1
|
Henderson J, O'Callaghan J, Campbell M. Gene therapy for glaucoma: Targeting key mechanisms. Vision Res 2024; 225:108502. [PMID: 39423611 PMCID: PMC11579448 DOI: 10.1016/j.visres.2024.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
Glaucoma is a group of optic neuropathies characterised by progressive retinal ganglion cell (RGC) degeneration and is the leading cause of irreversible blindness worldwide. Current treatments for glaucoma focus on reducing intraocular pressure (IOP) with topical medications. However, many patients do not achieve sufficient IOP reductions with such treatments. Patient compliance to dosing schedules also poses a significant challenge, further limiting their effectiveness. While surgical options exist for resistant cases, these are invasive and carry risks of complications. Thus, there is a critical need for better strategies to prevent irreversible vision loss in glaucoma. Gene therapy holds significant promise in this regard, offering potential long-term solutions by targeting the disease's underlying causes at a molecular level. Gene therapy strategies for glaucoma primarily target the two key hallmarks of the disease: elevated IOP and RGC death. This review explores key mechanisms underlying these hallmarks and discusses the current state of gene therapies targeting them. In terms of IOP reduction, this review covers strategies aimed at enhancing extracellular matrix turnover in the conventional outflow pathway, targeting fibrosis, regulating aqueous humor production, and targeting myocilin for gene-specific therapy. Neuroprotective strategies explored include targeting neurotrophic factors and their receptors, reducing oxidative stress and mitochondrial dysfunction, and preventing Wallerian degeneration. This review also briefly highlights key research priorities for advancing gene therapies for glaucoma through the clinical pipeline, such as refining delivery vectors and improving transgene regulation. Addressing these priorities will be essential for translating advancements from preclinical models into effective clinical therapies for glaucoma.
Collapse
Affiliation(s)
- Jeff Henderson
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
2
|
Knecht KT, Chiriac G, Guan HD. The potential impact of a vegetarian diet on glaucoma. Surv Ophthalmol 2024; 69:833-841. [PMID: 38768761 DOI: 10.1016/j.survophthal.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Treatment of primary open-angle glaucoma has centered on the lowering of intraocular pressure that damages the optic nerve; however, this strategy is not uniformly successful, especially in normal tension glaucoma, and there is interest in antioxidant, anti-inflammatory, and other neuroprotective strategies. Vegetarian diets are known to be rich in antioxidant and anti-inflammatory components and have a number of established health benefits. Thus, it would be reasonable to assume that vegetarian diets would be beneficial in glaucoma, but this approach has not been well studied. We examine the possible role of vegetarian diets and their components in the incidence and progression of glaucoma.
Collapse
Affiliation(s)
- Kathryn T Knecht
- Loma Linda University School of Pharmacy, Loma Linda, California, USA
| | - Gabriela Chiriac
- Loma Linda University School of Public Health, Loma Linda, California, USA
| | - Howard D Guan
- Loma Linda University Eye Institute, Loma Linda, California, USA.
| |
Collapse
|
3
|
Böhm EW, Buonfiglio F, Voigt AM, Bachmann P, Safi T, Pfeiffer N, Gericke A. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biol 2023; 68:102967. [PMID: 38006824 PMCID: PMC10701459 DOI: 10.1016/j.redox.2023.102967] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
Oxidative stress occurs through an imbalance between the generation of reactive oxygen species (ROS) and the antioxidant defense mechanisms of cells. The eye is particularly exposed to oxidative stress because of its permanent exposure to light and due to several structures having high metabolic activities. The anterior part of the eye is highly exposed to ultraviolet (UV) radiation and possesses a complex antioxidant defense system to protect the retina from UV radiation. The posterior part of the eye exhibits high metabolic rates and oxygen consumption leading subsequently to a high production rate of ROS. Furthermore, inflammation, aging, genetic factors, and environmental pollution, are all elements promoting ROS generation and impairing antioxidant defense mechanisms and thereby representing risk factors leading to oxidative stress. An abnormal redox status was shown to be involved in the pathophysiology of various ocular diseases in the anterior and posterior segment of the eye. In this review, we aim to summarize the mechanisms of oxidative stress in ocular diseases to provide an updated understanding on the pathogenesis of common diseases affecting the ocular surface, the lens, the retina, and the optic nerve. Moreover, we discuss potential therapeutic approaches aimed at reducing oxidative stress in this context.
Collapse
Affiliation(s)
- Elsa Wilma Böhm
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Anna Maria Voigt
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Philipp Bachmann
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tarek Safi
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
4
|
Buonfiglio F, Böhm EW, Pfeiffer N, Gericke A. Oxidative Stress: A Suitable Therapeutic Target for Optic Nerve Diseases? Antioxidants (Basel) 2023; 12:1465. [PMID: 37508003 PMCID: PMC10376185 DOI: 10.3390/antiox12071465] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Optic nerve disorders encompass a wide spectrum of conditions characterized by the loss of retinal ganglion cells (RGCs) and subsequent degeneration of the optic nerve. The etiology of these disorders can vary significantly, but emerging research highlights the crucial role of oxidative stress, an imbalance in the redox status characterized by an excess of reactive oxygen species (ROS), in driving cell death through apoptosis, autophagy, and inflammation. This review provides an overview of ROS-related processes underlying four extensively studied optic nerve diseases: glaucoma, Leber's hereditary optic neuropathy (LHON), anterior ischemic optic neuropathy (AION), and optic neuritis (ON). Furthermore, we present preclinical findings on antioxidants, with the objective of evaluating the potential therapeutic benefits of targeting oxidative stress in the treatment of optic neuropathies.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| |
Collapse
|
5
|
Shu DY, Chaudhary S, Cho KS, Lennikov A, Miller WP, Thorn DC, Yang M, McKay TB. Role of Oxidative Stress in Ocular Diseases: A Balancing Act. Metabolites 2023; 13:187. [PMID: 36837806 PMCID: PMC9960073 DOI: 10.3390/metabo13020187] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Redox homeostasis is a delicate balancing act of maintaining appropriate levels of antioxidant defense mechanisms and reactive oxidizing oxygen and nitrogen species. Any disruption of this balance leads to oxidative stress, which is a key pathogenic factor in several ocular diseases. In this review, we present the current evidence for oxidative stress and mitochondrial dysfunction in conditions affecting both the anterior segment (e.g., dry eye disease, keratoconus, cataract) and posterior segment (age-related macular degeneration, proliferative vitreoretinopathy, diabetic retinopathy, glaucoma) of the human eye. We posit that further development of therapeutic interventions to promote pro-regenerative responses and maintenance of the redox balance may delay or prevent the progression of these major ocular pathologies. Continued efforts in this field will not only yield a better understanding of the molecular mechanisms underlying the pathogenesis of ocular diseases but also enable the identification of novel druggable redox targets and antioxidant therapies.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Suman Chaudhary
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Anton Lennikov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - William P. Miller
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - David C. Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Tina B. McKay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
6
|
The Intertwined Roles of Oxidative Stress and Endoplasmic Reticulum Stress in Glaucoma. Antioxidants (Basel) 2022; 11:antiox11050886. [PMID: 35624748 PMCID: PMC9137739 DOI: 10.3390/antiox11050886] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide, and the burden of the disease continues to grow as the global population ages. Currently, the only treatment option is to lower intraocular pressure. A better understanding of glaucoma pathogenesis will help us to develop novel therapeutic options. Oxidative stress has been implicated in the pathogenesis of many diseases. Oxidative stress occurs when there is an imbalance in redox homeostasis, with reactive oxygen species producing processes overcoming anti-oxidant defensive processes. Oxidative stress works in a synergistic fashion with endoplasmic reticulum stress, to drive glaucomatous damage to trabecular meshwork, retinal ganglion cells and the optic nerve head. We discuss the oxidative stress and endoplasmic reticulum stress pathways and their connections including their key intermediary, calcium. We highlight therapeutic options aimed at disrupting these pathways and discuss their potential role in glaucoma treatment.
