantly improved the antitumor and survival efficacy in mice bearing C26 colon carcinoma in combination with ultrasonic HT compared to F0. Collectively, results demonstrated that optimizing the rigidity of the liposomal bilayers through the combinatorial selection of PLs of different transition temperatures could improve the plasma stability of the liposome, and hence ameliorate the outcome of therapy in assistance with an effective HT approach.
Collapse
Affiliation(s)
- Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Farhoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Vahdat-Lasemi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ameneh Sazgarnia
- Department of Medical Physics, Research Center of Medical Physics, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Tang Y, Zhu J, Flesch RCC, Jin T. Effect of proposed asynchronous injection strategy on the combination therapy of magnetic hyperthermia and thermosensitive liposome. J Therm Biol 2025; 127:104040. [PMID: 39765148 DOI: 10.1016/j.jtherbio.2024.104040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 02/24/2025]
Abstract
Magnetic nanoparticles (MNPs) used for magnetic hyperthermia can not only damage tumor cells after elevating to a specific temperature but also provide the temperature required for thermosensitive liposomes (TSL) to release doxorubicin (DOX). MNPs injected into tumor will generate heat under an alternating magnetic field, so the MNPs distribution can determine temperature distribution and further affect the DOX concentration used for tumor therapy. This study proposes an asynchronous injection strategy for this combination therapy in order to improve the DOX concentration value for drug therapy, in which the MNPs are injected into tumor after a certain lagging of TSL injection in order to increase the TSL concentration inside tumor. In addition, the evaluation of treatment effect for this combination therapy is implemented by considering two different MNPs concentration distributions and two biological heat transfer models. The simulation results demonstrate that the treatment effect for combination therapy can be significantly improved after considering the proposed asynchronous injection strategy, which can mainly attribute to the improvement of DOX concentration. The DOX concentration difference during therapy is generally relevant to both the lagging time of different injections and the local temperature distribution due to MNPs concentration distribution.
Collapse
Affiliation(s)
- Yundong Tang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350116, China.
| | - Jiajia Zhu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Rodolfo C C Flesch
- Departamento de Automação e Sistemas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Tao Jin
- College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
3
|
Bhandari A, Gu B, Kashkooli FM, Zhan W. Image-based predictive modelling frameworks for personalised drug delivery in cancer therapy. J Control Release 2024; 370:721-746. [PMID: 38718876 DOI: 10.1016/j.jconrel.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
Personalised drug delivery enables a tailored treatment plan for each patient compared to conventional drug delivery, where a generic strategy is commonly employed. It can not only achieve precise treatment to improve effectiveness but also reduce the risk of adverse effects to improve patients' quality of life. Drug delivery involves multiple interconnected physiological and physicochemical processes, which span a wide range of time and length scales. How to consider the impact of individual differences on these processes becomes critical. Multiphysics models are an open system that allows well-controlled studies on the individual and combined effects of influencing factors on drug delivery outcomes while accommodating the patient-specific in vivo environment, which is not economically feasible through experimental means. Extensive modelling frameworks have been developed to reveal the underlying mechanisms of drug delivery and optimise effective delivery plans. This review provides an overview of currently available models, their integration with advanced medical imaging modalities, and code packages for personalised drug delivery. The potential to incorporate new technologies (i.e., machine learning) in this field is also addressed for development.
Collapse
Affiliation(s)
- Ajay Bhandari
- Biofluids Research Lab, Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Boram Gu
- School of Chemical Engineering, Chonnam National University, Gwangju, Republic of Korea
| | | | - Wenbo Zhan
- School of Engineering, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
4
|
Tehrani MHH, Moradi Kashkooli F, Soltani M. Spatiotemporal modeling of nano-delivered chemotherapeutics for synergistic microwave ablation cancer therapy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 247:108102. [PMID: 38447317 DOI: 10.1016/j.cmpb.2024.108102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND AND OBJECTIVE The effectiveness of current microwave ablation (MWA) therapies is limited. Administration of thermosensitive liposomes (TSLs) which release drugs in response to heat has presented a significant potential for enhancing the efficacy of thermal ablation treatment, and the benefits of targeted drug delivery. However, a complete knowledge of the mechanobiological processes underlying the drug release process, especially the intravascular drug release mechanism and its distribution in response to MWA needs to be improved. Multiscale computational-based modeling frameworks, integrating different biophysical phenomena, have recently emerged as promising tools to decipher the mechanobiological events in combo therapies. The present study aims to develop a novel multiscale computational model of TSLs delivery following MWA implantation. METHODS Due to the complex interplay between the heating procedure and the drug concentration maps, a computational model is developed to determine the intravascular release of doxorubicin from TSL, its transvascular transport into the interstitium, transport in the interstitium, and cell uptake. Computational models can estimate the interplays among liposome and drug properties, tumor perfusion, and heating regimen to examine the impact of essential parameters and to optimize a targeted drug delivery platform. RESULTS Results indicated that the synergy of TSLs with MWA allows more localized drug delivery with lower side effects. The drug release rate and tumor permeability play crucial roles in the efficacy of TSLs during MWA treatment. The computational model predicted an unencapsulated drug lime around the ablated zone, which can destroy more cancer cells compared to MWA alone by 40%. Administration of TSLs with a high release rate capacity can improve the percentage of killed cancer cells by 24%. Since the heating duration in MWA is less than 15 min, the presented combination therapy showed better performance for highly permeable tumors. CONCLUSION This study highlights the potential of the proposed computational framework to address complex and realistic scenarios in cancer treatment, which can serve as the future research foundation, including advancements in nanomedicine and optimizing the pair of TSL and MWA for both preclinical and clinical studies. The present model could be as a valuable tool for patient-specific calibration of essential parameters.
Collapse
Affiliation(s)
- Masoud H H Tehrani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran Iran
| | | | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada; Centre for Biotechnology and Bioengineering, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
5
|
Gray MD, Spiers L, Coussios CC. Sound speed and attenuation of human pancreas and pancreatic tumors and their influence on focused ultrasound thermal and mechanical therapies. Med Phys 2024; 51:809-825. [PMID: 37477551 DOI: 10.1002/mp.16622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND There is increasing interest in using ultrasound for thermal ablation, histotripsy, and thermal or cavitational enhancement of drug delivery for the treatment of pancreatic cancer. Ultrasonic and thermal modelling conducted as part of the treatment planning process requires acoustic property values for all constituent tissues, but the literature contains no data for the human pancreas. PURPOSE This study presents the first acoustic property measurements of human pancreatic samples and provides examples of how these properties impact a broad range of ultrasound therapies. METHODS Data were collected on human pancreatic tissue samples at physiological temperature from 23 consented patients in cooperation with a hospital pathology laboratory. Propagation of ultrasound over the 2.1-4.5 MHz frequency range through samples of various thicknesses and pathologies was measured using a set of custom-built ultrasonic calipers, with the data processed to estimate sound speed and attenuation. The results were used in acoustic and thermal simulations to illustrate the impacts on extracorporeal ultrasound therapies for mild hyperthermia, thermal ablation, and histotripsy implemented with a CE-marked clinical system operating at 0.96 MHz. RESULTS The mean sound speed and attenuation coefficient values for human samples were well below the range of values in the literature for non-human pancreata, while the human attenuation power law exponents were substantially higher. The simulated impacts on ultrasound mediated therapies for the pancreas indicated that when using the human data instead of the literature average, there was a 30% reduction in median temperature elevation in the treatment volume for mild hyperthermia and 43% smaller volume within a 60°C contour for thermal ablation, all driven by attenuation. By comparison, impacts on boiling and intrinsic threshold histotripsy were minor, with peak pressures changing by less than 15% (positive) and 1% (negative) as a consequence of the counteracting effects of attenuation and sound speed. CONCLUSION This study provides the most complete set of speed of sound and attenuation data available for the human pancreas, and it reiterates the importance of acoustic material properties in the planning and conduct of ultrasound-mediated procedures, particularly thermal therapies.
Collapse
Affiliation(s)
- Michael D Gray
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Laura Spiers
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | | |
Collapse
|
6
|
Moradi Kashkooli F, Hornsby TK, Kolios MC, Tavakkoli JJ. Ultrasound-mediated nano-sized drug delivery systems for cancer treatment: Multi-scale and multi-physics computational modeling. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1913. [PMID: 37475577 DOI: 10.1002/wnan.1913] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 07/22/2023]
Abstract
Computational modeling enables researchers to study and understand various complex biological phenomena in anticancer drug delivery systems (DDSs), especially nano-sized DDSs (NSDDSs). The combination of NSDDSs and therapeutic ultrasound (TUS), that is, focused ultrasound and low-intensity pulsed ultrasound, has made significant progress in recent years, opening many opportunities for cancer treatment. Multiple parameters require tuning and optimization to develop effective DDSs, such as NSDDSs, in which mathematical modeling can prove advantageous. In silico computational modeling of ultrasound-responsive DDS typically involves a complex framework of acoustic interactions, heat transfer, drug release from nanoparticles, fluid flow, mass transport, and pharmacodynamic governing equations. Owing to the rapid development of computational tools, modeling the different phenomena in multi-scale complex problems involved in drug delivery to tumors has become possible. In the present study, we present an in-depth review of recent advances in the mathematical modeling of TUS-mediated DDSs for cancer treatment. A detailed discussion is also provided on applying these computational models to improve the clinical translation for applications in cancer treatment. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
| | - Tyler K Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Wang Y, Yin Z, Gao L, Ma B, Shi J, Chen H. Lipid Nanoparticles-Based Therapy in Liver Metastasis Management: From Tumor Cell-Directed Strategy to Liver Microenvironment-Directed Strategy. Int J Nanomedicine 2023; 18:2939-2954. [PMID: 37288351 PMCID: PMC10243353 DOI: 10.2147/ijn.s402821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023] Open
Abstract
Metastasis to the liver, as one of the most frequent metastatic patterns, was associated with poor prognosis. Major drawbacks of conventional therapies in liver metastasis were the lack of metastatic-targeting ability, predominant systemic toxicities and incapability of tumor microenvironment modulations. Lipid nanoparticles-based strategies like galactosylated, lyso-thermosensitive or active-targeting chemotherapeutics liposomes have been explored in liver metastasis management. This review aimed to summarize the state-of-art lipid nanoparticles-based therapies in liver metastasis management. Clinical and translational studies on the lipid nanoparticles in treating liver metastasis were searched up to April, 2023 from online databases. This review focused not only on the updates in drug-encapsulated lipid nanoparticles directly targeting metastatic cancer cells in treating liver metastasis, but more importantly on research frontiers in drug-loading lipid nanoparticles targeting nonparenchymal liver tumor microenvironment components in treating liver metastasis, which showed promise for future clinical oncological practice.
