1
|
Rao JS, Ivkov R, Sharma A. Nanoparticle-Based Interventions for Liver Transplantation. Int J Mol Sci 2023; 24:7496. [PMID: 37108659 PMCID: PMC10144867 DOI: 10.3390/ijms24087496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/29/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Liver transplantation is the only treatment for hepatic insufficiency as a result of acute and chronic liver injuries/pathologies that fail to recover. Unfortunately, there remains an enormous and growing gap between organ supply and demand. Although recipients on the liver transplantation waitlist have significantly higher mortality, livers are often not allocated because they are (i) classified as extended criteria or marginal livers and (ii) subjected to longer cold preservation time (>6 h) with a direct correlation of poor outcomes with longer cold ischemia. Downregulating the recipient's innate immune response to successfully tolerate a graft having longer cold ischemia times or ischemia-reperfusion injury through induction of immune tolerance in the graft and the host would significantly improve organ utilization and post-transplant outcomes. Broadly, technologies proposed for development aim to extend the life of the transplanted liver through post-transplant or recipient conditioning. In this review, we focus on the potential benefits of nanotechnology to provide unique pre-transplant grafting and recipient conditioning of extended criteria donor livers using immune tolerance induction and hyperthermic pre-conditioning.
Collapse
Affiliation(s)
- Joseph Sushil Rao
- Division of Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anirudh Sharma
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
2
|
Kok HP, van Rhoon GC, Herrera TD, Overgaard J, Crezee J. Biological modeling in thermoradiotherapy: present status and ongoing developments toward routine clinical use. Int J Hyperthermia 2022; 39:1126-1140. [PMID: 35998930 DOI: 10.1080/02656736.2022.2113826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Biological modeling for anti-cancer treatments using mathematical models can be very supportive in gaining more insight into dynamic processes responsible for cellular response to treatment, and predicting, evaluating and optimizing therapeutic effects of treatment. This review presents an overview of the current status of biological modeling for hyperthermia in combination with radiotherapy (thermoradiotherapy). Various distinct models have been proposed in the literature, with varying complexity; initially aiming to model the effect of hyperthermia alone, and later on to predict the effect of the combined thermoradiotherapy treatment. Most commonly used models are based on an extension of the linear-quadratic (LQ)-model enabling an easy translation to radiotherapy where the LQ model is widely used. Basic predictions of cell survival have further progressed toward 3 D equivalent dose predictions, i.e., the radiation dose that would be needed without hyperthermia to achieve the same biological effect as the combined thermoradiotherapy treatment. This approach, with the use of temperature-dependent model parameters, allows theoretical evaluation of the effectiveness of different treatment strategies in individual patients, as well as in patient cohorts. This review discusses the significant progress that has been made in biological modeling for hyperthermia combined with radiotherapy. In the future, when adequate temperature-dependent LQ-parameters will be available for a large number of tumor sites and normal tissues, biological modeling can be expected to be of great clinical importance to further optimize combined treatments, optimize clinical protocols and guide further clinical studies.
Collapse
Affiliation(s)
- H P Kok
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - G C van Rhoon
- Department of Radiation Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands
| | - T D Herrera
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - J Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - J Crezee
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
3
|
In Vitro Examinations of Cell Death Induction and the Immune Phenotype of Cancer Cells Following Radiative-Based Hyperthermia with 915 MHz in Combination with Radiotherapy. Cells 2021; 10:cells10061436. [PMID: 34201238 PMCID: PMC8230049 DOI: 10.3390/cells10061436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022] Open
Abstract
Multimodal tumor treatment settings consisting of radiotherapy and immunomodulating agents such as immune checkpoint inhibitors are more and more commonly applied in clinics. In this context, the immune phenotype of tumor cells has a major influence on the anti-tumor immune response as well as the composition of the tumor microenvironment. A promising approach to further boost anti-tumor immune responses is to add hyperthermia (HT), i.e., heating the tumor tissue between 39 °C to 45 °C for 60 min. One key technique is the use of radiative hyperthermia systems. However, knowledge is limited as to how the frequency of the used radiative systems affects the immune phenotype of the treated tumor cells. By using our self-designed in vitro hyperthermia system, we compared cell death induction and expression of immune checkpoint molecules (ICM) on the tumor cell surface of murine B16 melanoma and human MDA-MB-231 and MCF-7 breast cancer cells following HT treatment with clinically relevant microwaves at 915 MHz or 2.45 GHz alone, radiotherapy (RT; 2 × 5 Gy or 5 × 2 Gy) alone or in combination (RHT). At 44 °C, HT alone was the dominant cell death inductor with inactivation rates of around 70% for B16, 45% for MDA-MB-231 and 35% for MCF-7 at 915 MHz and 80%, 60% and 50% at 2.45 GHz, respectively. Additional RT resulted in 5–15% higher levels of dead cells. The expression of ICM on tumor cells showed time-, treatment-, cell line- and frequency-dependent effects and was highest for RHT. Computer simulations of an exemplary spherical cell revealed frequency-dependent local energy absorption. The frequency of hyperthermia systems is a newly identified parameter that could also affect the immune phenotype of tumor cells and consequently the immunogenicity of tumors.