Collapse
|
7
|
Młynarczyk M, Falkowska M, Micun Z, Obuchowska I, Kochanowicz J, Socha K, Konopińska J. Diet, Oxidative Stress, and Blood Serum Nutrients in Various Types of Glaucoma: A Systematic Review. Nutrients 2022; 14:nu14071421. [PMID: 35406033 PMCID: PMC9002851 DOI: 10.3390/nu14071421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Glaucoma is one of the most common causes of irreversible vision loss worldwide. It is an insidious disease with a multifactorial pathogenesis. Despite progress in treatment methods, prevention and lifestyle modifications may be useful in slowing the progression of this disease. This systematic review aimed to evaluate the influence of diet, oxidative stress, and disturbances in blood serum levels of nutrients on the incidence and severity of glaucoma based on scientific reports on the role of nutrition in the pathogenesis and course of glaucoma. This paper presents an analysis of the above issues; however, further research is required to develop this topic. Future clinical trials are needed to assess the influence of nutrition and to develop nutritional management strategies for patients with glaucoma.
Collapse
Affiliation(s)
- Maryla Młynarczyk
- Department of Ophthalmology, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.M.); (Z.M.); (I.O.)
| | - Martyna Falkowska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D, 15-222 Białystok, Poland; (M.F.); (K.S.)
| | - Zuzanna Micun
- Department of Ophthalmology, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.M.); (Z.M.); (I.O.)
| | - Iwona Obuchowska
- Department of Ophthalmology, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.M.); (Z.M.); (I.O.)
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland;
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D, 15-222 Białystok, Poland; (M.F.); (K.S.)
| | - Joanna Konopińska
- Department of Ophthalmology, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.M.); (Z.M.); (I.O.)
- Correspondence: ; Tel.: +48-600471666
| |
Collapse
|
8
|
Sanz-Morello B, Ahmadi H, Vohra R, Saruhanian S, Freude KK, Hamann S, Kolko M. Oxidative Stress in Optic Neuropathies. Antioxidants (Basel) 2021; 10:1538. [PMID: 34679672 PMCID: PMC8532958 DOI: 10.3390/antiox10101538] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 01/23/2023] Open
Abstract
Increasing evidence indicates that changes in the redox system may contribute to the pathogenesis of multiple optic neuropathies. Optic neuropathies are characterized by the neurodegeneration of the inner-most retinal neurons, the retinal ganglion cells (RGCs), and their axons, which form the optic nerve. Often, optic neuropathies are asymptomatic until advanced stages, when visual impairment or blindness is unavoidable despite existing treatments. In this review, we describe systemic and, whenever possible, ocular redox dysregulations observed in patients with glaucoma, ischemic optic neuropathy, optic neuritis, hereditary optic neuropathies (i.e., Leber's hereditary optic neuropathy and autosomal dominant optic atrophy), nutritional and toxic optic neuropathies, and optic disc drusen. We discuss aspects related to anti/oxidative stress biomarkers that need further investigation and features related to study design that should be optimized to generate more valuable and comparable results. Understanding the role of oxidative stress in optic neuropathies can serve to develop therapeutic strategies directed at the redox system to arrest the neurodegenerative processes in the retina and RGCs and ultimately prevent vision loss.
Collapse
Affiliation(s)
- Berta Sanz-Morello
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (H.A.); (R.V.)
| | - Hamid Ahmadi
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (H.A.); (R.V.)
- Department of Ophthalmology, Rigshospitalet, 2600 Glostrup, Denmark;
| | - Rupali Vohra
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (H.A.); (R.V.)
- Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (S.S.); (K.K.F.)
| | - Sarkis Saruhanian
- Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (S.S.); (K.K.F.)
| | - Kristine Karla Freude
- Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (S.S.); (K.K.F.)
| | - Steffen Hamann
- Department of Ophthalmology, Rigshospitalet, 2600 Glostrup, Denmark;
| | - Miriam Kolko
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (H.A.); (R.V.)