Collapse
Affiliation(s)
- Yuhan Wang
- Lanzhou University Second Hospital, Lanzhou, 730030, People’s Republic of China
| | - Zhenyu Yin
- Lanzhou University Second Hospital, Lanzhou, 730030, People’s Republic of China
| | - Lei Gao
- Lanzhou University Second Hospital, Lanzhou, 730030, People’s Republic of China
| | - Bin Ma
- Lanzhou University Second Hospital, Lanzhou, 730030, People’s Republic of China
| | - Jianming Shi
- Lanzhou University Second Hospital, Lanzhou, 730030, People’s Republic of China
| | - Hao Chen
- Department of Surgical Oncology, Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, People’s Republic of China
| |
Collapse
|
8
|
Regenold M, Wang X, Kaneko K, Bannigan P, Allen C. Harnessing immunotherapy to enhance the systemic anti-tumor effects of thermosensitive liposomes. Drug Deliv Transl Res 2023; 13:1059-1073. [PMID: 36577832 DOI: 10.1007/s13346-022-01272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 12/29/2022]
Abstract
Chemotherapy plays an important role in debulking tumors in advance of surgery and/or radiotherapy, tackling residual disease, and treating metastatic disease. In recent years many promising advanced drug delivery strategies have emerged that offer more targeted delivery approaches to chemotherapy treatment. For example, thermosensitive liposome-mediated drug delivery in combination with localized mild hyperthermia can increase local drug concentrations resulting in a reduction in systemic toxicity and an improvement in local disease control. However, the majority of solid tumor-associated deaths are due to metastatic spread. A therapeutic approach focused on a localized target area harbors the risk of overlooking and undertreating potential metastatic spread. Previous studies reported systemic, albeit limited, anti-tumor effects following treatment with thermosensitive liposomal chemotherapy and localized mild hyperthermia. This work explores the systemic treatment capabilities of a thermosensitive liposome formulation of the vinca alkaloid vinorelbine in combination with mild hyperthermia in an immunocompetent murine model of rhabdomyosarcoma. This treatment approach was found to be highly effective at heated, primary tumor sites. However, it demonstrated limited anti-tumor effects in secondary, distant tumors. As a result, the addition of immune checkpoint inhibition therapy was pursued to further enhance the systemic anti-tumor effect of this treatment approach. Once combined with immune checkpoint inhibition therapy, a significant improvement in systemic treatment capability was achieved. We believe this is one of the first studies to demonstrate that a triple combination of thermosensitive liposomes, localized mild hyperthermia, and immune checkpoint inhibition therapy can enhance the systemic treatment capabilities of thermosensitive liposomes.
Collapse
Affiliation(s)
- Maximilian Regenold
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Xuehan Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Kan Kaneko
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Pauric Bannigan
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
9
|
Haemmerich D, Ramajayam KK, Newton DA. Review of the Delivery Kinetics of Thermosensitive Liposomes. Cancers (Basel) 2023; 15:cancers15020398. [PMID: 36672347 PMCID: PMC9856714 DOI: 10.3390/cancers15020398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Thermosensitive liposomes (TSL) are triggered nanoparticles that release the encapsulated drug in response to hyperthermia. Combined with localized hyperthermia, TSL enabled loco-regional drug delivery to tumors with reduced systemic toxicities. More recent TSL formulations are based on intravascular triggered release, where drug release occurs within the microvasculature. Thus, this delivery strategy does not require enhanced permeability and retention (EPR). Compared to traditional nanoparticle drug delivery systems based on EPR with passive or active tumor targeting (typically <5%ID/g tumor), TSL can achieve superior tumor drug uptake (>10%ID/g tumor). Numerous TSL formulations have been combined with various drugs and hyperthermia devices in preclinical and clinical studies over the last four decades. Here, we review how the properties of TSL dictate delivery and discuss the advantages of rapid drug release from TSL. We show the benefits of selecting a drug with rapid extraction by tissue, and with quick cellular uptake. Furthermore, the optimal characteristics of hyperthermia devices are reviewed, and impact of tumor biology and cancer cell characteristics are discussed. Thus, this review provides guidelines on how to improve drug delivery with TSL by optimizing the combination of TSL, drug, and hyperthermia method. Many of the concepts discussed are applicable to a variety of other triggered drug delivery systems.
Collapse
Affiliation(s)
- Dieter Haemmerich
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
- Correspondence:
| | - Krishna K. Ramajayam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Danforth A. Newton
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
10
|
Analysis of Magneto-Hyperthermia Duration in Nano-sized Drug Delivery System to Solid Tumors Using Intravascular-Triggered Thermosensitive-Liposome. Pharm Res 2022; 39:753-765. [DOI: 10.1007/s11095-022-03255-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
|
11
|
Extracorporeal Removal of Thermosensitive Liposomal Doxorubicin from Systemic Circulation after Tumor Delivery to Reduce Toxicities. Cancers (Basel) 2022; 14:cancers14051322. [PMID: 35267630 PMCID: PMC8909191 DOI: 10.3390/cancers14051322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/02/2023] Open
Abstract
Thermosensitive liposomal doxorubicin (TSL-Dox) combined with localized hyperthermia enables targeted drug delivery. Tumor drug uptake occurs only during hyperthermia. We developed a novel method for removal of systemic TSL-Dox remaining after hyperthermia-triggered delivery to reduce toxicities. The carotid artery and jugular vein of Norway brown rats carrying two subcutaneous BN-175 tumors were catheterized. After allowing the animals to recover, TSL-Dox was infused at 7 mg/kg dose. Drug delivery to one of the tumors was performed by inducing 15 min microwave hyperthermia (43 °C). At the end of hyperthermia, an extracorporeal circuit (ECC) comprising a heating module to release drug from TSL-Dox followed by an activated carbon filter to remove free drug was established for 1 h (n = 3). A computational model simulated TSL-Dox pharmacokinetics, including ECC filtration, and predicted cardiac Dox uptake. In animals receiving ECC, we were able to remove 576 ± 65 mg of Dox (29.7 ± 3.7% of the infused dose) within 1 h, with a 2.9-fold reduction of plasma AUC. Fluorescent monitoring enabled real-time quantification of blood concentration and removed drug. Computational modeling predicted that up to 59% of drug could be removed with an ideal filter, and that cardiac uptake can be reduced up to 7×. We demonstrated removal of drug remaining after tumor delivery, reduced plasma AUC, and reduced cardiac uptake, suggesting reduced toxicity.
Collapse
|
12
|
Sebeke L, Gómez JDC, Heijman E, Rademann P, Maul AC, Ekdawi S, Vlachakis S, Toker D, Mink BL, Schubert-Quecke C, Yeo SY, Schmidt P, Lucas C, Brodesser S, Hossann M, Lindner LH, Grüll H. Hyperthermia-induced doxorubicin delivery from thermosensitive liposomes via MR-HIFU in a pig model. J Control Release 2022; 343:798-812. [DOI: 10.1016/j.jconrel.2022.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 12/17/2022]
|
13
|
Ramajayam KK, Newton DA, Haemmerich D. Selecting ideal drugs for encapsulation in thermosensitive liposomes and other triggered nanoparticles. Int J Hyperthermia 2022; 39:998-1009. [PMID: 35876089 PMCID: PMC9774053 DOI: 10.1080/02656736.2022.2086303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Thermosensitive liposomes (TSL) and other triggered drug delivery systems (DDS) are promising therapeutic strategies for targeted drug delivery. However, successful designs with candidate drugs depend on many variables, including nanoparticle formulation, drug properties, and cancer cell properties. We developed a computational model based on experimental data to predict the potential efficacies of drugs when used with triggered DDS, such as TSL. METHODS A computer model based on the Krogh cylinder was developed to predict uptake and cell survival with four anthracyclines when delivered by intravascular triggered DDS (e.g., TSL): doxorubicin (DOX), idarubicin (IDA), pirarubicin (PIR), and aclarubicin (ACLA). We simulated three tumor types derived from SVR angiosarcoma, LLC lung cancer, or SCC-1 oral carcinoma cells. In vitro cellular drug uptake and cytotoxicity data were obtained experimentally and incorporated into the model. RESULTS For all three cell lines, ACLA and IDA had the fastest cell uptake, with slower uptake for DOX and PIR. Cytotoxicity was highest for IDA and lowest for ACLA. The computer model predicted the highest tumor drug uptake for ACLA and IDA, resulting from their rapid cell uptake. Overall, IDA was most effective and produced the lowest tumor survival fraction, with DOX being the second best. Perivascular drug penetration was reduced for drugs with rapid cell uptake, potentially limiting delivery to cancer cells distant from the vasculature. CONCLUSION Combining simple in vitro experiments with a computer model could provide a powerful screening tool to evaluate the potential efficacy of candidate investigative drugs preceding TSL encapsulation and in vivo studies.
Collapse
Affiliation(s)
- Krishna K. Ramajayam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425
| | - Danforth A. Newton
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425
| | - Dieter Haemmerich
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425,Corresponding author: (D. Haemmerich)
| |
Collapse
|
14
|
Tehrani MHH, Soltani M, Moradi Kashkooli F, Mahmoudi M, Raahemifar K. Computational Modeling of Combination of Magnetic Hyperthermia and Temperature-Sensitive Liposome for Controlled Drug Release in Solid Tumor. Pharmaceutics 2021; 14:35. [PMID: 35056931 PMCID: PMC8778939 DOI: 10.3390/pharmaceutics14010035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Combination therapy, a treatment modality that combines two or more therapeutic methods, provides a novel pathway for cancer treatment, as it targets the region of interest (ROI) in a characteristically synergistic or additive manner. To date, liposomes are the only nano-drug delivery platforms that have been used in clinical trials. Here, we speculated that it could be promising to improve treatment efficacy and reduce side effects by intravenous administration of thermo-sensitive liposomes loaded with doxorubicin (TSL-Dox) during magnetic hyperthermia (MHT). A multi-scale computational model using the finite element method was developed to simulate both MHT and temperature-sensitive liposome (TSL) delivery to a solid tumor to obtain spatial drug concentration maps and temperature profiles. The results showed that the killing rate of MHT alone was about 15%, which increased to 50% using the suggested combination therapy. The results also revealed that this combination treatment increased the fraction of killed cells (FKCs) inside the tumor compared to conventional chemotherapy by 15% in addition to reducing side effects. Furthermore, the impacts of vessel wall pore size, the time interval between TSL delivery and MHT, and the initial dose of TSLs were also investigated. A considerable reduction in drug accumulation was observed in the tumor by decreasing the vessel wall pore size of the tumor. The results also revealed that the treatment procedure plays an essential role in the therapeutic potential of anti-cancer drugs. The results suggest that the administration of MHT can be beneficial in the TSL delivery system and that it can be employed as a guideline for upcoming preclinical studies.
Collapse
Affiliation(s)
- Masoud H. H. Tehrani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (M.H.H.T.); (F.M.K.)
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (M.H.H.T.); (F.M.K.)