Collapse
|
4
|
Forjanic T, Markelc B, Marcan M, Bellard E, Couillaud F, Golzio M, Miklavci D. Electroporation-Induced Stress Response and Its Effect on Gene Electrotransfer Efficacy: In Vivo Imaging and Numerical Modeling. IEEE Trans Biomed Eng 2019; 66:2671-2683. [DOI: 10.1109/tbme.2019.2894659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Imaging of conditional gene silencing in vivo using a bioluminescence-based method with thermo-inducible microRNAs. Sci Rep 2018; 8:4694. [PMID: 29549271 PMCID: PMC5856835 DOI: 10.1038/s41598-018-22932-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 02/26/2018] [Indexed: 12/03/2022] Open
Abstract
RNA interference (RNAi)-based gene therapy has great potential in cancer and infectious disease treatment to correct abnormal up-regulation of gene expression. We show a new original method uses synthetic microRNAs combined with a thermo-inducible promoter to reduce specific gene expression. The targeted gene is the luciferase firefly reporter gene overexpressed in a subcutaneous tumor which allows the RNAi monitoring by bioluminescence imaging (BLI). The inducible inhibition was first demonstrated in vitro using genetically modified cells lines and then in vivo using the corresponding xenograft model in mice. Achieving spatio-temporal control, we demonstrate the feasibility to induce, in vivo, a specific gene inhibition on demand. Future applications of this RNAi-based gene therapy, which can be restricted to pathological tissue, would offer wide-ranging potential for disease treatment.
Collapse
|
6
|
Sandre O, Genevois C, Garaio E, Adumeau L, Mornet S, Couillaud F. In Vivo Imaging of Local Gene Expression Induced by Magnetic Hyperthermia. Genes (Basel) 2017; 8:E61. [PMID: 28208731 PMCID: PMC5333050 DOI: 10.3390/genes8020061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/16/2017] [Accepted: 02/01/2017] [Indexed: 11/16/2022] Open
Abstract
The present work aims to demonstrate that colloidal dispersions of magnetic iron oxide nanoparticles stabilized with dextran macromolecules placed in an alternating magnetic field can not only produce heat, but also that these particles could be used in vivo for local and noninvasive deposition of a thermal dose sufficient to trigger thermo-induced gene expression. Iron oxide nanoparticles were first characterized in vitro on a bio-inspired setup, and then they were assayed in vivo using a transgenic mouse strain expressing the luciferase reporter gene under transcriptional control of a thermosensitive promoter. Iron oxide nanoparticles dispersions were applied topically on the mouse skin or injected subcutaneously with Matrigel™ to generate so-called pseudotumors. Temperature was monitored continuously with a feedback loop to control the power of the magnetic field generator and to avoid overheating. Thermo-induced luciferase expression was followed by bioluminescence imaging 6 h after heating. We showed that dextran-coated magnetic iron oxide nanoparticle dispersions were able to induce in vivo mild hyperthermia compatible with thermo-induced gene expression in surrounding tissues and without impairing cell viability. These data open new therapeutic perspectives for using mild magnetic hyperthermia as noninvasive modulation of tumor microenvironment by local thermo-induced gene expression or drug release.
