1
|
Landowski M, Bowes Rickman C. Targeting Lipid Metabolism for the Treatment of Age-Related Macular Degeneration: Insights from Preclinical Mouse Models. J Ocul Pharmacol Ther 2021; 38:3-32. [PMID: 34788573 PMCID: PMC8817708 DOI: 10.1089/jop.2021.0067] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major leading cause of irreversible visual impairment in the world with limited therapeutic interventions. Histological, biochemical, genetic, and epidemiological studies strongly implicate dysregulated lipid metabolism in the retinal pigmented epithelium (RPE) in AMD pathobiology. However, effective therapies targeting lipid metabolism still need to be identified and developed for this blinding disease. To test lipid metabolism-targeting therapies, preclinical AMD mouse models are needed to establish therapeutic efficacy and the role of lipid metabolism in the development of AMD-like pathology. In this review, we provide a comprehensive overview of current AMD mouse models available to researchers that could be used to provide preclinical evidence supporting therapies targeting lipid metabolism for AMD. Based on previous studies of AMD mouse models, we discuss strategies to modulate lipid metabolism as well as examples of studies evaluating lipid-targeting therapeutics to restore lipid processing in the RPE. The use of AMD mouse models may lead to worthy lipid-targeting candidate therapies for clinical trials to prevent the blindness caused by AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
2
|
Gallenga CE, Lonardi M, Pacetti S, Violanti SS, Tassinari P, Di Virgilio F, Tognon M, Perri P. Molecular Mechanisms Related to Oxidative Stress in Retinitis Pigmentosa. Antioxidants (Basel) 2021; 10:antiox10060848. [PMID: 34073310 PMCID: PMC8229325 DOI: 10.3390/antiox10060848] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited retinopathy. Nevertheless, non-genetic biological factors play a central role in its pathogenesis and progression, including inflammation, autophagy and oxidative stress. The retina is particularly affected by oxidative stress due to its high metabolic rate and oxygen consumption as well as photosensitizer molecules inside the photoreceptors being constantly subjected to light/oxidative stress, which induces accumulation of ROS in RPE, caused by damaged photoreceptor’s daily recycling. Oxidative DNA damage is a key regulator of microglial activation and photoreceptor degeneration in RP, as well as mutations in endogenous antioxidant pathways involved in DNA repair, oxidative stress protection and activation of antioxidant enzymes (MUTYH, CERKL and GLO1 genes, respectively). Moreover, exposure to oxidative stress alters the expression of micro-RNA (miRNAs) and of long non-codingRNA (lncRNAs), which might be implicated in RP etiopathogenesis and progression, modifying gene expression and cellular response to oxidative stress. The upregulation of the P2X7 receptor (P2X7R) also seems to be involved, causing pro-inflammatory cytokines and ROS release by macrophages and microglia, contributing to neuroinflammatory and neurodegenerative progression in RP. The multiple pathways analysed demonstrate that oxidative microglial activation may trigger the vicious cycle of non-resolved neuroinflammation and degeneration, suggesting that microglia may be a key therapy target of oxidative stress in RP.
Collapse
Affiliation(s)
- Carla Enrica Gallenga
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.E.G.); (F.D.V.); (M.T.)
| | - Maria Lonardi
- Department of Specialized Surgery, Section of Ophthalmology, Sant’Anna University Hospital, 44121 Ferrara, Italy; (M.L.); (S.P.); (P.T.)
| | - Sofia Pacetti
- Department of Specialized Surgery, Section of Ophthalmology, Sant’Anna University Hospital, 44121 Ferrara, Italy; (M.L.); (S.P.); (P.T.)
| | - Sara Silvia Violanti
- Department of Head and Neck, Section of Ophthalmology, San Paolo Hospital, 17100 Savona, Italy;
| | - Paolo Tassinari
- Department of Specialized Surgery, Section of Ophthalmology, Sant’Anna University Hospital, 44121 Ferrara, Italy; (M.L.); (S.P.); (P.T.)
| | - Francesco Di Virgilio
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.E.G.); (F.D.V.); (M.T.)