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran 14176-14411, Iran
| | - Farshad Moradi Kashkooli
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (M.H.H.T.); (F.M.K.)
| | - Mohammadreza Mahmoudi
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85287, USA;
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, Pennsylvania, PA 16801, USA;
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
15
|
Ramajayam KK, Wolfe AM, Motamarry A, Nahhas GJ, Yost J, Yost MJ, Haemmerich D. Untargeted Large Volume Hyperthermia Reduces Tumor Drug Uptake From Thermosensitive Liposomes. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2021; 2:187-197. [PMID: 34734189 PMCID: PMC8562592 DOI: 10.1109/ojemb.2021.3078843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Goal: The impact of hyperthermia (HT) method on tumor drug uptake with thermosensitive liposomes (TSL) is not well understood. Methods: We created realistic three-dimensional (3-D) computer models that simulate TSL-encapsulated doxorubicin (TSL-DOX) delivery in mouse tumors with three HT methods (thermistor probe (T), laser (L) and water bath (WB), at 15 min and 60 min HT duration), with corroborating in vivo studies. Results: Average computer model-predicted tumor drug concentrations (μg/g) were 8.8(T, 15 min), 21.0(T, 60 min), 14.1(L, 15 min), 25.2(L, 60 min), 9.4(WB, 15 min), and 8.7(WB, 60 min). Tumor fluorescence was increased by 2.6 × (T) and 1.6 × (L) when HT duration was extended from 15 to 60 min (p < 0.05), with no increase for WB HT. Pharmacokinetic analysis confirmed that water bath HT causes rapid depletion of encapsulated TSL-DOX in systemic circulation due to the large heated tissue volume. Conclusions: Untargeted large volume HT causes poor tumor drug uptake from TSL.
Collapse
Affiliation(s)
- Krishna K Ramajayam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425 USA
| | - A Marissa Wolfe
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401 USA
| | - Anjan Motamarry
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Georges J Nahhas
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425 USA.,Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425 USA
| | - John Yost
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Michael J Yost
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Dieter Haemmerich
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425 USA
| |
Collapse
|
16
|
Borys N, Dewhirst MW. Drug development of lyso-thermosensitive liposomal doxorubicin: Combining hyperthermia and thermosensitive drug delivery. Adv Drug Deliv Rev 2021; 178:113985. [PMID: 34555486 DOI: 10.1016/j.addr.2021.113985] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/13/2020] [Accepted: 09/16/2021] [Indexed: 11/24/2022]
Abstract
We review the drug development of lyso-thermosensitive liposomal doxorubicin (LTLD) which is the first heat-activated formulation of a liposomal drug carrier to be utilized in human clinical trials. This class of compounds is designed to carry a payload of a cytotoxic agent and adequately circulate in order to accumulate at a tumor that is being heated. At the target the carrier is activated by heat and releases its contents at high concentrations. We summarize the preclinical and clinical experience of LTLD including its successes and challenges in the development process.
Collapse
|
17
|
Drug transport kinetics of intravascular triggered drug delivery systems. Commun Biol 2021; 4:920. [PMID: 34321602 PMCID: PMC8319190 DOI: 10.1038/s42003-021-02428-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/05/2021] [Indexed: 01/17/2023] Open
Abstract
Intravascular triggered drug delivery systems (IV-DDS) for local drug delivery include various stimuli-responsive nanoparticles that release the associated agent in response to internal (e.g., pH, enzymes) or external stimuli (e.g., temperature, light, ultrasound, electromagnetic fields, X-rays). We developed a computational model to simulate IV-DDS drug delivery, for which we quantified all model parameters in vivo in rodent tumors. The model was validated via quantitative intravital microscopy studies with unencapsulated fluorescent dye, and with two formulations of temperature-sensitive liposomes (slow, and fast release) encapsulating a fluorescent dye as example IV-DDS. Tumor intra- and extravascular dye concentration dynamics were extracted from the intravital microscopy data by quantitative image processing, and were compared to computer model results. Via this computer model we explain IV-DDS delivery kinetics and identify parameters of IV-DDS, of drug, and of target tissue for optimal delivery. Two parameter ratios were identified that exclusively dictate how much drug can be delivered with IV-DDS, indicating the importance of IV-DDS with fast drug release (~sec) and choice of a drug with rapid tissue uptake (i.e., high first-pass extraction fraction). The computational model thus enables engineering of improved future IV-DDS based on tissue parameters that can be quantified by imaging. Ten Hagen et al. developed a computational model to simulate intravascular triggered drug delivery systems (IV-DDS), which they validated using quantitative intravital microscopy in mice. Their model potentially enables the engineering of more efficacious IV-DDS based on parameters that can be quantified by imaging.
Collapse
|
18
|
Sang R, Stratton B, Engel A, Deng W. Liposome technologies towards colorectal cancer therapeutics. Acta Biomater 2021; 127:24-40. [PMID: 33812076 DOI: 10.1016/j.actbio.2021.03.055] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the fourth most common deadly cancer worldwide. After treatment with curative intent recurrence rates vary with staging 0-13% in Stage 1, 11-61% in S2 and 28-73% in Stage 3. The toxicity to healthy tissues from chemotherapy and radiotherapy and drug resistance severely affect the quality of life and cancer specific outcomes of CRC patients. To overcome some of these limitations, many efforts have been made to develop nanomaterial-based drug delivery systems. Among these nanocarriers, liposomes represented one of the most successful candidates in delivering targeted oncological treatment, improving safety profile and therapeutic efficacy of encapsulated drugs. In this review we will discuss liposome design with a particular focus on the targeting feature and triggering functions. We will also summarise the recent advances in liposomal delivery system for CRC treatment in both the preclinical and clinical studies. We will finally provide our perspectives on the liposome technology development for the future clinical translation. STATEMENT OF SIGNIFICANCE: Conventional treatments for colorectal cancer (CRC) severely affect the therapeutic effects for advanced patients. With the development of nanomedicines, liposomal delivery system appears to be one of the most promising nanocarriers for CRC treatment. In last three years several reviews in this area have been published focusing on the preclinical research and drug delivery function, which is a fairly narrow focus in the field of liposome technology for CRC therapy. Our review presented the most recent advances of the liposome technology (both clinical and preclinical applications) for CRC with strong potential for further clinical translation. We believe it will attract lots of attention from various audiences, including researchers, clinicians and the industry.
Collapse
|
19
|
Moradi Kashkooli F, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J Control Release 2020; 327:316-349. [PMID: 32800878 DOI: 10.1016/j.jconrel.2020.08.012] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
Advances in nanomedicine, including early cancer detection, targeted drug delivery, and personalized approaches to cancer treatment are on the rise. For example, targeted drug delivery systems can improve intracellular delivery because of their multifunctionality. Novel endogenous-based and exogenous-based stimulus-responsive drug delivery systems have been proposed to prevent the cancer progression with proper drug delivery. To control effective dose loading and sustained release, targeted permeability and individual variability can now be described in more-complex ways, such as by combining internal and external stimuli. Despite these advances in release control, certain challenges remain and are identified in this research, which emphasizes the control of drug release and applications of nanoparticle-based drug delivery systems. Using a multiscale and multidisciplinary approach, this study investigates and analyzes drug delivery and release strategies in the nanoparticle-based treatment of cancer, both mathematically and clinically.
Collapse
Affiliation(s)
- Farshad Moradi Kashkooli
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada..
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada; Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
20
|
Paulides M, Dobsicek Trefna H, Curto S, Rodrigues D. Recent technological advancements in radiofrequency- andmicrowave-mediated hyperthermia for enhancing drug delivery. Adv Drug Deliv Rev 2020; 163-164:3-18. [PMID: 32229271 DOI: 10.1016/j.addr.2020.03.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/23/2022]
Abstract
Hyperthermia therapy is a potent enhancer of chemotherapy and radiotherapy. In particular, microwave (MW) and radiofrequency (RF) hyperthermia devices provide a variety of heating approaches that can treat most cancers regardless the size. This review introduces the physics of MW/RF hyperthermia, the current state-of-the-art systems for both localized and regional heating, and recent advancements in hyperthermia treatment guidance using real-time computational simulations and magnetic resonance thermometry. Clinical trials involving RF/MW hyperthermia as adjuvant for chemotherapy are also presented per anatomical site. These studies favor the use of adjuvant hyperthermia since it significantly improves curative and palliative clinical outcomes. The main challenge of hyperthermia is the distribution of state-of-the-art heating systems. Nevertheless, we anticipate that recent technology advances will expand the use of hyperthermia to chemotherapy centers for enhanced drug delivery. These new technologies hold great promise not only for (image-guided) perfusion modulation and sensitization for cytotoxic drugs, but also for local delivery of various compounds using thermosensitive liposomes.
Collapse
|
21
|
Seynhaeve A, Amin M, Haemmerich D, van Rhoon G, ten Hagen T. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Deliv Rev 2020; 163-164:125-144. [PMID: 32092379 DOI: 10.1016/j.addr.2020.02.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022]
Abstract
Chemotherapy is a cornerstone of cancer therapy. Irrespective of the administered drug, it is crucial that adequate drug amounts reach all cancer cells. To achieve this, drugs first need to be absorbed, then enter the blood circulation, diffuse into the tumor interstitial space and finally reach the tumor cells. Next to chemoresistance, one of the most important factors for effective chemotherapy is adequate tumor drug uptake and penetration. Unfortunately, most chemotherapeutic agents do not have favorable properties. These compounds are cleared rapidly, distribute throughout all tissues in the body, with only low tumor drug uptake that is heterogeneously distributed within the tumor. Moreover, the typical microenvironment of solid cancers provides additional hurdles for drug delivery, such as heterogeneous vascular density and perfusion, high interstitial fluid pressure, and abundant stroma. The hope was that nanotechnology will solve most, if not all, of these drug delivery barriers. However, in spite of advances and decades of nanoparticle development, results are unsatisfactory. One promising recent development are nanoparticles which can be steered, and release content triggered by internal or external signals. Here we discuss these so-called smart drug delivery systems in cancer therapy with emphasis on mild hyperthermia as a trigger signal for drug delivery.
Collapse
|
22
|
Mesenchymal stem cells used as carrier cells of oncolytic adenovirus results in enhanced oncolytic virotherapy. Sci Rep 2020; 10:425. [PMID: 31949228 PMCID: PMC6965634 DOI: 10.1038/s41598-019-57240-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 12/21/2019] [Indexed: 11/28/2022] Open
Abstract
Mesenchymal stem cells (MSCs) loaded with oncolytic viruses are presently being investigated as a new modality of advanced/metastatic tumors treatment and enhancement of virotherapy. MSCs can, however, either promote or suppress tumor growth. To address the critical question of how MSCs loaded with oncolytic viruses affect virotherapy outcomes and tumor growth patterns in a tumor microenvironment, we developed and analyzed an integrated mathematical-experimental model. We used the model to describe both the growth dynamics in our experiments of firefly luciferase-expressing Hep3B tumor xenografts and the effects of the immune response during the MSCs-based virotherapy. We further employed it to explore the conceptual clinical feasibility, particularly, in evaluating the relative significance of potential immune promotive/suppressive mechanisms induced by MSCs loaded with oncolytic viruses. We were able to delineate conditions which may significantly contribute to the success or failure of MSC-based virotherapy as well as generate new hypotheses. In fact, one of the most impactful outcomes shown by this investigation, not inferred from the experiments alone, was the initially counter-intuitive fact that using tumor-promoting MSCs as carriers is not only helpful but necessary in achieving tumor control. Considering the fact that it is still currently a controversial debate whether MSCs exert a pro- or anti-tumor action, mathematical models such as this one help to quantitatively predict the consequences of using MSCs for delivering virotherapeutic agents in vivo. Taken together, our results show that MSC-mediated systemic delivery of oncolytic viruses is a promising strategy for achieving synergistic anti-tumor efficacy with improved safety profiles.