Collapse
Affiliation(s)
- Olivier Sandre
- Laboratory of Organic Polymer Chemistry, LCPO, UMR 5629 CNRS, University of Bordeaux, Bordeaux-INP, Pessac 33600, France.
| | - Coralie Genevois
- Molecular Imaging and Innovative Therapies in Oncology, IMOTION, EA 7435, University of Bordeaux, 146 rue Léo Saignat, case 127, Bordeaux cedex 33076, France.
| | - Eneko Garaio
- Department of Electricity and Electronics, University of the Basque Country (UPV/EHU), P.K. 644, Leioa 48940, Spain.
| | - Laurent Adumeau
- Institute for Condensed Matter Chemistry of Bordeaux, ICMCB, UPR 9048, CNRS, University of Bordeaux, Pessac F-33600 France.
| | - Stéphane Mornet
- Institute for Condensed Matter Chemistry of Bordeaux, ICMCB, UPR 9048, CNRS, University of Bordeaux, Pessac F-33600 France.
| | - Franck Couillaud
- Molecular Imaging and Innovative Therapies in Oncology, IMOTION, EA 7435, University of Bordeaux, 146 rue Léo Saignat, case 127, Bordeaux cedex 33076, France.
| |
Collapse
|
7
|
Fortin PY, Lepetit-Coiffé M, Genevois C, Debeissat C, Quesson B, Moonen CTW, Konsman JP, Couillaud F. Spatiotemporal control of gene expression in bone-marrow derived cells of the tumor microenvironment induced by MRI guided focused ultrasound. Oncotarget 2016; 6:23417-26. [PMID: 26299614 PMCID: PMC4695127 DOI: 10.18632/oncotarget.4288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/02/2015] [Indexed: 11/25/2022] Open
Abstract
The tumor microenvironment is an interesting target for anticancer therapies but modifying this compartment is challenging. Here, we demonstrate the feasibility of a gene therapy strategy that combined targeting to bone marrow-derived tumor microenvironment using genetically modified bone-marrow derived cells and control of transgene expression by local hyperthermia through a thermo-inducible promoter. Chimera were obtained by engraftment of bone marrow from transgenic mice expressing reporter genes under transcriptional control of heat shock promoter and inoculated sub-cutaneously with tumors cells. Heat shocks were applied at the tumor site using a water bath or magnetic resonance guided high intensity focused ultrasound device. Reporter gene expression was followed by bioluminescence and fluorescence imaging and immunohistochemistry. Bone marrow-derived cells expressing reporter genes were identified to be mainly tumor-associated macrophages. We thus provide the proof of concept for a gene therapy strategy that allows for spatiotemporal control of transgenes expression by macrophages targeted to the tumor microenvironment.
Collapse
Affiliation(s)
- Pierre-Yves Fortin
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle (IMF), CNRS/UMR 5231, Université de Bordeaux, Bordeaux, France.,Institut de Bio-Imagerie (IBIO), CNRS/UMS 3428, Université de Bordeaux, Bordeaux, France
| | - Matthieu Lepetit-Coiffé
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle (IMF), CNRS/UMR 5231, Université de Bordeaux, Bordeaux, France
| | - Coralie Genevois
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle (IMF), CNRS/UMR 5231, Université de Bordeaux, Bordeaux, France.,Institut de Bio-Imagerie (IBIO), CNRS/UMS 3428, Université de Bordeaux, Bordeaux, France
| | - Christelle Debeissat
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle (IMF), CNRS/UMR 5231, Université de Bordeaux, Bordeaux, France
| | - Bruno Quesson
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle (IMF), CNRS/UMR 5231, Université de Bordeaux, Bordeaux, France
| | - Chrit T W Moonen
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle (IMF), CNRS/UMR 5231, Université de Bordeaux, Bordeaux, France
| | - Jan Pieter Konsman
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), CNRS/UMR 5536, Université de Bordeaux, Bordeaux, France
| | - Franck Couillaud
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle (IMF), CNRS/UMR 5231, Université de Bordeaux, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), CNRS/UMR 5536, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
8
|
Mukherjee A, Castanares M, Hedayati M, Wabler M, Trock B, Kulkarni P, Rodriguez R, Getzenberg RH, DeWeese TL, Ivkov R, Lupold SE. Monitoring nanoparticle-mediated cellular hyperthermia with a high-sensitivity biosensor. Nanomedicine (Lond) 2015; 9:2729-43. [PMID: 24547783 DOI: 10.2217/nnm.13.207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To develop and apply a heat-responsive and secreted reporter assay for comparing cellular response to nanoparticle (NP)- and macroscopic-mediated sublethal hyperthermia. MATERIALS & METHODS Reporter cells were heated by water bath (macroscopic heating) or iron oxide NPs activated by alternating magnetic fields (nanoscopic heating). Cellular responses to these thermal stresses were measured in the conditioned media by secreted luciferase assay. RESULTS & CONCLUSION Reporter activity was responsive to macroscopic and nanoparticle heating and activity correlated with measured macroscopic thermal dose. Significant cellular responses were observed with NP heating under doses that were insufficient to measurably change the temperature of the system. Under these conditions, the reporter response correlated with proximity to cells loaded with heated nanoparticles. These results suggest that NP and macroscopic hyperthermia may be distinctive under conditions of mild hyperthermia.