- Department of Ophthalmology, Rigshospitalet, 2600 Glostrup, Denmark;
| |
Collapse
|
9
|
Kondkar AA, Azad TA, Alobaidan AS, Sultan T, Osman EA, Almobarak FA, Lobo GP, Al-Obeidan SA. Lack of Association Between Polymorphisms in TXNRD2 and LMX1B and Primary Open-Angle Glaucoma in a Saudi Cohort. Front Genet 2021; 12:690780. [PMID: 34408771 PMCID: PMC8365832 DOI: 10.3389/fgene.2021.690780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Recent studies have demonstrated an association of single nucleotide polymorphisms (SNPs) rs35934224 in TXNRD2 and rs6478746 near LMX1B genes in primary open-angle glaucoma (POAG) among Europeans. We performed a retrospective, case-control study to investigate the association between the rs35934224 (TXNRD2) and rs6478746 (LMX1B) and POAG in a middle-eastern population from Saudi Arabia. Methods: DNA from 399 participants consisting of 150 POAG cases (83 males and 67 females) and 249 controls (135 males and 114 females) were genotyped using TaqMan® real-time PCR. Statistical tests were performed to evaluate genetic association with POAG and related clinical indices. Results: The minor allele frequency (MAF) of rs35934224[T] was 0.19 and 0.20 in POAG and controls, respectively. The difference was non-significant (odds ratio [OR] = 1.08, 95% confidence interval [CI] = 0.75-1.55, p = 0.663). Likewise, rs6478746[G] MAF was 0.12 in both cases and controls with no statistical significance (OR = 1.02, 95% CI = 0.67-1.56, p = 0.910). Genotype analysis showed no association with POAG for both the SNPs in combined and gender-stratified groups. Regression analysis showed no significant effect of risk factors such as age, sex, rs35934224, and rs6478746 genotypes on POAG outcome. Furthermore, both the SNPs showed no significant genotype effect on clinical indices such as intraocular pressure (IOP) and cup/disc ratio in POAG patients. Conclusions: Rs35934224 in TXNRD2 and rs6478746 near LMX1B genes are not associated with POAG or related clinical indices such as IOP and cup/disc ratio in a Saudi cohort. Since the study is limited by sample size further investigations are needed to confirm these results in a larger cohort.
Collapse
Affiliation(s)
- Altaf A Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Taif A Azad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Tahira Sultan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Essam A Osman
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Faisal A Almobarak
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Glenn P Lobo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States
| | - Saleh A Al-Obeidan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Cueto AFV, Álvarez L, García M, Álvarez-Barrios A, Artime E, Cueto LFV, Coca-Prados M, González-Iglesias H. Candidate Glaucoma Biomarkers: From Proteins to Metabolites, and the Pitfalls to Clinical Applications. BIOLOGY 2021; 10:763. [PMID: 34439995 PMCID: PMC8389649 DOI: 10.3390/biology10080763] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/17/2022]
Abstract
Glaucoma is an insidious group of eye diseases causing degeneration of the optic nerve, progressive loss of vision, and irreversible blindness. The number of people affected by glaucoma is estimated at 80 million in 2021, with 3.5% prevalence in people aged 40-80. The main biomarker and risk factor for the onset and progression of glaucoma is the elevation of intraocular pressure. However, when glaucoma is diagnosed, the level of retinal ganglion cell death usually amounts to 30-40%; hence, the urgent need for its early diagnosis. Molecular biomarkers of glaucoma, from proteins to metabolites, may be helpful as indicators of pathogenic processes observed during the disease's onset. The discovery of human glaucoma biomarkers is hampered by major limitations, including whether medications are influencing the expression of molecules in bodily fluids, or whether tests to validate glaucoma biomarker candidates should include human subjects with different types and stages of the disease, as well as patients with other ocular and neurodegenerative diseases. Moreover, the proper selection of the biofluid or tissue, as well as the analytical platform, should be mandatory. In this review, we have summarized current knowledge concerning proteomics- and metabolomics-based glaucoma biomarkers, with specificity to human eye tissue and fluid, as well the analytical approach and the main results obtained. The complex data published to date, which include at least 458 different molecules altered in human glaucoma, merit a new, integrative approach allowing for future diagnostic tests based on the absolute quantification of local and/or systemic biomarkers of glaucoma.
Collapse
Affiliation(s)
- Andrés Fernández-Vega Cueto
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Lydia Álvarez
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Montserrat García
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Ana Álvarez-Barrios
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Enol Artime
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Luis Fernández-Vega Cueto
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Miguel Coca-Prados
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Héctor González-Iglesias
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| |
Collapse
|
11
|
Lem DW, Gierhart DL, Davey PG. Carotenoids in the Management of Glaucoma: A Systematic Review of the Evidence. Nutrients 2021; 13:1949. [PMID: 34204051 PMCID: PMC8228567 DOI: 10.3390/nu13061949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/23/2022] Open
Abstract
Primary open-angle glaucoma (POAG) remains a leading cause of irreversible blindness globally. Recent evidence further substantiates sustained oxidative stress, and compromised antioxidant defenses are key drivers in the onset of glaucomatous neurodegeneration. Overwhelming oxidative injury is likely attributed to compounding mitochondrial dysfunction that worsens with age-related processes, causing aberrant formation of free radical species. Thus, a compromised systemic antioxidant capacity exacerbates further oxidative insult in glaucoma, leading to apoptosis, neuroinflammation, and subsequent tissue injury. The purpose of this systematic review is to investigate the neuroprotective benefits of the macular carotenoids lutein, zeaxanthin, and meso-zeaxanthin on glaucomatous neurodegeneration for the purpose of adjunctive nutraceutical treatment in glaucoma. A comprehensive literature search was conducted in three databases (PubMed, Cochrane Library, and Web of Science) and 20 records were identified for screening. Lutein demonstrated enhanced neuroprotection on retinal ganglion cell survival and preserved synaptic activity. In clinical studies, a protective trend was seen with greater dietary consumption of carotenoids and risk of glaucoma, while greater carotenoid levels in macular pigment were largely associated with improved visual performance in glaucomatous eyes. The data suggest that carotenoid vitamin therapy exerts synergic neuroprotective benefits and has the capacity to serve adjunctive therapy in the management of glaucoma.
Collapse
Affiliation(s)
- Drake W. Lem
- College of Optometry, Western University of Health Sciences, 309 E Second St, Pomona, CA 91766, USA;
| | | | - Pinakin Gunvant Davey
- College of Optometry, Western University of Health Sciences, 309 E Second St, Pomona, CA 91766, USA;
| |
Collapse
|
12
|
Glaucoma and Antioxidants: Review and Update. Antioxidants (Basel) 2020; 9:antiox9111031. [PMID: 33105786 PMCID: PMC7690615 DOI: 10.3390/antiox9111031] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023] Open
Abstract
Glaucoma is a neurodegenerative disease characterised by the progressive degeneration of retinal ganglion cells. Oxidative stress has been related to the cell death in this disease. Theoretically, this deleterious consequence can be reduced by antioxidants substances. The aim of this review is to assemble the studies published in relation to antioxidant supplementation and its effects on glaucoma and to offer the reader an update on this field. With this purpose, we have included studies in animal models of glaucoma and clinical trials. Although there are variable results, supplementation with antioxidants in glaucoma may be a promising therapy in glaucoma.