Collapse
|
23
|
Mathematical Modeling of Breast Tumor Destruction Using Fast Heating during Radiofrequency Ablation. MATERIALS 2019; 13:ma13010136. [PMID: 31905651 PMCID: PMC6982058 DOI: 10.3390/ma13010136] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/20/2023]
Abstract
In oncology, hyperthermia is understood as a planned, controlled technique of heating cancerous changes in order to destroy their cells or stop their growth. In clinical practice, hyperthermia is used in combination with radiotherapy, chemotherapy, or immunological therapy. During the hyperthermia, the tissue is typically exposed to a temperature in the range of 40–45 °C, the exception is thermoablation, during which the temperatures reach much higher values. Thermoablation is characterized by the use of high temperatures up to 90 °C. The electrode using the radiofrequency is inserted into the central area of the tumor. Interstitial thermoablation is used to treat, among others, breast and brain cancer. The therapy consists of inducing coagulation necrosis in an area that is heated to very high temperatures. Mathematical modeling is based on the use of a coupled thermo-electric model, in which the electric field is described by means of the Laplace equation, while the temperature field is based on the Pennes equation. Coupling occurs at the level of the additional source function in the Pennes equation. The temperature field obtained in this way makes it possible to calculate the Arrhenius integral as a determinant of the destruction of biological tissue. As a result of numerical calculations regarding the temperature field and the Arrhenius integral, it can be concluded that, with the help of numerical tools and mathematical modeling, one can simulate the process of destroying cancerous tissue.
Collapse
|
24
|
Kodama H, Shamay Y, Kimura Y, Shah J, Solomon SB, Heller D, Srimathveeravalli G. Electroporation-induced changes in tumor vasculature and microenvironment can promote the delivery and increase the efficacy of sorafenib nanoparticles. Bioelectrochemistry 2019; 130:107328. [PMID: 31306879 PMCID: PMC6859646 DOI: 10.1016/j.bioelechem.2019.107328] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023]
Abstract
Blood vessels, the extracellular space, and the cell membrane represent physiologic barriers to nanoparticle-based drug delivery for cancer therapy. We demonstrate that electroporation (EP) can assist in the delivery of dye stabilized sorafenib nanoparticles (SFB-IR783) by increasing the permeability of endothelial monolayers, improving diffusion through the extracellular space in tumorspheres, and by disrupting plasma membrane function in cancer cells. These changes occur in a dose-dependent fashion, increasing proportionally with electric field strength. Cell death from irreversible electroporation (IRE) was observed to contribute to the persistent transport of SFB-IR783 through these physiologic barriers. In a model of mice bearing bilateral xenograft HCT116 colorectal tumors, treatment with EP resulted in the immediate and increased uptake of SFB-IR783 when compared with the untreated contralateral tumor. The uptake of SFB-IR783 was independent of direct transfection of cells through EP and was mediated by changes in vascular permeability and extracellular diffusion. The combination of EP and SFB-IR783 was observed to result in 40% reduction in mean tumor diameter when compared with sham treatment (p < .05) at the time of sacrifice, which was not observed in cohorts treated with EP alone or SFB-IR783 alone. Treatment of tumor with EP can augment the uptake and increase the efficacy of nanoparticle therapy.
Collapse
Affiliation(s)
- Hiroshi Kodama
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Yosef Shamay
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yasushi Kimura
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA
| | - Janki Shah
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Stephen B Solomon
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Daniel Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, USA.
| | - Govindarajan Srimathveeravalli
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA; Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
25
|
Thermosensitive Liposome-Mediated Drug Delivery in Chemotherapy: Mathematical Modelling for Spatio-temporal Drug Distribution and Model-Based Optimisation. Pharmaceutics 2019; 11:pharmaceutics11120637. [PMID: 31795486 PMCID: PMC6955700 DOI: 10.3390/pharmaceutics11120637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/17/2022] Open
Abstract
Thermosensitive liposome-mediated drug delivery has shown promising results in terms of improved therapeutic efficacy and reduced side effects compared to conventional chemotherapeutics. In order to facilitate our understanding of the transport mechanisms and their complex interplays in the drug delivery process, computational models have been developed to simulate the multiple steps involved in liposomal drug delivery to solid tumours. In this study we employ a multicompartmental model for drug-loaded thermosensitive liposomes, with an aim to identify the key transport parameters in determining therapeutic dosing and outcomes. The computational model allows us to not only examine the temporal and spatial variations of drug concentrations in the different compartments by utilising the tumour cord concept, but also assess the therapeutic efficacy and toxicity. In addition, the influences of key factors on systemic plasma concentration and intracellular concentration of the active drug are investigated; these include different chemotherapy drugs, release rate constants and heating duration. Our results show complex relationships between these factors and the predicted therapeutic outcome, making it difficult to identify the "best" parameter set. To overcome this challenge, a model-based optimisation method is proposed in an attempt to find a set of release rate constants and heating duration that can maximise intracellular drug concentration while minimising systemic drug concentration. Optimisation results reveal that under the operating conditions and ranges examined, the best outcome would be achieved with a low drug release rate at physiological temperature, combined with a moderate to high release rate at mild hyperthermia and 1 h heating after injection.
Collapse
|
26
|
Sun S, Sun S, Sun Y, Wang P, Zhang J, Du W, Wang S, Liang X. Bubble-Manipulated Local Drug Release from a Smart Thermosensitive Cerasome for Dual-Mode Imaging Guided Tumor Chemo-Photothermal Therapy. Theranostics 2019; 9:8138-8154. [PMID: 31754386 PMCID: PMC6857040 DOI: 10.7150/thno.36762] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/03/2019] [Indexed: 01/10/2023] Open
Abstract
Thermosensitive liposomes have demonstrated great potential for tumor-specific chemotherapy. Near infrared (NIR) dyes loaded liposomes have also shown improved photothermal effect in cancer theranostics. However, the instability of liposomes often causes premature release of drugs or dyes, impeding their antitumor efficacy. Herein, we fabricated a highly stable thermo-responsive bubble-generating liposomal nanohybrid cerasome with a silicate framework, combined with a NIR dye to achieve NIR light stimulated, tumor-specific, chemo-photothermal synergistic therapy. Methods: In this system, NIR dye of 1,1'-Dioctadecyl-3,3,3',3'- Tetramethylindotricarbocyanine iodide (DiR) with long carbon chains was self-assembled with a cerasome-forming lipid (CFL) to encapsulate ammonium bicarbonate (ABC), which was further used for actively loading doxorubicin (DOX), affording a thermosensitive and photosensitive DOX-DiR@cerasome (ABC). Results: The resulting cerasome could disperse well in different media. Upon NIR light mediated thermal effect, ABC was decomposed to generate CO2 bubbles, resulting in a permeable channel in the cerasome bilayer that significantly enhanced DOX release. After intravenous injection into tumor-bearing mice, DOX-DiR@cerasome (ABC) could be efficiently accumulated at the tumor tissue, as monitored by DiR fluorescence, lasting for more than 5 days. NIR light irradiation was then performed at 36h to locally heat the tumors, resulting in immediate CO2 bubble generation, which could be clearly detected by ultrasound imaging, facilitating the monitoring process of controlled release of the drug. Significant antitumor efficacy could be obtained for the DOX-DiR@cerasome (ABC) + laser group, which was further confirmed by tumor tissue histological analysis.
Collapse
Affiliation(s)
- Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Sujuan Sun
- Ordos Center Hospital, Ordos 017000, Inner Mongolia, China
| | - Yan Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Ping Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Jianlun Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Wenjing Du
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Shumin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
- Ordos Center Hospital, Ordos 017000, Inner Mongolia, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| |
Collapse
|
27
|
Kozlovskaya V, Liu F, Yang Y, Ingle K, Qian S, Halade GV, Urban VS, Kharlampieva E. Temperature-Responsive Polymersomes of Poly(3-methyl- N-vinylcaprolactam)- block-poly( N-vinylpyrrolidone) To Decrease Doxorubicin-Induced Cardiotoxicity. Biomacromolecules 2019; 20:3989-4000. [PMID: 31503464 DOI: 10.1021/acs.biomac.9b01026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite being one of the most potent chemotherapeutics, doxorubicin (DOX) facilitates cardiac toxicity by irreversibly damaging the cardiac muscle as well as severely dysregulating the immune system and impairing the resolution of cardiac inflammation. Herein, we report synthesis and aqueous self-assembly of nanosized polymersomes from temperature-responsive poly(3-methyl-N-vinylcaprolactam)-block-poly(N-vinylpyrrolidone) (PMVC-PVPON) diblock copolymers and demonstrate their potential to minimize DOX cardiotoxicity compared to liposomal DOX. RAFT polymerization of vinylpyrrolidone and 3-methyl-N-vinylcaprolactam, which are structurally similar monomers but have drastically different hydrophobicity, allows decreasing the cloud point of PMVCm-PVPONn copolymers below 20 °C. The lower critical solution temperature (LCST) of the PMVC58-PVPONn copolymer varied from 19.2 to 18.6 and to 15.2 °C by decreasing the length of the hydrophilic PVPONn block from n = 98 to n = 65 and to n = 20, respectively. The copolymers assembled into stable vesicles at room temperature when PVPON polymerization degrees were 65 and 98. Anticancer drug DOX was entrapped with high efficiency into the aqueous PMVC58-PVPON65 polymersomal core surrounded by the hydrophobic temperature-sensitive PMVC shell and the hydrophilic PVPON corona. Unlike many liposomal, micellar, or synthetic drug delivery systems, these polymersomes exhibit an exceptionally high loading capacity of DOX (49%) and encapsulation efficiency (95%) due to spontaneous loading of the drug at room temperature from aqueous DOX solution. We also show that C57BL/6J mice injected with the lethal dose of DOX at 15 mg kg-1 did not survive the 14 day treatment, resulting in 100% mortality. The DOX-loaded PMVC58-PVPON65 polymersomes did not cause any mortality in mice indicating that they can be used for successful DOX encapsulation. The gravimetric analyses of the animal organs from mice treated with liposome-encapsulated DOX (Lipo-DOX) and PMVC58-PVPON65 polymersomes (Poly-DOX) revealed that the Lipo-DOX injection caused some toxicity manifesting as decreased body weight compared to Poly-DOX and saline control. Masses of the left ventricle of the heart, lung, and spleen reduced in the Lipo-DOX-treated mice compared to the nontoxic saline control, while no significant decrease of those masses was observed for the Poly-DOX-treated mice. Our results provide evidence for superior stability of synthetic polymersomes in vivo and show promise for the development of next-generation drug carriers with minimal side effects.