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.E.G.); (F.D.V.); (M.T.)
| | - Paolo Perri
- Department of Neuroscience and Rehabilitation, Section of Ophthalmology, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
3
|
Hamid MA, Moustafa MT, Nashine S, Costa RD, Schneider K, Atilano SR, Kuppermann BD, Kenney MC. Anti-VEGF Drugs Influence Epigenetic Regulation and AMD-Specific Molecular Markers in ARPE-19 Cells. Cells 2021; 10:cells10040878. [PMID: 33921543 PMCID: PMC8069662 DOI: 10.3390/cells10040878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Our study assesses the effects of anti-VEGF (Vascular Endothelial Growth Factor) drugs and Trichostatin A (TSA), an inhibitor of histone deacetylase (HDAC) activity, on cultured ARPE-19 (Adult Retinal Pigment Epithelial-19) cells that are immortalized human retinal pigment epithelial cells. ARPE-19 cells were treated with the following anti-VEGF drugs: aflibercept, ranibizumab, or bevacizumab at 1× and 2× concentrations of the clinical intravitreal dose (12.5 μL/mL and 25 μL/mL, respectively) and analyzed for transcription profiles of genes associated with the pathogenesis age-related macular degeneration (AMD). HDAC activity was measured using the Fluorometric Histone Deacetylase assay. TSA downregulated HIF-1α and IL-1β genes, and upregulated BCL2L13, CASPASE-9, and IL-18 genes. TSA alone or bevacizumab plus TSA showed a significant reduction of HDAC activity compared to untreated ARPE-19 cells. Bevacizumab alone did not significantly alter HDAC activity, but increased gene expression of SOD2, BCL2L13, CASPASE-3, and IL-18 and caused downregulation of HIF-1α and IL-18. Combination of bevacizumab plus TSA increased gene expression of SOD2, HIF-1α, GPX3A, BCL2L13, and CASPASE-3, and reduced CASPASE-9 and IL-β. In conclusion, we demonstrated that anti-VEGF drugs can: (1) alter expression of genes involved in oxidative stress (GPX3A and SOD2), inflammation (IL-18 and IL-1β) and apoptosis (BCL2L13, CASPASE-3, and CASPASE-9), and (2) TSA-induced deacetylation altered transcription for angiogenesis (HIF-1α), apoptosis, and inflammation genes.
Collapse
Affiliation(s)
- Mohamed A. Hamid
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
- Ophthalmology Department, Faculty of Medicine, Minia University, Minia 61111, Egypt
| | - M. Tarek Moustafa
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
- Ophthalmology Department, Faculty of Medicine, Minia University, Minia 61111, Egypt
| | - Sonali Nashine
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
| | - Rodrigo Donato Costa
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
- Instituto Donato Oftalmologia, Poςos de Caldas, MG 37701-528, Brazil
| | - Kevin Schneider
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
| | - Shari R. Atilano
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
| | - Baruch D. Kuppermann
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - M. Cristina Kenney
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA
- Correspondence: ; Tel.: +1-949-824-7603
| |
Collapse
|
4
|
Abstract
Cholesterol is a quantitatively and biologically significant constituent of all mammalian cell membrane, including those that comprise the retina. Retinal cholesterol homeostasis entails the interplay between de novo synthesis, uptake, intraretinal sterol transport, metabolism, and efflux. Defects in these complex processes are associated with several congenital and age-related disorders of the visual system. Herein, we provide an overview of the following topics: (a) cholesterol synthesis in the neural retina; (b) lipoprotein uptake and intraretinal sterol transport in the neural retina and the retinal pigment epithelium (RPE); (c) cholesterol efflux from the neural retina and the RPE; and (d) biology and pathobiology of defects in sterol synthesis and sterol oxidation in the neural retina and the RPE. We focus, in particular, on studies involving animal models of monogenic disorders pertinent to the above topics, as well as in vitro models using biochemical, metabolic, and omic approaches. We also identify current knowledge gaps and opportunities in the field that beg further research in this topic area.