Collapse
|
13
|
Natural Products: Evidence for Neuroprotection to Be Exploited in Glaucoma. Nutrients 2020; 12:nu12103158. [PMID: 33081127 PMCID: PMC7602834 DOI: 10.3390/nu12103158] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Glaucoma, a leading cause of irreversible blindness worldwide, is an optic neuropathy characterized by the progressive death of retinal ganglion cells (RGCs). Elevated intraocular pressure (IOP) is recognized as the main risk factor. Despite effective IOP-lowering therapies, the disease progresses in a significant number of patients. Therefore, alternative IOP-independent strategies aiming at halting or delaying RGC degeneration is the current therapeutic challenge for glaucoma management. Here, we review the literature on the neuroprotective activities, and the underlying mechanisms, of natural compounds and dietary supplements in experimental and clinical glaucoma.
Collapse
|
14
|
Jabbehdari S, Chen JL, Vajaranant TS. Effect of dietary modification and antioxidant supplementation on intraocular pressure and open-angle glaucoma. Eur J Ophthalmol 2020; 31:1588-1605. [PMID: 33008269 DOI: 10.1177/1120672120960337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Primary open-angle glaucoma (POAG) is an age-dependent, intraocular pressure (IOP)-related degeneration of the retinal ganglion cells (RGC). At present, IOP is the only modifiable factor that has been identified to prevent glaucomatous vision loss. Though the pathogenesis of glaucomatous optic neuropathy is still not well understood, increasing evidence suggests oxidative stress may contribute to the induction and progression of glaucoma. Furthermore, antioxidant use may be protective against glaucoma through various mechanisms, including reducing IOP, preserving vascular health, and preventing ganglion cell loss. This article provides a comprehensive review of the effect of oxidative stress, diet, and antioxidant therapy on IOP and open-angle glaucoma.
Collapse
Affiliation(s)
- Sayena Jabbehdari
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Judy L Chen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
15
|
Langbøl M, Saruhanian S, Baskaran T, Tiedemann D, Mouhammad ZA, Toft-Kehler AK, Jun B, Vohra R, Bazan NG, Kolko M. Increased Antioxidant Capacity and Pro-Homeostatic Lipid Mediators in Ocular Hypertension-A Human Experimental Model. J Clin Med 2020; 9:jcm9092979. [PMID: 32942740 PMCID: PMC7563216 DOI: 10.3390/jcm9092979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022] Open
Abstract
The main risk factor for primary open-angle glaucoma (POAG) is increased intraocular pressure (IOP). It is of interest that about half of the patients have an IOP within the normal range (normal-tension glaucoma, NTG). Additionally, there is a group of patients with a high IOP but no glaucomatous neurodegeneration (ocular hypertension, OHT). Therefore, risk factors other than IOP are involved in the pathogenesis of glaucoma. Since the retina has a very high oxygen-demand, decreased autoregulation and a fluctuating oxygen supply to the retina have been linked to glaucomatous neurodegeneration. To assess the significance of these mechanisms, we have utilized a human experimental model, in which we stress participants with a fluctuating oxygen supply. Levels of oxidative stress molecules, antioxidants, and lipid mediators were measured in the plasma. Patients with NTG, OHT, and control subjects were found to have similar levels of oxidative stress markers. In contrast, patients with OHT had a higher level of total antioxidant capacity (TAC) and pro-homeostatic lipid mediators. Thus, we suggest that OHT patients manage fluctuating oxygen levels more efficiently and, thus, are less susceptible to glaucomatous neurodegenerations, due to enhanced systemic antioxidant protection.
Collapse
Affiliation(s)
- Mia Langbøl
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (S.S.); (T.B.); (D.T.); (Z.A.M.); (A.K.T.-K.); (R.V.)
- Correspondence: (M.L.); (M.K.); Tel.: +45-30-50-26-62 (M.L.); +45-29-80-76-67 (M.K.)
| | - Sarkis Saruhanian
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (S.S.); (T.B.); (D.T.); (Z.A.M.); (A.K.T.-K.); (R.V.)
| | - Thisayini Baskaran
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (S.S.); (T.B.); (D.T.); (Z.A.M.); (A.K.T.-K.); (R.V.)
| | - Daniel Tiedemann
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (S.S.); (T.B.); (D.T.); (Z.A.M.); (A.K.T.-K.); (R.V.)
| | - Zaynab A. Mouhammad
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (S.S.); (T.B.); (D.T.); (Z.A.M.); (A.K.T.-K.); (R.V.)
| | - Anne Katrine Toft-Kehler
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (S.S.); (T.B.); (D.T.); (Z.A.M.); (A.K.T.-K.); (R.V.)
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA; (B.J.); (N.G.B.)
| | - Rupali Vohra
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (S.S.); (T.B.); (D.T.); (Z.A.M.); (A.K.T.-K.); (R.V.)
- Department of Veterinary and Animal Sciences, University of Copenhagen, 2000 Frederiksberg, Denmark
| | - Nicolas G. Bazan
- Neuroscience Center of Excellence, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA; (B.J.); (N.G.B.)
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (S.S.); (T.B.); (D.T.); (Z.A.M.); (A.K.T.-K.); (R.V.)
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, 2600 Glostrup, Denmark
- Correspondence: (M.L.); (M.K.); Tel.: +45-30-50-26-62 (M.L.); +45-29-80-76-67 (M.K.)