Collapse
Affiliation(s)
| | | | | | | | - Shuo Qian
- Neutron Scattering Division, Neutron Sciences Directorate , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | | | - Volker S Urban
- Neutron Scattering Division, Neutron Sciences Directorate , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | | |
Collapse
|
28
|
Abstract
Liposomes have been employed as cancer therapy clinically since the 1990s, with the primary benefit of reduced toxicity but no appreciable efficacy improvement. Thermosensitive liposomes (TSLs) are specifically formulated such that they release the encapsulated drug when exposed to hyperthermic temperatures in the fever range (~40-42°C) and have been investigated as cancer therapy for several decades, with first clinical trials initiated in the last decade. Combined with localized hyperthermia, TSLs allow precise drug delivery to a targeted region. Typically, the targeted tissue is exposed to localized hyperthermia facilitated by an image-guided hyperthermia device. Thus, TSLs enable image-guided drug delivery where drug is delivered to a tissue region identified by medical imaging. Recent TSL formulations are based on the more recent paradigm of intravascular triggered release, where drug is released rapidly (within seconds) while TSLs pass through the vasculature of the heated tissue region. The drug released within the blood then extravasates and is taken up by cancer cells. These TSLs enable up to 20-30 times higher tumor drug uptake compared to infusion of unencapsulated drug, and the dose locally delivered to the heated region can be modulated based on heating duration. This chapter reviews various TSL formulations, the different anticancer agents that have been encapsulated, as well as targeted cancer types. Further, the various hyperthermia devices that have been used for image-guided hyperthermia are reviewed, focusing on those that have been employed in human patients.
Collapse
Affiliation(s)
- Dieter Haemmerich
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States.
| | - Anjan Motamarry
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States; Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
29
|
Bi H, Xue J, Jiang H, Gao S, Yang D, Fang Y, Shi K. Current developments in drug delivery with thermosensitive liposomes. Asian J Pharm Sci 2019; 14:365-379. [PMID: 32104466 PMCID: PMC7032122 DOI: 10.1016/j.ajps.2018.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 06/26/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
Thermosensitive liposomes (TSLs) have been an important research area in the field of tumor targeted chemotherapy. Since the first TSLs appeared that using 1,2-dipalmitoyl-sn-glyce-ro-3-phosphocholine (DPPC) as the primary liposomal lipid, many studies have been done using this type of liposome from basic and practical aspects. While TSLs composed of DPPC enhance the cargo release near the phase transition temperature, it has been shown that many factors affect their temperature sensitivity. Thus numerous attempts have been undertaken to develop new TSLs for improving their thermal response performance. The main objective of this review is to introduce the development and recent update of innovative TSLs formulations, including combination of radiofrequency ablation (RFA), high-intensity focused ultrasound (HIFU), magnetic resonance imaging (MRI) and alternating magnetic field (AMF). In addition, various factors affecting the design of TSLs, such as lipid composition, surfactant, size and serum components are also discussed.
Collapse
Key Words
- (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine
- (DPPGOG), 1,2-dipalmitoyl-sn-glycero-3-phosphoglyceroglycerol
- (DSPC), 1,2-distearoyl-sn-glycero-3-phosphocholine
- (DSPE-mPEG2000), 1,2-distearoyl-sn-glycero-3-phosphatiylethanol-amine-N-[methoxy(polyethyleneglycol)-2000]
- (LTSLs), lyso-lipid temperature sensitive liposomes
- (MPPC), 1-myristoyl-2-palmitoyl-sn-glycero-3-phosphatidylcholine
- (MSPC), 1-stearoyl-2-hydroxy-sn-glycero-3-phosphatidylcholine
- (P-lyso-PC), lysophosphatidylcholine
- (P188), 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphatidylcholinex
- (P188), HO-(C2H4O)a-(C3H6O)b-(C2H4O)c-H, a=80, b=27, c=80
- Content release rate
- Drug delivery
- Hyperthermia
- Smart liposomes
- Thermosensitive liposomes
- Tumor chemotherapy
- fTSLs, fast release TSLs
- sTSLs, slow release TSLs
Collapse
Affiliation(s)
- Hongshu Bi
- Institute of New Drug Development, Liaoning Yaolian Pharmaceutical Co., Ltd., Benxi, Liaoning 117004, China
| | - Jianxiu Xue
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Hong Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Shan Gao
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Dongjuan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Yan Fang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Kai Shi
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| |
Collapse
|
30
|
Lagoa R, Silva J, Rodrigues JR, Bishayee A. Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol Adv 2019; 38:107382. [PMID: 30978386 DOI: 10.1016/j.biotechadv.2019.04.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/23/2019] [Accepted: 04/06/2019] [Indexed: 12/15/2022]
Abstract
Natural compounds have significant anticancer pharmacological activities, but often suffer from low bioavailability and selectivity that limit therapeutic use. The present work critically analyzes the latest advances on drug delivery systems designed to enhance pharmacokinetics, targeting, cellular uptake and efficacy of anticancer phytoconstituents. Various phytochemicals, including flavonoids, resveratrol, celastrol, curcumin, berberine and camptothecins, carried by liposomes, nanoparticles, nanoemulsions and films showed promising results. Strategies to avoid drug metabolism, overcome physiological barriers and achieve higher concentration at cancer sites through skin, buccal, nasal, vaginal, pulmonary and colon targeted delivery are presented. Current limitations, challenges and future research directions are also discussed.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal.
| | - João Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Joaquim Rui Rodrigues
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA.
| |
Collapse
|
31
|
Zhang X, Liang X, Ma X, Hou R, Li X, Wang F. Highly stable near-infrared dye conjugated cerasomes for fluorescence imaging-guided synergistic chemo-photothermal therapy of colorectal cancer. Biomater Sci 2019; 7:2873-2888. [DOI: 10.1039/c9bm00458k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dye-conjugated cerasome loaded with DOX exhibited high stability and controllable drug release, holding great promise in colorectal cancer photothermal chemotherapy.
Collapse
Affiliation(s)
- Xu Zhang
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University Health Science Center
- Beijing
- China
| | - Xiaolong Liang
- Department of Ultrasound
- Peking University Third Hospital
- Beijing
- China
| | - Xiaotu Ma
- Key Laboratory of Protein and Peptide Pharmaceuticals
- CAS Center for Excellence in Biomacromolecules
- Institute of Biophysics
- Chinese Academy of Sciences
- Beijing
| | - Rui Hou
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University Health Science Center
- Beijing
- China
| | - Xiaoda Li
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University Health Science Center
- Beijing
- China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University Health Science Center
- Beijing
- China
| |
Collapse
|
32
|
Bing C, Patel P, Staruch RM, Shaikh S, Nofiele J, Wodzak Staruch M, Szczepanski D, Williams NS, Laetsch T, Chopra R. Longer heating duration increases localized doxorubicin deposition and therapeutic index in Vx2 tumors using MR-HIFU mild hyperthermia and thermosensitive liposomal doxorubicin. Int J Hyperthermia 2018; 36:196-203. [PMID: 30541350 PMCID: PMC6430695 DOI: 10.1080/02656736.2018.1550815] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/17/2018] [Accepted: 11/17/2018] [Indexed: 10/27/2022] Open
Abstract
Thermosensitive liposomal doxorubicin (LTSL-Dox) combined with mild hyperthermia enhances the localized delivery of doxorubicin (Dox) within a heated region. The optimal heating duration and the impact of extended heating on systemic drug distribution are unknown. Here we evaluated local and systemic Dox delivery with two different mild hyperthermia durations (42 °C for 10 or 40 minutes) in a Vx2 rabbit tumor model. We hypothesized that longer duration of hyperthermia would increase Dox concentration in heated tumors without increasing systemic exposure. Temporally and spatially accurate controlled hyperthermia was achieved using a clinical MR-HIFU system for the prescribed heating durations. Forty-minutes of heating resulted in a nearly 6-fold increase in doxorubicin concentration in heated vs unheated tumors in the same animals. Therapeutic ratio, defined as the ratio of Dox delivered into the heated tumor vs the heart, increased from 1.9-fold with 10 minutes heating to 4.4-fold with 40 minutes heating. MR-HIFU can be used to guide, deliver and monitor mild hyperthermia of a Vx2 tumor model in a rabbit model, and an increased duration of heating leads to higher Dox deposition from LTSL-Dox in a target tumor without a concomitant increase in systemic exposure. Results from this preclinical study can be used to help establish clinical treatment protocols for hyperthermia mediated drug delivery.
Collapse
Affiliation(s)
- Chenchen Bing
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Robert M. Staruch
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
- Profound Medical, Mississauga, ON, Canada
| | - Sumbul Shaikh
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joris Nofiele
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Debra Szczepanski
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Noelle S. Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Theodore Laetsch
- Children’s Health, Dallas, TX, USA
- Department of Pediatrics, Division of Hematology-Oncology and Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
33
|
Mathematical modelling of liposomal drug release to tumour. Math Biosci 2018; 306:82-96. [PMID: 30391313 DOI: 10.1016/j.mbs.2018.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/31/2018] [Accepted: 10/29/2018] [Indexed: 11/22/2022]
Abstract
The primary aim of liposomal drug delivery is to wisely modulate the drug delivery system in order to target diseased tissues. Temperature-sensitive liposomes function as a prospective weapon to combat toxic side effects corresponding to direct infusion of anticancer drugs. The main objective of the present study is to model liposomal drug release, subsequent drug transport in solid tumour along with integrated actions of tumour cell surface and endosomal events. Generalized mathematical model for liposomal drug delivery is proposed in which vital physical phenomena, such as kinetics of liposome-encapsulated drug, free drug release from liposomes, transport of both liposomal drug and free drug into the tumour compartment, plasma clearance, protein-drug interactions, drug-tumour cell receptor interactions, internalization of drug through endocytosis along with corresponding endosomal events. The model is expressed through a system of coupled partial differential equations along with appropriate set of initial, interface and boundary conditions which is solved numerically. Simulated results are compared with respective existing experimental data to demonstrate the potency and reliability of the proposed model. Graphical representations of time variant concentration profiles are illustrated to understand the underlying phenomena in details. Moreover, the model speaks for the sensitivity of important drug kinetic parameters, such as advection coefficients, drug release coefficient, plasma clearance rate and internalization parameters through graphical portrayals. The proposed model and the simulated results act as a tool in designing a more effective drug delivery system for cancerous tumours.
Collapse
|
34
|
Langhoff W, Riggs A, Hinow P. Scaling behavior of drug transport and absorption in in silico cerebral capillary networks. PLoS One 2018; 13:e0200266. [PMID: 29990324 PMCID: PMC6039031 DOI: 10.1371/journal.pone.0200266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/23/2018] [Indexed: 12/27/2022] Open
Abstract
Drug delivery to the brain is challenging due to the presence of the blood-brain barrier. Mathematical modeling and simulation are essential tools for the deeper understanding of transport processes in the blood, across the blood-brain barrier and within the tissue. Here we present a mathematical model for drug delivery through capillary networks with increasingly complex topologies with the goal to understand the scaling behavior of model predictions on a coarse-to-fine sequence of grids. We apply our model to the delivery of L-Dopa, the primary drug used in the therapy of Parkinson’s Disease. Our model replicates observed blood flow rates and ratios between plasma and tissue concentrations. We propose an optimal network grain size for the simulation of tissue volumes of 1 cm3 that allows to make reliable predictions with reasonable computational costs.