Collapse
Affiliation(s)
- Amarnath Mukherjee
- The James Buchanan Brady Urological Institute & Department of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Slimen IB, Najar T, Ghram A, Dabbebi H, Ben Mrad M, Abdrabbah M. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int J Hyperthermia 2015; 30:513-23. [PMID: 25354680 DOI: 10.3109/02656736.2014.971446] [Citation(s) in RCA: 514] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In recent years there has been enormous interest in researching oxidative stress. Reactive oxygen species (ROS) are derived from the metabolism of oxygen as by-products of cell respiration, and are continuously produced in all aerobic organisms. Oxidative stress occurs as a consequence of an imbalance between ROS production and the available antioxidant defence against them. Nowadays, a variety of diseases and degenerative processes such as cancer, Alzheimer's and autoimmune diseases are mediated by oxidative stress. Heat stress was suggested to be an environmental factor responsible for stimulating ROS production because of similarities in responses observed following heat stress compared with that occurring following exposure to oxidative stress. This manuscript describes the main mitochondrial sources of ROS and the antioxidant defences involved to prevent oxidative damage in all the mitochondrial compartments. It also deals with discussions concerning the cytotoxic effect of heat stress, mitochondrial heat-induced alterations, as well as heat shock protein (HSP) expression as a defence mechanism.
Collapse
Affiliation(s)
- Imen Belhadj Slimen
- Laboratory of Materials, Molecules and Application, Preparatory Institute for Scientific and Technical Studies , Tunisia
| | | | | | | | | | | |
Collapse
|
10
|
Fortin PY, Genevois C, Chapolard M, Santalucía T, Planas AM, Couillaud F. Dual-reporter in vivo imaging of transient and inducible heat-shock promoter activation. BIOMEDICAL OPTICS EXPRESS 2014; 5:457-467. [PMID: 24575340 PMCID: PMC3920876 DOI: 10.1364/boe.5.000457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/23/2013] [Accepted: 12/25/2013] [Indexed: 06/03/2023]
Abstract
Gene promoter activity can be studied in vivo by molecular imaging methods using reporter gene technology. Transcription of the reporter and the reported genes occurs simultaneously. However, imaging depends on reporter protein translation, stability, and cellular fate that may differ among the various proteins. A double transgenic mouse strain expressing the firefly luciferase (lucF) and fluorescent mPlum protein under the transcriptional control of the thermo-inducible heat-shock protein (Hspa1b) promoter was generated allowing to follow up the reporter proteins by different and complementary in vivo imaging technologies. These mice were used for in vivo imaging by bioluminescence and epi fluorescence reflectance imaging (BLI & FRI) and as a source of embryonic fibroblast (MEF) for in vitro approaches. LucF, mPlum and endogenous Hsp70 mRNAs were transcribed simultaneously. The increase in mRNA was transient, peaking at 3 h and then returning to the basal level about 6 h after the thermal stimulations. The bioluminescent signal was transient and initiated with a 3 h delay versus mRNA expression. The onset of mPlum fluorescence was more delayed, increasing slowly up to 30 h after heat-shock and remaining for several days. This mouse allows for both bioluminescence imaging (BLI) and fluorescence reflectance imaging (FRI) of Hsp70 promoter activation showing an early and transient lucF activity and a retrospective and persistent mPlum fluorescence. This transgenic mouse will allow following the transient local induction of Hsp-70 promoter beyond its induction time-frame and relate into subsequent dynamic biological effects of the heat-shock response.