| |
Collapse
|
16
|
Elevated Plasma Level of 8-Hydroxy-2'-deoxyguanosine Is Associated with Primary Open-Angle Glaucoma. J Ophthalmol 2020; 2020:6571413. [PMID: 32411433 PMCID: PMC7201519 DOI: 10.1155/2020/6571413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/29/2020] [Accepted: 04/10/2020] [Indexed: 11/27/2022] Open
Abstract
Purpose To determine the association between plasma 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels, a marker for oxidative DNA damage, and patients with primary open-angle glaucoma (POAG) or its clinical phenotypes. Furthermore, we also examined the utility of plasma 8-OHdG as a potential biomarker in POAG. Materials and Methods In a retrospective case-control study, plasma samples were obtained from 50 POAG cases and 45 glaucoma-free controls matched for age, sex, and ethnicity. 8-OHdG levels were measured in duplicate using an enzyme-linked immunosorbent assay (ELISA) on an automated ELISA analyzer. Results There was no significant difference in age, sex, and systemic disease distribution between POAG cases and controls. Both mean and median 8-OHdG levels were significantly elevated in POAG cases and male subjects. The area under the receiver operating characteristic (ROC) curve value for plasma 8-OHdG was 0.653 (95% confidence interval = 0.54–0.76, p = 0.010). The cutoff values based on quartile distribution and ROC curve analysis showed that elevated plasma 8-OHdG significantly increased the risk of POAG by more than 4-folds. Plasma 8-OHdG had a sensitivity of 78% and specificity of 53%. In logistic regression analysis, 8-OHdG showed a significant effect on POAG outcome (p = 0.016) independent of age, sex, smoking, and systemic diseases. However, no significant correlation was observed between 8-OHdG and specific clinical markers of glaucoma such as intraocular pressure (p = 0.699), cup/disc ratio (p = 0.213), and the number of antiglaucoma medications (p = 0.603). Conclusion The study shows that there is a significant association between elevated plasma 8-OHdG and POAG, supporting the role of systemic oxidative stress-induced DNA damage in POAG pathogenesis. However, with a high rate of false-positivity, plasma 8-OHdG may lack the ability to serve as a potential biomarker in POAG. Further studies in a much larger cohort are needed to confirm these findings.
Collapse
|
17
|
Kondkar AA, Azad TA, Sultan T, Osman EA, Almobarak FA, Al-Obeidan SA. Association of endothelial nitric oxide synthase (NOS3) gene polymorphisms with primary open-angle glaucoma in a Saudi cohort. PLoS One 2020; 15:e0227417. [PMID: 31914149 PMCID: PMC6948740 DOI: 10.1371/journal.pone.0227417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/18/2019] [Indexed: 01/25/2023] Open
Abstract
Aim To investigate the association of endothelial nitric oxide synthase (NOS3) gene polymorphisms in patients with primary open-angle glaucoma (POAG) of Saudi origin. Methods This case-control study included 173 patients with POAG (94 men and 79 women) and 171 controls (98 men and 73 women). Genotyping of rs2070744 (T-786C) and rs1799983 (G894T) variants of the NOS3 gene was performed using TaqMan® assay. Results Rs1799983 genotypes showed a significant association with POAG but did not survive Bonferroni correction (pcorrection = 0.01). The minor ‘T’ allele was significantly associated with the risk of POAG among men (p = 0.025, odds ratio (OR) = 1.77, 95% confidence interval (CI) = 1.07–2.94). Likewise, the genotypes were significantly associated with POAG among men in dominant (p = 0.030, OR = 1.92, 95% CI = 1.06–3.48) and log-additive models (p = 0.022, OR = 1.82, 95% CI = 1.08–3.07), and after adjustment for age and smoking. Genotype and allele frequencies of rs2070744 were not significantly different between POAG cases and controls, and after sex stratification. CG haplotype was significantly protective (p = 0.011, OR = 0.52, 95% CI = 0.32–0.87) and CT haplotype conferred significantly increased risk of POAG (p = 0.016, OR = 2.60, 95% CI = 1.16–5.82) among men. Rs1799983 showed trend (p = 0.054) towards risk of POAG independent of age, gender, smoking, and rs2070744 polymorphism in logistic regression analysis. Both the polymorphisms showed no association with POAG phenotypes such as intraocular pressure and cup/disc ratio. Conclusion Our results suggest that the polymorphism rs1799983 and the haplotypes of rs20707440 and rs1799983 in the NOS3 gene may significantly modulate the risk of POAG in Saudi’s, particularly among men. Further larger studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Altaf A. Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- * E-mail:
| | - Taif A. Azad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Tahira Sultan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Essam A. Osman
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Faisal A. Almobarak
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A. Al-Obeidan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Dietary Antioxidants, Macular Pigment, and Glaucomatous Neurodegeneration: A Review of the Evidence. Nutrients 2019; 11:nu11051002. [PMID: 31052471 PMCID: PMC6567242 DOI: 10.3390/nu11051002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/29/2022] Open
Abstract
Primary open-angle glaucoma (POAG) is a leading cause of irreversible blindness worldwide, and the prevalence is projected to increase to 112 million worldwide by 2040. Intraocular pressure is currently the only proven modifiable risk factor to treat POAG, but recent evidence suggests a link between antioxidant levels and risk for prevalent glaucoma. Studies have found that antioxidant levels are lower in the serum and aqueous humor of glaucoma patients. In this review, we provide a brief overview of the evidence linking oxidative stress to glaucomatous pathology, followed by an in-depth discussion of epidemiological studies and clinical trials of antioxidant consumption and glaucomatous visual field loss. Lastly, we highlight a possible role for antioxidant carotenoids lutein and zeaxanthin, which accumulate in the retina to form macular pigment, as evidence has emerged supporting an association between macular pigment levels and age-related eye disease, including glaucoma. We conclude that the evidence base is inconsistent in showing causal links between dietary antioxidants and glaucoma risk, and that prospective studies are needed to further investigate the possible relationship between macular pigment levels and glaucoma risk specifically.
Collapse
|
19
|
Li S, Shao M, Li D, Tang B, Cao W, Sun X. Association of serum uric acid levels with primary open-angle glaucoma: a 5-year case-control study. Acta Ophthalmol 2019; 97:e356-e363. [PMID: 29673085 DOI: 10.1111/aos.13789] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 03/17/2018] [Indexed: 01/03/2023]
Abstract
PURPOSE It has been hypothesised that uric acid (UA) has a protective effect against oxidative damage in the central nervous system. Therefore, we investigated serum UA concentrations in patients with primary open-angle glaucoma (POAG) and explored the relationship between serum UA concentration and glaucoma severity. METHODS This prospective, cross-sectional, case-control study was conducted in 163 POAG patients and 103 normal controls. Clinical and demographic information was obtained from the medical data platform of the Eye & ENT Hospital of Fudan University, Shanghai, China. The POAG patients were categorised into mild [median deviation (MD) ≤ 6.00 dB], moderate (MD > 6 Db-≥12 dB) and severe (MD > 12 dB) subgroups, based on their visual field MD results. RESULTS The level of serum UA in the POAG group (0.321 ± 0.084 mmol/l) was approximately 12.77% lower (p < 0.001) than that of the control group (0.362 ± 0.053 mmol/l). The UA/creatinine (Cr) ratio was approximately 14.99% lower (p < 0.001) in patients with POAG (4.47 ± 1.15), compared with the control group (5.14 ± 1.05). The mean level of UA was lowest in the severe POAG group, followed by the moderate POAG group, and the mild POAG group (p < 0.001). A similar trend was observed when UA levels were compared between the POAG and control groups in males. Multivariate regression analyses showed a significant negative correlation between UA and vertical cup-disc ratio (B = -0.320, p = 0.034), and UA and MD (B = -0.441, p = 0.031) in males. CONCLUSION Primary open-angle glaucoma patients have lower UA levels; however, a negative association between UA levels and disease severity was evident in male patients.