Collapse
Affiliation(s)
- William Langhoff
- Department of Mathematical Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI 53201-0413, United States of America
| | - Alexander Riggs
- Department of Mathematical Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI 53201-0413, United States of America
| | - Peter Hinow
- Department of Mathematical Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI 53201-0413, United States of America
| |
Collapse
|
35
|
Interleaved Mapping of Temperature and Longitudinal Relaxation Rate to Monitor Drug Delivery During Magnetic Resonance-Guided High-Intensity Focused Ultrasound-Induced Hyperthermia. Invest Radiol 2018; 52:620-630. [PMID: 28598900 DOI: 10.1097/rli.0000000000000392] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a method to heat lesions noninvasively to a stable, elevated temperature and a well-suited method to induce local hyperthermia (41°C-43°C) in deep-seated tissues. Magnetic Resonance (MR) imaging provides therapy planning on anatomical images and offers temperature feedback based on near-real-time MR thermometry. Although constant acquisition of MR thermometry data is crucial to ensure prolonged hyperthermia, it limits the freedom to perform measurements of other MR parameters, which are of interest during hyperthermia treatments. In image-guided drug delivery applications, co-encapsulation of paramagnetic MR contrast agents with a drug inside temperature-sensitive liposomes (TSLs) allows to visualize hyperthermia-triggered drug delivery through changes of the longitudinal relaxation rate R1. While the drug accumulates in the heated tumor tissue, R1 changes can be used for an estimate of the tumor drug concentration. The main objective of this study was to demonstrate that interleaved MR sequences are able to monitor temperature with an adequate temporal resolution and could give a reasonable estimate of the achieved tumor drug concentration through R1 changes. To this aim, in vitro validation tests and an in vivo proof-of-concept study were performed. MATERIALS AND METHODS All experiments were performed on a clinical 3-T MR-HIFU system adapted with a preclinical setup. The validity of the R1 values and the temperature maps stability were evaluated in phantom experiments and in ex vivo porcine muscle tissue. In vivo experiments were performed on rats bearing a 9L glioma tumor on their hind limb. All animals (n = 4 HIFU-treated, n = 4 no HIFU) were injected intravenously with TSLs co-encapsulating doxorubicin and gadoteridol as contrast agent. The TSL injection was followed by either 2 times 15 minutes of MR-HIFU-induced hyperthermia or a sham treatment. R1 maps were acquired before, during, and after sonication, using a single slice Inversion Recovery Look-Locker (IR-LL) sequence (field of view [FOV], 50 × 69 mm; in-plane resolution, 0.52 × 0.71 mm; slice thickness, 3 mm; 23 phases of 130 milliseconds; 1 full R1 map every 2 minutes). The R1 maps acquired during treatment were interleaved with 2 perpendicular proton resonance frequency shift (PRFS) MR thermometry slices (dynamic repetition time, 8.6 seconds; FOV, 250 × 250 mm; 1.4 × 1.4 mm in-plane resolution; 4 mm slice thickness). Tumor doxorubicin concentrations were determined fluorometrically. RESULTS In vitro results showed a slight but consistent overestimation of the measured R1 values compared with calibrated R1 values, regardless whether the R1 was acquired with noninterleaved IR-LL or interleaved. The average treatment cell temperature had a slightly higher temporal standard deviation for the interleaved PRFS sequence compared with the noninterleaved PRFS sequence (0.186°C vs 0.101°C, respectively). The prolonged time in between temperature maps due to the interleaved IR-LL sequence did not degrade the temperature stability during MR-HIFU treatment (Taverage = 40.9°C ± 0.3°C). Upon heat treatment, some tumors showed an R1 increase in a large part of the tumor while other tumors hardly showed any ΔR1. The tumor doxorubicin concentration showed a linear correlation with the average ΔR1 during both sonications (n = 8, Radj = 0.933), which was higher than for the ΔR1 measured after tumor cooldown (averaged for both sonications, n = 8, Radj = 0.877). CONCLUSIONS The new approach of interleaving different MR sequences was applied to simultaneously acquire R1 maps and PRFS thermometry scans during a feedback-controlled MR-HIFU-induced hyperthermia treatment. Interleaved acquisition did not compromise speed or accuracy of each scan. The ΔR1 acquired during treatment was used to visualize and quantify hyperthermia-triggered release of gadoteridol from TSLs and better reflected the intratumoral doxorubicin concentrations than the ΔR1 measured after cooldown of the tumor, exemplifying the benefit of interleaving R1 maps with temperature maps during drug delivery. Our study serves as an example for interleaved MR acquisition schemes, which introduce a higher flexibility in speed, sequence optimization, and timing.
Collapse
|
36
|
Garello F, Terreno E. Sonosensitive MRI Nanosystems as Cancer Theranostics: A Recent Update. Front Chem 2018; 6:157. [PMID: 29868560 PMCID: PMC5949352 DOI: 10.3389/fchem.2018.00157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/19/2018] [Indexed: 11/13/2022] Open
Abstract
In the tireless search for innovative and more efficient cancer therapies, sonosensitive Magnetic Resonance Imaging (MRI) agents play an important role. Basically, these systems consist of nano/microvesicles composed by a biocompatible membrane, responsive to ultrasound-induced thermal or mechanical effects, and an aqueous core, filled up with a MRI detectable probe and a therapeutic agent. They offer the possibility to trigger and monitor in real time drug release in a spatio-temporal domain, with the expectation to predict the therapeutic outcome. In this review, the key items to design sonosensitive MRI agents will be examined and an overview on the different approaches available so far will be given. Due to the extremely wide range of adopted ultrasound settings and formulations conceived, it is hard to compare the numerous preclinical studies reported. However, in general, a significantly better therapeutic outcome was noticed when exploiting ultrasound triggered drug release in comparison to traditional therapies, thus paving the way to the possible clinical translation of optimized sonosensitive MRI agents.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Enzo Terreno
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
37
|
Mikhail AS, Negussie AH, Pritchard WF, Haemmerich D, Woods D, Bakhutashvili I, Esparza-Trujillo J, Brancato SJ, Karanian J, Agarwal PK, Wood BJ. Lyso-thermosensitive liposomal doxorubicin for treatment of bladder cancer. Int J Hyperthermia 2017; 33:733-740. [PMID: 28540814 PMCID: PMC7676871 DOI: 10.1080/02656736.2017.1315459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To evaluate lyso-thermosensitive liposomal doxorubicin (LTLD, ThermoDox®) in combination with loco-regional mild hyperthermia (HT) for targeted drug delivery to the bladder wall and potential treatment of bladder cancer. MATERIAL AND METHODS Porcine in vivo studies were performed with the following groups: (i) intravenous (IV) LTLD with hyperthermia (LTLD + HT); (ii) IV doxorubicin (DOX) with hyperthermia (IV DOX + HT) and (iii) IV LTLD without hyperthermia (LTLD - HT). Drug formulations were delivered via 30 min IV infusion coinciding with 1-h bladder irrigation (45 °C water for HT groups, 37 °C for non-HT group), followed by immediate bladder resection. DOX concentrations were measured in consecutive sections parallel to the bladder lumen by liquid chromatography following drug extraction. Computer models were developed to simulate tissue heating and drug release from LTLD. RESULTS Comparing mean DOX concentrations at increasing depths from the lumen to outer surface of the bladder wall, the ranges for LTLD + HT, IV DOX + HT and LTLD - HT, respectively, were 20.32-3.52 μg/g, 2.34-0.61 μg/g and 2.18-0.51 μg/g. The average DOX concentrations in the urothelium/lamina and muscularis, respectively, were 9.7 ± 0.67 and 4.09 ± 0.81 μg/g for IV LTLD + HT, 1.2 ± 0.39 and 0.86 ± 0.24 μg/g for IV DOX + HT, and 1.15 ± 0.38 and 0.62 ± 0.15 μg/g for LTLD - HT. Computational model results were similar to measured DOX levels and suggest adequate temperatures were reached within the bladder wall for drug release from LTLD. CONCLUSIONS Doxorubicin accumulation and distribution within the bladder wall was achieved at concentrations higher than with free IV doxorubicin by mild bladder hyperthermia combined with systemic delivery of LTLD.
Collapse
Affiliation(s)
- Andrew S Mikhail
- Center for Interventional Oncology, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20814 USA
| | - Ayele H Negussie
- Center for Interventional Oncology, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20814 USA
| | - William F Pritchard
- Center for Interventional Oncology, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20814 USA
| | - Dieter Haemmerich
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David Woods
- Center for Interventional Oncology, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20814 USA
| | - Ivane Bakhutashvili
- Center for Interventional Oncology, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20814 USA
| | - Juan Esparza-Trujillo
- Center for Interventional Oncology, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20814 USA
| | - Sam J Brancato
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - John Karanian
- Center for Interventional Oncology, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20814 USA
| | - Piyush K Agarwal
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Bradford J Wood
- Center for Interventional Oncology, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20814 USA
| |
Collapse
|
38
|
Rossmann C, McCrackin MA, Armeson KE, Haemmerich D. Temperature sensitive liposomes combined with thermal ablation: Effects of duration and timing of heating in mathematical models and in vivo. PLoS One 2017; 12:e0179131. [PMID: 28604815 PMCID: PMC5467840 DOI: 10.1371/journal.pone.0179131] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/24/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Temperature sensitive liposomes (TSL) are nanoparticles that rapidly release the contained drug at hyperthermic temperatures, typically above ~40°C. TSL have been combined with various heating modalities, but there is no consensus on required hyperthermia duration or ideal timing of heating relative to TSL administration. The goal of this study was to determine changes in drug uptake when heating duration and timing are varied when combining TSL with radiofrequency ablation (RF) heating. METHODS We used computer models to simulate both RF tissue heating and TSL drug delivery, to calculate spatial drug concentration maps. We simulated heating for 5, 12 and 30 min for a single RF electrode, as well as three sequential 12 min ablations for 3 electrodes placed in a triangular array. To support simulation results, we performed porcine in vivo studies in normal liver, where TSL filled with doxorubicin (TSL-Dox) at a dose of 30 mg was infused over 30 min. Following infusion, RF heating was performed in separate liver locations for either 5 min (n = 2) or 12 min (n = 2). After ablation, the animal was euthanized, and liver extracted and frozen. Liver samples were cut orthogonal to the electrode axis, and fluorescence imaging was used to visualize tissue doxorubicin distribution. RESULTS Both in vivo studies and computer models demonstrate a ring-shaped drug deposition within ~1 cm of the visibly coagulated tissue. Drug uptake directly correlated with heating duration. In computer simulations, drug concentration increased by a factor of 2.2x and 4.3x when heating duration was extended from 5 to either 12, or 30 minutes, respectively. In vivo, drug concentration was by a factor of 2.4x higher at 12 vs 5 min heating duration (7.1 μg/g to 3.0 μg/g). The computer models suggest that heating should be timed to maximize area under the curve of systemic plasma concentration of encapsulated drug. CONCLUSIONS Both computer models and in vivo study demonstrate that tissue drug uptake directly correlates with heating duration for TSL based delivery. Computational models were able to predict the spatial drug delivery profile, and may serve as a valuable tool in understanding and optimizing drug delivery systems.