Collapse
Affiliation(s)
- Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA.
| |
Collapse
|
5
|
Lan R, Li Y, Shen R, Yu R, Jing L, Guo S. Preparation of low-molecular-weight chondroitin sulfates by complex enzyme hydrolysis and their antioxidant activities. Carbohydr Polym 2020; 241:116302. [DOI: 10.1016/j.carbpol.2020.116302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2020] [Accepted: 04/13/2020] [Indexed: 12/26/2022]
|
6
|
Hashim Z, Ilyas A, Zarina S. Therapeutic effect of hydrogen peroxide via altered expression of glutathione S-transferase and peroxiredoxin-2 in hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2020; 19:258-265. [PMID: 32284258 DOI: 10.1016/j.hbpd.2020.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/10/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) has a high incidence and mortality that epitomizes one of the prominent causes of cancer-related death globally. Novel therapeutic approaches are therefore required. Reactive oxygen species (ROS) are necessary for maintaining cell cycle. Although ROS is involved in HCC progression, hydrogen peroxide (H2O2) has anti-proliferative effect on HCC. METHOD HCC Huh-7 cells were cultured and incubated with various concentrations of H2O2. Paraoxonase activity, levels of malondialdehyde, glutathione and protein oxidation were measured in treated and untreated Huh-7 cells. Furthermore, untreated and treated Huh-7 cells were subjected to two dimensional gel electrophoresis and identified protein spots which were differentially expressed by LC-MS/MS analysis. qRT-PCR was performed to validate the identified proteins. RESULTS H2O2 depleted glutathione (GSH) with the concomitant up-regulation of GSTP1 and Prx2. H2O2 also increased malondialdehyde and protein oxidation, decreased the activity of paraoxonase in Huh-7 cells. CONCLUSION H2O2 could be used as a novel therapeutic agent that might be beneficial in inducing cell cytotoxicity and hence suppress HCC proliferation.
Collapse
Affiliation(s)
- Zehra Hashim
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi 75270, Pakistan.
| | - Amber Ilyas
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi 75270, Pakistan
| | - Shamshad Zarina
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
7
|
miR-24-3p induces human intervertebral disc degeneration by targeting insulin-like growth factor binding protein 5 and the ERK signaling pathway. Life Sci 2020; 243:117288. [DOI: 10.1016/j.lfs.2020.117288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/11/2022]
|
8
|
Liu J, Wang J, Ning Y, Chen F. The inhibition of miR‑101a‑3p alleviates H/R injury in H9C2 cells by regulating the JAK2/STAT3 pathway. Mol Med Rep 2019; 21:89-96. [PMID: 31746349 PMCID: PMC6896302 DOI: 10.3892/mmr.2019.10793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 08/30/2019] [Indexed: 12/18/2022] Open
Abstract
Hypoxia/reoxygenation (H/R) is used as an in vivo model of ischemia/reperfusion injury, and myocardial ischemia can lead to heart disease. Therefore, it is necessary to prevent myocardial H/R injury to avoid the risk of heart disease. The aim of the present study was to investigate whether inhibiting microRNA (miR)-101a-3p attenuated H9C2 cell H/R injury, apoptosis mechanisms and key target proteins. Cell viability and apoptosis were determined by Cell Counting Kit-8 assays and flow cytometry using a cell apoptosis kit, respectively. The contents of creatine kinase (CK) and lactate dehydrogenase (LDH) were detected using colorimetric assays. Dual luciferase assays were carried out to determine if miR-101a-3p inhibited Janus kinase (JAK)2. Western blot analysis and reverse transcription-quantitative PCR were used to determine proteins levels and mRNAs expression. It was found that the inhibition of miR-101a-3p increased