Collapse
Affiliation(s)
- Shengjie Li
- Department of Clinical Laboratory Eye & ENT Hospital, Shanghai Medical College Fudan University Shanghai China
| | - Mingxi Shao
- Department of Clinical Laboratory Eye & ENT Hospital, Shanghai Medical College Fudan University Shanghai China
| | - Danhui Li
- Key Laboratory of Environment and Genes Related to Diseases Ministry of Education Medical School Xi'an Jiaotong University Xi'an China
| | - Binghua Tang
- Department of Clinical Laboratory Eye & ENT Hospital, Shanghai Medical College Fudan University Shanghai China
| | - Wenjun Cao
- Department of Clinical Laboratory Eye & ENT Hospital, Shanghai Medical College Fudan University Shanghai China
- Department of Ophthalmology & Visual Science Eye & ENT Hospital, Shanghai Medical College Fudan University Shanghai China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science Eye & ENT Hospital, Shanghai Medical College Fudan University Shanghai China
- State Key Laboratory of Medical Neurobiology Institutes of Brain Science and Collaborative Innovation Center for Brain Science Fudan University Shanghai China
- Key Laboratory of Myopia Ministry of Health (Fudan University) Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University) Shanghai China
| |
Collapse
|
20
|
The Association of Oxidative Stress Status with Open-Angle Glaucoma and Exfoliation Glaucoma: A Systematic Review and Meta-Analysis. J Ophthalmol 2019; 2019:1803619. [PMID: 30766729 PMCID: PMC6350588 DOI: 10.1155/2019/1803619] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/31/2018] [Indexed: 12/15/2022] Open
Abstract
Purpose To systematically evaluate the associations between oxidative stress status and different types of glaucoma. Design Systematic review and meta-analysis. Methods We searched PubMed, EMBASE, and the Web of Science for randomized controlled trials written in the English language between January 1, 1990, and November 30, 2016. A random effects model was used to estimate oxidative stress status along with weighted mean differences and 95% confidence intervals (CIs). A funnel plot analysis and Egger's test were performed to assess potential publication bias. Main outcome measures Oxidative stress status was abnormal and different in patients with OAG (open-angle glaucoma) and EXG (exfoliation glaucoma). Results Blood TAS (total antioxidant status) was lower in the OAG group than in the control group, with a mean difference of 0.580 mmol/L (p < 0.0001, 95% CI = −0.668 to −0.492). The aqueous humor SOD (superoxide dismutase), GPX (glutathione peroxidase), and CAT (catalase) levels were higher in the OAG group than in the control group, with mean differences of 17.989 U/mL (p < 0.0001, 95% CI = 14.579–21.298), 12.441 U/mL (p < 0.0001, 95% CI = 10.423–14.459), and 1.229 fmol/mL (p=0.042, 95% CI = 0.043–2.414), respectively. Blood TAS was lower in the EXG group than in the control group, with a mean difference of 0.262 mmol/L (p < 0.0001, 95% CI = −0.393 to −0.132). However, there were no differences in blood TOS and aqueous humor TOS between the EXG group and the control group. Conclusions This meta-analysis indicates that OAG patients had a lower TAS in the blood and higher levels of SOD, GPX, and CAT in the aqueous humor, while EXG patients only had a decreased TAS in the blood.
Collapse
|
21
|
Pietrucha-Dutczak M, Amadio M, Govoni S, Lewin-Kowalik J, Smedowski A. The Role of Endogenous Neuroprotective Mechanisms in the Prevention of Retinal Ganglion Cells Degeneration. Front Neurosci 2018; 12:834. [PMID: 30524222 PMCID: PMC6262299 DOI: 10.3389/fnins.2018.00834] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022] Open
Abstract
Retinal neurons are not able to undergo spontaneous regeneration in response to damage. A variety of stressors, i.e., UV radiation, high temperature, ischemia, allergens, and others, induce reactive oxygen species production, resulting in consecutive alteration of stress-response gene expression and finally can lead to cell apoptosis. Neurons have developed their own endogenous cellular protective systems. Some of them are preventing cell death and others are allowing functional recovery after injury. The high efficiency of these mechanisms is crucial for cell survival. In this review we focus on the contribution of the most recently studied endogenous neuroprotective factors involved in retinal ganglion cell (RGC) survival, among which, neurotrophic factors and their signaling pathways, processes regulating the redox status, and different pathways regulating cell death are the most important. Additionally, we summarize currently ongoing clinical trials for therapies for RGC degeneration and optic neuropathies, including glaucoma. Knowledge of the endogenous cellular protective mechanisms may help in the development of effective therapies and potential novel therapeutic targets in order to achieve progress in the treatment of retinal and optic nerve diseases.