Collapse
Affiliation(s)
- Christian Rossmann
- Department of Pediatrics, Medical Univ. of South Carolina, Charleston, South Carolina, United States of America
| | - M. A. McCrackin
- Department of Comparative Medicine, Medical Univ. of South Carolina, Charleston, South Carolina, United States of America
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Kent E. Armeson
- Hollings Cancer Center, Medical Univ. of South Carolina, Charleston, South Carolina, United States of America
| | - Dieter Haemmerich
- Department of Pediatrics, Medical Univ. of South Carolina, Charleston, South Carolina, United States of America
- Department of Bioengineering, Clemson Univ., Clemson, South Carolina, United States of America
| |
Collapse
|
39
|
Thermal combination therapies for local drug delivery by magnetic resonance-guided high-intensity focused ultrasound. Proc Natl Acad Sci U S A 2017; 114:E4802-E4811. [PMID: 28566498 DOI: 10.1073/pnas.1700790114] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several thermal-therapy strategies such as thermal ablation, hyperthermia-triggered drug delivery from temperature-sensitive liposomes (TSLs), and combinations of the above were investigated in a rhabdomyosarcoma rat tumor model (n = 113). Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) was used as a noninvasive heating device with precise temperature control for image-guided drug delivery. For the latter, TSLs were prepared, coencapsulating doxorubicin (dox) and [Gd(HPDO3A)(H2O)], and injected in tumor-bearing rats before MR-HIFU treatment. Four treatment groups were defined: hyperthermia, ablation, hyperthermia followed by ablation, or no HIFU. The intratumoral TSL and dox distribution were analyzed by single-photon emission computed tomography (SPECT)/computed tomography (CT), autoradiography, and fluorescence microscopy. Dox biodistribution was quantified and compared with that of nonliposomal dox. Finally, the treatment efficacy of all heating strategies plus additional control groups (saline, free dox, and Caelyx) was assessed by tumor growth measurements. All HIFU heating strategies combined with TSLs resulted in cellular uptake of dox deep into the interstitial space and a significant increase of tumor drug concentrations compared with a treatment with free dox. Ablation after TSL injection showed [Gd(HPDO3A)(H2O)] and dox release along the tumor rim, mirroring the TSL distribution pattern. Hyperthermia either as standalone treatment or before ablation ensured homogeneous TSL, [Gd(HPDO3A)(H2O)], and dox delivery across the tumor. The combination of hyperthermia-triggered drug delivery followed by ablation showed the best therapeutic outcome compared with all other treatment groups due to direct induction of thermal necrosis in the tumor core and efficient drug delivery to the tumor rim.
Collapse
|
40
|
VanOsdol J, Ektate K, Ramasamy S, Maples D, Collins W, Malayer J, Ranjan A. Sequential HIFU heating and nanobubble encapsulation provide efficient drug penetration from stealth and temperature sensitive liposomes in colon cancer. J Control Release 2016; 247:55-63. [PMID: 28042085 DOI: 10.1016/j.jconrel.2016.12.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023]
Abstract
Mild hyperthermia generated using high intensity focused ultrasound (HIFU) and microbubbles (MBs) can improve tumor drug delivery from non-thermosensitive liposomes (NTSLs) and low temperature sensitive liposomes (LTSLs). However, MB and HIFU are limited by the half-life of the contrast agent and challenges in accurate control of large volume tumor hyperthermia for longer duration (>30min.). The objectives of this study were to: 1) synthesize and characterized long-circulating echogenic nanobubble encapsulated LTSLs (ELTSLs) and NTSLs (ENTSLs), 2) evaluate in vivo drug release following short duration (~20min each) HIFU treatments administered sequentially over an hour in a large volume of mouse xenograft colon tumor, and 3) determine the impact of the HIFU/nanobubble combination on intratumoral drug distribution. LTSLs and NTSLs containing doxorubicin (Dox) were co-loaded with a nanobubble contrast agent (perfluoropentane, PFP) using a one-step sonoporation method to create ELTSLs and ENTSLs, which then were characterized for size, release in a physiological buffer, and ability to encapsulate PFP. For the HIFU group, mild hyperthermia (40-42°C) was completed within 90min after liposome infusion administered sequentially in three regions of the tumor. Fluorescence microscopy and high performance liquid chromatography analysis were performed to determine the spatial distribution and concentration of Dox in the treated regions. PFP encapsulation within ELTSLs and ENTSLs did not impact size or caused premature drug release in physiological buffer. As time progressed, the delivery of Dox decreased in HIFU-treated tumors with ELTSLs, but this phenomenon was absent in the LTSL, NTSL, and ENTSL groups. Most importantly, PFP encapsulation improved Dox penetration in the tumor periphery and core and did not impact the distribution of Dox in non-tumor organs/tissues. Data from this study suggest that short duration and sequential HIFU treatment could have significant benefits and that its action can be potentiated by nanobubble agents to result in improved drug penetration.
Collapse
Affiliation(s)
- Joshua VanOsdol
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Kalyani Ektate
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Selvarani Ramasamy
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Danny Maples
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Willie Collins
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Jerry Malayer
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Ashish Ranjan
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
41
|
Jin Y, Liang X, An Y, Dai Z. Microwave-Triggered Smart Drug Release from Liposomes Co-encapsulating Doxorubicin and Salt for Local Combined Hyperthermia and Chemotherapy of Cancer. Bioconjug Chem 2016; 27:2931-2942. [DOI: 10.1021/acs.bioconjchem.6b00603] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yushen Jin
- Department of Biomedical
Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaolong Liang
- Department of Biomedical
Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yunkun An
- Department of Biomedical
Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhifei Dai
- Department of Biomedical
Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
42
|
Mathematical Based Calculation of Drug Penetration Depth in Solid Tumors. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8437247. [PMID: 27376087 PMCID: PMC4916326 DOI: 10.1155/2016/8437247] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/17/2016] [Indexed: 01/19/2023]
Abstract
Cancer is a class of diseases characterized by out-of-control cells' growth which affect cells and make them damaged. Many treatment options for cancer exist. Chemotherapy as an important treatment option is the use of drugs to treat cancer. The anticancer drug travels to the tumor and then diffuses in it through capillaries. The diffusion of drugs in the solid tumor is limited by penetration depth which is different in case of different drugs and cancers. The computation of this depth is important as it helps physicians to investigate about treatment of infected tissue. Although many efforts have been made on studying and measuring drug penetration depth, less works have been done on computing this length from a mathematical point of view. In this paper, first we propose phase lagging model for diffusion of drug in the tumor. Then, using this model on one side and considering the classic diffusion on the other side, we compute the drug penetration depth in the solid tumor. This computed value of drug penetration depth is corroborated by comparison with the values measured by experiments.
Collapse
|
43
|
Lokerse WJ, Kneepkens EC, ten Hagen TL, Eggermont AM, Grüll H, Koning GA. In depth study on thermosensitive liposomes: Optimizing formulations for tumor specific therapy and in vitro to in vivo relations. Biomaterials 2016; 82:138-50. [DOI: 10.1016/j.biomaterials.2015.12.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/14/2015] [Accepted: 12/19/2015] [Indexed: 11/16/2022]
|
44
|
Wang S, Mei XG, Goldberg SN, Ahmed M, Lee JC, Gong W, Han HB, Yan K, Yang W. Does Thermosensitive Liposomal Vinorelbine Improve End-Point Survival after Percutaneous Radiofrequency Ablation of Liver Tumors in a Mouse Model? Radiology 2016; 279:762-72. [PMID: 26785043 DOI: 10.1148/radiol.2015150787] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purpose To investigate the role of thermosensitive liposome-encapsulated vinorelbine (Thermo-Vin) in combined radiofrequency (RF) ablation of liver tumors. Materials and Methods Approval from the institutional animal care and use committee was obtained before this study. First, the anticancer efficacy of Thermo-Vin was assessed in vitro (H22 cells) for 72 hours at 37°C or 42°C. Next, 203 H22 liver adenocarcinomas were implanted in 191 mice for in vivo study. Tumors were randomized into seven groups: (a) no treatment, (b) treatment with RF ablation alone, (c) treatment with RF ablation followed by free vinorelbine (Free-Vin) at 30 minutes, (d) treatment with RF ablation followed by empty liposomes (Empty-Lip+RF), (e) treatment with RF ablation followed by Thermo-Vin (5 mg/kg), (f) treatment with RF ablation followed by Thermo-Vin (10 mg/kg), and (g) treatment with RF ablation followed by Thermo-Vin (20 mg/kg). Tumor destruction areas and pathologic changes were compared for different groups at 24 and 72 hours after treatment. Kaplan-Meier analysis was used to compare end-point survival (tumor < 30 mm in diameter). Additionally, the effect of initial tumor size on long-term outcome was analyzed. Results In vitro, both Free-Vin and Thermo-Vin dramatically inhibited H22 cell viability at 24 hours. Likewise, in vivo, 10 mg/kg Thermo-Vin+RF ablation increased tumor destruction compared with RF ablation (P = .001). Intratumoral vinorelbine accumulation with Thermo-Vin+RF increased 15-fold compared with Free-Vin alone. Thermo-Vin substantially increased apoptosis at the coagulation margin and suppressed cellular proliferation in the residual tumor (P < .001). The Thermo-Vin+RF study arm also had better survival than the arm treated with RF ablation alone (mean, 37.6 days ± 20.1 vs 23.4 days ± 5.0; P = .001), the arm treated with Free-Vin+RF (23.3 days ± 1.2, P = .002), or the arm treated with Empty-Lip+RF (20.8 days ± 0.4, P < .001) in animals with medium-sized (10-12-mm) tumors. No significant difference in end-point survival was noted in the treatment arms with large or small tumors. Conclusion Thermo-Vin can effectively increase tumor destruction and improve animal survival. End-point survival is most affected in animals with medium-sized tumors, suggesting that combination therapy should be tailored to tumor size and the expected volume of ablation of the device used. (©) RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Song Wang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Ultrasound (S.W., J.C.L., K.Y., W.Y.) and Department of Biobank (H.B.H.), Peking University Cancer Hospital and Institute, 52 Fucheng Rd, Haidian District, Beijing 100142, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (X.G.M., W.G.); Division of Image-guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.N.G., M.A.)
| | - Xing-Guo Mei
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Ultrasound (S.W., J.C.L., K.Y., W.Y.) and Department of Biobank (H.B.H.), Peking University Cancer Hospital and Institute, 52 Fucheng Rd, Haidian District, Beijing 100142, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (X.G.M., W.G.); Division of Image-guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.N.G., M.A.)
| | - S Nahum Goldberg
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Ultrasound (S.W., J.C.L., K.Y., W.Y.) and Department of Biobank (H.B.H.), Peking University Cancer Hospital and Institute, 52 Fucheng Rd, Haidian District, Beijing 100142, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (X.G.M., W.G.); Division of Image-guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.N.G., M.A.)
| | - Muneeb Ahmed
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Ultrasound (S.W., J.C.L., K.Y., W.Y.) and Department of Biobank (H.B.H.), Peking University Cancer Hospital and Institute, 52 Fucheng Rd, Haidian District, Beijing 100142, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (X.G.M., W.G.); Division of Image-guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.N.G., M.A.)
| | - Jung-Chieh Lee
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Ultrasound (S.W., J.C.L., K.Y., W.Y.) and Department of Biobank (H.B.H.), Peking University Cancer Hospital and Institute, 52 Fucheng Rd, Haidian District, Beijing 100142, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (X.G.M., W.G.); Division of Image-guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.N.G., M.A.)
| | - Wei Gong
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Ultrasound (S.W., J.C.L., K.Y., W.Y.) and Department of Biobank (H.B.H.), Peking University Cancer Hospital and Institute, 52 Fucheng Rd, Haidian District, Beijing 100142, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (X.G.M., W.G.); Division of Image-guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.N.G., M.A.)