Collapse
Affiliation(s)
- Pierre-Yves Fortin
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle (IMF), Université Bordeaux Segalen, CNRS/UMR 5231, Université Bordeaux2, France ; IBIO, Université Bordeaux Segalen, CNRS/UMR 3428, Université Bordeaux 2, France
| | - Coralie Genevois
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle (IMF), Université Bordeaux Segalen, CNRS/UMR 5231, Université Bordeaux2, France ; IBIO, Université Bordeaux Segalen, CNRS/UMR 3428, Université Bordeaux 2, France
| | - Mathilde Chapolard
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle (IMF), Université Bordeaux Segalen, CNRS/UMR 5231, Université Bordeaux2, France
| | - Tomàs Santalucía
- Department of Brain Ischemia and Neurodegeneration, Institute for Biomedical Research of Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration, Institute for Biomedical Research of Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Franck Couillaud
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle (IMF), Université Bordeaux Segalen, CNRS/UMR 5231, Université Bordeaux2, France ; . Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université Bordeaux Segalen, CNRS/UMR 5536, Université Bordeaux 2, France
| |
Collapse
|
11
|
Deng ZS, Liu J. Chemothermal therapy for localized heating and ablation of tumor. JOURNAL OF HEALTHCARE ENGINEERING 2013; 4:409-26. [PMID: 23965596 DOI: 10.1260/2040-2295.4.3.409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chemothermal therapy is a new hyperthermia treatment on tumor using heat released from exothermic chemical reaction between the injected reactants and the diseased tissues. With the highly minimally invasive feature and localized heating performance, this method is expected to overcome the ubiquitous shortcomings encountered by many existing hyperthermia approaches in ablating irregular tumor. This review provides a relatively comprehensive review on the latest advancements and state of the art in chemothermal therapy. The basic principles and features of two typical chemothermal ablation strategies (acid-base neutralization-reaction-enabled thermal ablation and alkali-metal-enabled thermal/chemical ablation) are illustrated. The prospects and possible challenges facing chemothermal ablation are analyzed. The chemothermal therapy is expected to open many clinical possibilities for precise tumor treatment in a minimally invasive way.
Collapse
Affiliation(s)
- Zhong-Shan Deng
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
| | | |
Collapse
|
12
|
de la Rosa X, Santalucía T, Fortin PY, Purroy J, Calvo M, Salas-Perdomo A, Justicia C, Couillaud F, Planas AM. In vivo imaging of induction of heat-shock protein-70 gene expression with fluorescence reflectance imaging and intravital confocal microscopy following brain ischaemia in reporter mice. Eur J Nucl Med Mol Imaging 2013; 40:426-38. [PMID: 23135322 DOI: 10.1007/s00259-012-2277-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/04/2012] [Indexed: 01/07/2023]
Abstract
PURPOSE Stroke induces strong expression of the 72-kDa heat-shock protein (HSP-70) in the ischaemic brain, and neuronal expression of HSP-70 is associated with the ischaemic penumbra. The aim of this study was to image induction of Hsp-70 gene expression in vivo after brain ischaemia using reporter mice. METHODS A genomic DNA sequence of the Hspa1b promoter was used to generate an Hsp70-mPlum far-red fluorescence reporter vector. The construct was tested in cellular systems (NIH3T3 mouse fibroblast cell line) by transient transfection and examining mPlum and Hsp-70 induction under a challenge. After construct validation, mPlum transgenic mice were generated. Focal brain ischaemia was induced by transient intraluminal occlusion of the middle cerebral artery and the mice were imaged in vivo with fluorescence reflectance imaging (FRI) with an intact skull, and with confocal microscopy after opening a cranial window. RESULTS Cells transfected with the Hsp70-mPlum construct showed mPlum fluorescence after stimulation. One day after induction of ischaemia, reporter mice showed a FRI signal located in the HSP-70-positive zone within the ipsilateral hemisphere, as validated by immunohistochemistry. Live confocal microscopy allowed brain tissue to be visualized at the cellular level. mPlum fluorescence was observed in vivo in the ipsilateral cortex 1 day after induction of ischaemia in neurons, where it is compatible with penumbra and neuronal viability, and in blood vessels in the core of the infarction. CONCLUSION This study showed in vivo induction of Hsp-70 gene expression in ischaemic brain using reporter mice. The fluorescence signal showed in vivo the induction of Hsp-70 in penumbra neurons and in the vasculature within the ischaemic core.
Collapse
Affiliation(s)
- Xavier de la Rosa
- Department of Brain Ischemia and Neurodegeneration, Institute for Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Rosselló 161, planta 6, 08036, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|