Collapse
Affiliation(s)
- Marita Pietrucha-Dutczak
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Joanna Lewin-Kowalik
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Adrian Smedowski
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
22
|
Kondkar AA, Sultan T, Almobarak FA, Kalantan H, Al-Obeidan SA, Abu-Amero KK. Association of increased levels of plasma tumor necrosis factor alpha with primary open-angle glaucoma. Clin Ophthalmol 2018; 12:701-706. [PMID: 29695893 PMCID: PMC5905466 DOI: 10.2147/opth.s162999] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Retinal ganglion cell (RGC) death is a key feature of glaucoma. Elevated levels of tumor necrosis factor alpha (TNF-α), a pro-inflammatory cytokine, can induce RGC apoptosis and play a critical role in glaucomatous neurodegeneration. Based on the possible role of inflammation and oxidative stress in the pathogenesis of primary open-angle glaucoma (POAG), we investigated the association between plasma levels of TNF-α and POAG or its clinical indices in comparison to non-glaucomatous controls. Patients and methods In a case-control retrospective cohort of 51 POAG cases and 88 controls, plasma TNF-α levels were measured using an enzyme-linked immunosorbent assay (ELISA). The assay was performed in duplicates on an automated ELISA analyzer. Results Mean TNF-α level was significantly elevated in POAG cases (1.88 ± 2.17 pg/mL) than the controls (0.93 ± 1.49 pg/mL; p = 0.003). The overall dose-response trend was significant (χ2 = 6.12, df = 2; p = 0.047). No statistical difference was seen in age, gender and systemic disease distribution. A modest negative and significant correlation was seen between TNF-α level and number of antiglaucoma medications, an important clinical index of POAG severity. Moreover, logistic regression analysis showed that the risk of POAG was most significantly affected by TNF-α level and not by age and sex. Conclusion High systemic level of an inflammatory cytokine, TNF-α, is associated with POAG; however, its possible use as a biomarker for early glaucoma diagnosis and/or disease severity needs further investigation.
Collapse
Affiliation(s)
- Altaf A Kondkar
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Tahira Sultan
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Faisal A Almobarak
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hatem Kalantan
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Al-Obeidan
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Khaled K Abu-Amero
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Al Owaifeer AM, Al Taisan AA. The Role of Diet in Glaucoma: A Review of the Current Evidence. Ophthalmol Ther 2018; 7:19-31. [PMID: 29423897 PMCID: PMC5997592 DOI: 10.1007/s40123-018-0120-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Indexed: 02/04/2023] Open
Abstract
Intraocular pressure (IOP) reduction by medications, laser, or surgery remains the mainstay of treatment in glaucoma. However, the role of complementary and alternative medicine (CAM) in glaucoma has received great interest from both patients and ophthalmologists. Previous evidence suggests that diet, a major domain of CAM, can influence an individual's IOP level. Furthermore, certain dietary components have been linked to the incidence and progression of glaucoma. In this review, we aim to provide a summary of the current evidence regarding the role of obesity, certain dietary components, and dietary supplements in glaucoma.
Collapse
Affiliation(s)
- Adi M Al Owaifeer
- Faculty of Ophthalmology, College of Medicine, King Faisal University, Al-Hasa, Saudi Arabia.
| | - Abdulaziz A Al Taisan
- Faculty of Ophthalmology, College of Medicine, King Faisal University, Al-Hasa, Saudi Arabia
| |
Collapse
|
24
|
Mousa A, Kondkar AA, Al-Obeidan SA, Azad TA, Sultan T, Osman E, Abu-Amero KK. Association of total antioxidants level with glaucoma type and severity. Saudi Med J 2016; 36:671-7. [PMID: 25987108 PMCID: PMC4454900 DOI: 10.15537/smj.2015.6.10697] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives: To compare the mean total antioxidant status (TAS) among 3 glaucoma types, namely: pseudoexfoliation glaucoma (PEG), primary open angle glaucoma (POAG), and primary angle closure glaucoma (PACG), and study its potential association with various clinical glaucoma-parameters. Methods: In this case-control study, plasma samples were obtained between September 2013 and October 2014 from 340 glaucoma patients (PEG [n=54]; POAG [n=147]; PACG [n=139]), and 351 controls of matching age, gender, ethnicity, and 5 different systemic co-morbidities from King Abdulaziz University Hospital, Riyadh, Saudi Arabia. The TAS in all samples was determined by a colorimetric-based assay. Results: The mean±standard deviation of TAS was significantly lower among cases: 0.77±0.32 than controls: 1.1±0.22, p<0.0001. Moreover, the TAS levels were significantly different across the 3 types of glaucoma: 0.86±0.24 in PEG, 0.47±0.32 in POAG, and 0.98±0.41 in PACG (all p<0.0001). In addition, there was a significant correlation between TAS and age at onset (Pearson correlation coefficient [R] 0.17, p<0.0001), cup/disc ratio (R: -0.13, p=0.004), and number of anti-glaucoma medications (R: -0.16, p=0.001). Conclusion: Our findings provide evidence that plasma TAS levels are decreased in patients with glaucoma, more so in POAG and PEG than PACG, supporting the hypothesis that decreased antioxidative defense and/or increased oxidative stress may have a critical role in the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Ahmed Mousa
- Glaucoma Research Chair, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia. E-mail.
| | | | | | | | | | | | | |
Collapse
|
25
|
Benoist d’Azy C, Pereira B, Chiambaretta F, Dutheil F. Oxidative and Anti-Oxidative Stress Markers in Chronic Glaucoma: A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0166915. [PMID: 27907028 PMCID: PMC5131953 DOI: 10.1371/journal.pone.0166915] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Chronic glaucoma is a multifactorial disease among which oxidative stress may play a major pathophysiological role. We conducted a systematic review and meta-analysis to evaluate the levels of oxidative and antioxidative stress markers in chronic glaucoma compared with a control group. The PubMed, Cochrane Library, Embase and Science Direct databases were searched for studies reporting oxidative and antioxidative stress markers in chronic glaucoma and in healthy controls using the following keywords: “oxidative stress” or “oxidant stress” or “nitrative stress” or “oxidative damage” or “nitrative damage” or “antioxidative stress” or “antioxidant stress” or “antinitrative stress” and “glaucoma”. We stratified our meta-analysis on the type of biomarkers, the type of glaucoma, and the origin of the sample (serum or aqueous humor). We included 22 case-control studies with a total of 2913 patients: 1614 with glaucoma and 1319 healthy controls. We included 12 studies in the meta-analysis on oxidative stress markers and 19 on antioxidative stress markers. We demonstrated an overall increase in oxidative stress markers in glaucoma (effect size = 1.64; 95%CI 1.20–2.09), ranging from an effect size of 1.29 in serum (95%CI 0.84–1.74) to 2.62 in aqueous humor (95%CI 1.60–3.65). Despite a decrease in antioxidative stress marker in serum (effect size = –0.41; 95%CI –0.72 to –0.11), some increased in aqueous humor (superoxide dismutase, effect size = 3.53; 95%CI 1.20–5.85 and glutathione peroxidase, effect size = 6.60; 95%CI 3.88–9.31). The differences in the serum levels of oxidative stress markers between glaucoma patients and controls were significantly higher in primary open angle glaucoma vs primary angle closed glaucoma (effect size = 12.7; 95%CI 8.78–16.6, P < 0.001), and higher in pseudo-exfoliative glaucoma vs primary angle closed glaucoma (effect size = 12.2; 95%CI 8.96–15.5, P < 0.001). In conclusion, oxidative stress increased in glaucoma, both in serum and aqueous humor. Malonyldialdehyde seemed the best biomarkers of oxidative stress in serum. The increase of some antioxidant markers could be a protective response of the eye against oxidative stress.