| | - Hai-Bo Han
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Ultrasound (S.W., J.C.L., K.Y., W.Y.) and Department of Biobank (H.B.H.), Peking University Cancer Hospital and Institute, 52 Fucheng Rd, Haidian District, Beijing 100142, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (X.G.M., W.G.); Division of Image-guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.N.G., M.A.)
| | - Kun Yan
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Ultrasound (S.W., J.C.L., K.Y., W.Y.) and Department of Biobank (H.B.H.), Peking University Cancer Hospital and Institute, 52 Fucheng Rd, Haidian District, Beijing 100142, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (X.G.M., W.G.); Division of Image-guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.N.G., M.A.)
| | - Wei Yang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Ultrasound (S.W., J.C.L., K.Y., W.Y.) and Department of Biobank (H.B.H.), Peking University Cancer Hospital and Institute, 52 Fucheng Rd, Haidian District, Beijing 100142, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (X.G.M., W.G.); Division of Image-guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.N.G., M.A.)
| |
Collapse
|
45
|
Increased Duration of Heating Boosts Local Drug Deposition during Radiofrequency Ablation in Combination with Thermally Sensitive Liposomes (ThermoDox) in a Porcine Model. PLoS One 2015; 10:e0139752. [PMID: 26431204 PMCID: PMC4592068 DOI: 10.1371/journal.pone.0139752] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/15/2015] [Indexed: 12/24/2022] Open
Abstract
Introduction Radiofrequency ablation (RFA) is used for the local treatment of liver cancer. RFA is effective for small (<3cm) tumors, but for tumors > 3 cm, there is a tendency to leave viable tumor cells in the margins or clefts of overlapping ablation zones. This increases the possibility of incomplete ablation or local recurrence. Lyso-Thermosensitive Liposomal Doxorubicin (LTLD), is a thermally sensitive liposomal doxorubicin formulation for intravenous administration, that rapidly releases its drug content when exposed to temperatures >40°C. When used with RFA, LTLD releases its doxorubicin in the vasculature around the zone of ablation-induced tumor cell necrosis, killing micrometastases in the ablation margin. This may reduce recurrence and be more effective than thermal ablation alone. Purpose The purpose of this study was to optimize the RFA procedure used in combination with LTLD to maximize the local deposition of doxorubicin in a swine liver model. Pigs were anaesthetized and the liver was surgically exposed. Each pig received a single, 50 mg/m2 dose of the clinical LTLD formulation (ThermoDox®). Subsequently, ablations were performed with either 1, 3 or 6 sequential, overlapping needle insertions in the left medial lobe with total ablation time of 15, 45 or 90 minutes respectively. Two different RFA generators and probes were evaluated. After the final ablation, the ablation zone (plus 3 cm margin) was dissected out and examined for doxorubicin concentration by LC/MS and fluorescence. Conclusion The mean Cmax of plasma total doxorubicin was 26.5 μg/ml at the end of the infusion. Overall, increased heat time from 15 to 45 to 90 minutes shows an increase in both the amount of doxorubicin deposited (up to ~100 μg/g) and the width of the ablation target margin to which doxorubicin is delivered as determined by tissue homogenization and LC/MS detection of doxorubicin and by fluorescent imaging of tissues.
Collapse
|
46
|
Hong CW, Chow L, Turkbey EB, Lencioni R, Libutti SK, Wood BJ. Imaging Features of Radiofrequency Ablation with Heat-Deployed Liposomal Doxorubicin in Hepatic Tumors. Cardiovasc Intervent Radiol 2015; 39:409-16. [PMID: 26228246 DOI: 10.1007/s00270-015-1186-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/04/2015] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The imaging features of unresectable hepatic malignancies in patients who underwent radiofrequency ablation (RFA) in combination with lyso-thermosensitive liposomal doxorubicin (LTLD) were determined. MATERIALS AND METHODS A phase I dose escalation study combining RFA with LTLD was performed with peri- and post- procedural CT and MRI. Imaging features were analyzed and measured in terms of ablative zone size and surrounding penumbra size. The dynamic imaging appearance was described qualitatively immediately following the procedure and at 1-month follow-up. The control group receiving liver RFA without LTLD was compared to the study group in terms of imaging features and post-ablative zone size dynamics at follow-up. RESULTS Post-treatment scans of hepatic lesions treated with RFA and LTLD have distinctive imaging characteristics when compared to those treated with RFA alone. The addition of LTLD resulted in a regular or smooth enhancing rim on T1W MRI which often correlated with increased attenuation on CT. The LTLD-treated ablation zones were stable or enlarged at follow-up four weeks later in 69% of study subjects as opposed to conventional RFA where the ablation zone underwent involution compared to imaging acquired immediately after the procedure. CONCLUSION The imaging features following RFA with LTLD were different from those after standard RFA and can mimic residual or recurrent tumor. Knowledge of the subtle findings between the two groups can help avoid misinterpretation and proper identification of treatment failure in this setting. Increased size of the LTLD-treated ablation zone after RFA suggests the ongoing drug-induced biological effects.
Collapse
Affiliation(s)
- Cheng William Hong
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, 10 Center Drive MSC 1182, Bethesda, MD, 20892, USA. .,Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive MSC 1074, Bethesda, MD, 20892, USA.
| | - Lucy Chow
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, 10 Center Drive MSC 1182, Bethesda, MD, 20892, USA. .,Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive MSC 1074, Bethesda, MD, 20892, USA.
| | - Evrim B Turkbey
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive MSC 1074, Bethesda, MD, 20892, USA.
| | - Riccardo Lencioni
- Division of Diagnostic Imaging and Intervention, Department of Hepatology and Liver Transplantation, Pisa University Hospital, Via Paradisa 2, Building No. 29, 56124, Pisa, Italy.
| | - Steven K Libutti
- Montefiore-Einstein Center for Cancer Care, Department of Surgery, Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY, 10467, USA. .,National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, GB 9609 MSC 9760, Bethesda, MD, 20892, USA.
| | - Bradford J Wood
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, 10 Center Drive MSC 1182, Bethesda, MD, 20892, USA. .,Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive MSC 1074, Bethesda, MD, 20892, USA. .,National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, GB 9609 MSC 9760, Bethesda, MD, 20892, USA.
| |
Collapse
|
47
|
Quantification of the effect of electrical and thermal parameters on radiofrequency ablation for concentric tumour model of different sizes. J Therm Biol 2015; 51:23-32. [DOI: 10.1016/j.jtherbio.2015.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 11/17/2022]
|
48
|
Liu C, Xu XY. A systematic study of temperature sensitive liposomal delivery of doxorubicin using a mathematical model. Comput Biol Med 2015; 60:107-16. [PMID: 25817532 DOI: 10.1016/j.compbiomed.2015.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Temperature-sensitive liposomes (TSL) in combination with hyperthermia (HT) exposure have emerged as a potentially attractive option to achieve therapeutic drug concentration at targeted tumour site while reducing adverse side effects associated with systemic administration of anticancer drugs. The aim of this study is to elucidate the interplay among different kinetic steps by means of computational modelling. METHODS A multi-compartment model for TSL-mediated delivery of doxorubicin (DOX) is developed, which incorporates descriptions of the pharmacokinetics of TSL and DOX, and their accumulation in tumour tissue following intravascular triggered release. By examining dynamic interactions among TSL properties, tumour physiological properties and treatment regimen, peak intracellular DOX concentration is predicted for continuous and pulse HT exposures. RESULTS Drug release rate from TSL has a saturable effect on peak intracellular drug concentration, and no further gain could be achieved for release rates greater than 0.1018 s(-1). A similar effect has also been found for heating duration, such that for a given bolus injection, peak intracellular drug concentration reaches its maximum and then levels off after HT duration of 2h. These results suggest that both TSL release rate and HT duration can be optimised in accordance with other parameters, e.g. clearance rate of TSL and administration mode, in order to achieve a desirable level of intracellular drug concentration. However, prolonged heating is not effective for resistant tumour cells with overexpression of ABC (ATP-binding cassette) transporter proteins. CONCLUSIONS The results obtained in this study can be used to guide the design and optimisation of TSL parameters and treatment regimens.
Collapse
Affiliation(s)
- Cong Liu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
49
|
Liang X, Gao J, Jiang L, Luo J, Jing L, Li X, Jin Y, Dai Z. Nanohybrid liposomal cerasomes with good physiological stability and rapid temperature responsiveness for high intensity focused ultrasound triggered local chemotherapy of cancer. ACS NANO 2015; 9:1280-93. [PMID: 25599568 DOI: 10.1021/nn507482w] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The high intensity focused ultrasound (HIFU) and thermosensitive cerasomes (HTSCs) were successfully assembled by employing cerasome-forming lipid (CFL) in combination with the component lipids of conventional low temperature sensitive liposomes (LTSLs) including 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG-2000) and 1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine (MSPC). The HTSCs showed spherical shape with a mean diameter around 200 nm, exhibiting good biocompatibility. Both hydrophilic and lipophilic drugs can be efficiently encapsulated into HTSCs. In addition, the release rate of HTSCs could be conveniently adjusted by varying the molar ratios of CFL to DPPC. The drug loaded HTSCs showed much longer blood circulation time (half-life >8.50 ± 1.49 h) than conventional LTSLs (0.92 ± 0.17 h). An in vitro study demonstrated that the drug loaded HTSCs are highly stable at 37 °C and show a burst release at 42 °C, providing a capability to act synergistically against tumors. We found that the HTSCs with a proportion of 43.25% of CFL could release more than 90% hydrophilic drugs in 1 min at an elevated temperature of 42 °C generated by HIFU exposure. After intravenous injection of doxorubicin (DOX) loaded HTSCs at 5 mg DOX/kg, followed by double HIFU sonication, the tumor growth of the adenocarcinoma (MDA-MB-231) bearing mice could be significantly inhibited. Therefore, the drug loaded HTSCs combined with HIFU hold great potential for efficient local chemotherapy of cancer due to the ability to deliver high concentration of chemotherapy drugs directly to the tumor, achieve maximum therapeutic efficacy and minimal side effects, and avoid the damage to the healthy tissues caused by systemic administration of drugs.
Collapse
Affiliation(s)
- Xiaolong Liang
- Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Since their discovery in the 1960s, liposomes have been studied in depth, and they continue to constitute a field of intense research. Liposomes are valued for their biological and technological advantages, and are considered to be the most successful drug-carrier system known to date. Notable progress has been made, and several biomedical applications of liposomes are either in clinical trials, are about to be put on the market, or have already been approved for public use. In this review, we briefly analyze how the efficacy of liposomes depends on the nature of their components and their size, surface charge, and lipidic organization. Moreover, we discuss the influence of the physicochemical properties of liposomes on their interaction with cells, half-life, ability to enter tissues, and final fate in vivo. Finally, we describe some strategies developed to overcome limitations of the “first-generation” liposomes, and liposome-based drugs on the market and in clinical trials.
Collapse
Affiliation(s)
- Giuseppina Bozzuto
- Chemical Methodology Institute, CNR, Rome, Italy ; Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Agnese Molinari
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|