Collapse
Affiliation(s)
- Cédric Benoist d’Azy
- University Hospital of Clermont-Ferrand (CHU), Ophthalmology, Clermont-Ferrand, France
- University Hospital of Clermont-Ferrand (CHU), Preventive and Occupational Medicine, Clermont-Ferrand, France
| | - Bruno Pereira
- University Hospital of Clermont-Ferrand (CHU), Clinical Research Direction, Clermont-Ferrand, France
| | - Frédéric Chiambaretta
- University Hospital of Clermont-Ferrand (CHU), Ophthalmology, Clermont-Ferrand, France
| | - Frédéric Dutheil
- University Hospital of Clermont-Ferrand (CHU), Preventive and Occupational Medicine, Clermont-Ferrand, France
- CNRS Physiological and Psychosocial Stress, LAPSCO, University Clermont Auvergne, Clermont-Ferrand, France
- Australian Catholic University, Faculty of Health, School of Exercise Science, Melbourne, Australia
- University Clermont Auvergne, Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological conditions EA3533, Clermont-Ferrand, France
- Research Centre in Human Nutrition (CRNH) Auvergne, Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|
26
|
Saccà SC, Gandolfi S, Bagnis A, Manni G, Damonte G, Traverso CE, Izzotti A. From DNA damage to functional changes of the trabecular meshwork in aging and glaucoma. Ageing Res Rev 2016; 29:26-41. [PMID: 27242026 DOI: 10.1016/j.arr.2016.05.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/24/2022]
Abstract
Glaucoma is a degenerative disease of the eye. Both the anterior and posterior segments of the eye are affected, extensive damage being detectable in the trabecular meshwork and the inner retina-central visual pathway complex. Oxidative stress is claimed to be mainly responsible for molecular damage in the anterior chamber. Indeed, oxidation harms the trabecular meshwork, leading eventually to endothelial cell decay, tissue malfunction, subclinical inflammation, changes in the extracellular matrix and cytoskeleton, altered motility, reduced outflow facility and (ultimately) increased IOP. Moreover, free radicals are involved in aging and can be produced in the brain (as well as in the eye) as a result of ischemia, leading to oxidation of the surrounding neurons. Glaucoma-related cell death occurs by means of apoptosis, and apoptosis is triggered by oxidative stress via (a) mitochondrial damage, (b) inflammation, (c) endothelial dysregulation and dysfunction, and (d) hypoxia. The proteomics of the aqueous humor is significantly altered in glaucoma as a result of oxidation-induced trabecular damage. Those proteins whose aqueous humor levels are increased in glaucoma are biomarkers of trabecular meshwork impairment. Their diffusion from the anterior to the posterior segment of the eye may be relevant in the cascade of events triggering apoptosis in the inner retinal layers, including the ganglion cells.
Collapse
Affiliation(s)
- Sergio Claudio Saccà
- IRCCS San Martino University Hospital, Department of Neuroscience and Sense Organs, San Martino Hospital, Ophthalmology Unit, Viale Benedetto XV, 16132 Genoa, Italy.
| | - Stefano Gandolfi
- Ophthalmology Unit, Department of Biological, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Alessandro Bagnis
- University of Genoa, Eye Clinic, Department of Neuroscience and Sense Organs, Viale Benedetto XV, 5, 16148 Genoa, Italy
| | - Gianluca Manni
- Dept. of Clinical Science and Translational Medicine, University Tor Vergata, Rome, Italy
| | - Gianluca Damonte
- Dept. of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Carlo Enrico Traverso
- University of Genoa, Eye Clinic, Department of Neuroscience and Sense Organs, Viale Benedetto XV, 5, 16148 Genoa, Italy
| | - Alberto Izzotti
- Mutagenesis Unit, IRCCS San Martino University Hospital, IST National Institute for Cancer Research, Department of Health Sciences, University of Genoa, Via A. Pastore 1, Genoa I-16132, Italy
| |
Collapse
|
27
|
Zhou Y, Shuai P, Li X, Liu X, Wang J, Yang Y, Hao F, Lin H, Zhang D, Gong B. Association of SOD2 polymorphisms with primary open angle glaucoma in a Chinese population. Ophthalmic Genet 2014; 36:43-9. [PMID: 25417767 DOI: 10.3109/13816810.2014.985844] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Genetic factors have been studied extensively for their role in the pathogenesis of primary open angle glaucoma (POAG). This study was conducted to investigate whether manganese superoxide dismutase (SOD2) variants play a significant role in POAG in a Chinese population. METHODS This study included of 416 unrelated POAG patients and 997 unrelated control subjects. Four SOD2 tag single nucleotide polymorphisms (SNPs), including rs6917589 rs2842980, rs5746136 and rs4880, were genotyped by dye terminator-based SNaPshot method. The genotype and allele frequencies were evaluated using the χ(2) tests. RESULTS Allelic association analysis showed that there were suggestive differences in the allelic distributions between POAG cases and controls for SNPs rs6917589 and rs5746136 (p = 0.0.046 and p = 0.032, respectively), but no statistically significant association was detected between the two SNPs and POAG after Bonferroni correction (p > 0.0125). The allele and genotype frequency in SNPs rs2842980 and rs4880 showed no statistically significant difference between POAG cases and controls (p = 0.128 and p = 0.867, respectively). SNP rs5746136 had a significant association with POAG in the recessive model (p = 0.003155). Haplotype ATGT generated from the four SNPs showed a trend of association with POAG (p = 0.0098). CONCLUSION Our results showed a trend of association with POAG, suggesting that SOD2 may play a significant role in the development of POAG in the Chinese population. Further work with a larger sample size and functional study is needed to confirm the importance of the SOD2 gene in the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Yu Zhou
- Sichuan Key Laboratory for Disease Gene Study
| | | | | | | | | | | | | | | | | | | |
Collapse
|