the growth of H9C2 cells and decreased H9C2 cell apoptosis during H/R injury. The inhibition of miR-101a-3p reduced the amounts of CK and LDH in H/R model H9C2 cells. The inhibition of miR-101a-3p lowered the levels of Bax, interleukin-6 and tumor necrosis factor-α, but raised the levels of phosphorylated (p)-STAT3 and p-JAK2 in H9C2 cells subjected to H/R injury treatment. miR-101a-3p mimic was found to inhibit H9C2 cell viability, raise p-JAK2 level and slightly increase p-STAT3 during H/R injury. AG490 induced H9C2 cell apoptosis, and decreased the levels of p-JAK2 and p-STAT3 during H/R injury. The data indicated that inhibiting miR-101a-3p reduced H/R damage in H9C2 cells and decreased apoptosis via Bax/Bcl-2 signaling during H/R injury. In addition, it was suggested that the inhibition of miR-101a-3p decreased H/R injury in H9C2 cell by regulating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jingying Liu
- Emergency Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Juanjuan Wang
- Emergency Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Yuzhen Ning
- Emergency Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Fengying Chen
- Emergency Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|
9
|
Chen Z, Zhang W, Zhang N, Zhou Y, Hu G, Xue M, Liu J, Li Y. Down-regulation of insulin-like growth factor binding protein 5 is involved in intervertebral disc degeneration via the ERK signalling pathway. J Cell Mol Med 2019; 23:6368-6377. [PMID: 31290273 PMCID: PMC6714225 DOI: 10.1111/jcmm.14525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/27/2022] Open
Abstract
It is obvious that epigenetic processes influence the evolution of intervertebral disc degeneration (IDD). However, its molecular mechanisms are poorly understood. Therefore, we tested the hypothesis that IGFBP5, a potential regulator of IDD, modulates IDD via the ERK signalling pathway. We showed that IGFBP5 mRNA was significantly down-regulated in degenerative nucleus pulposus (NP) tissues. IGFBP5 was shown to significantly promote NP cell proliferation and inhibit apoptosis in vitro, which was confirmed by MTT, flow cytometry and colony formation assays. Furthermore, IGFBP5 was shown to exert its effects by inhibiting the ERK signalling pathway. The effects induced by IGFBP5 overexpression on NP cells were similar to those induced by treatment with an ERK pathway inhibitor (PD98059). Moreover, qRT-PCR and Western blot analyses were performed to examine the levels of apoptosis-related factors, including Bax, caspase-3 and Bcl2. The silencing of IGFBP5 up-regulated the levels of Bax and caspase-3 and down-regulated the level of Bcl2, thereby contributing to the development of human IDD. Furthermore, these results were confirmed in vivo using an IDD rat model, which showed that the induction of Igfbp5 mRNA expression abrogated the effects of IGFBP5 silencing on intervertebral discs. Overall, our findings elucidate the role of IGFBP5 in the pathogenesis of IDD and provide a potential novel therapeutic target for IDD.
Collapse
Affiliation(s)
- Zhonghui Chen
- Orthopedic SurgeryRenmin Hospital of Wuhan University, Hubei General HospitalWuchang District, WuhanChina
| | - Weibing Zhang
- Orthopedic SurgeryRenmin Hospital of Wuhan University, Hubei General HospitalWuchang District, WuhanChina
| | - Nu Zhang
- Orthopedic SurgeryRenmin Hospital of Wuhan University, Hubei General HospitalWuchang District, WuhanChina
| | - Yan Zhou
- Orthopedic SurgeryRenmin Hospital of Wuhan University, Hubei General HospitalWuchang District, WuhanChina
| | - Geliang Hu
- Orthopedic SurgeryRenmin Hospital of Wuhan University, Hubei General HospitalWuchang District, WuhanChina
| | - Mingdi Xue
- Orthopedic SurgeryRenmin Hospital of Wuhan University, Hubei General HospitalWuchang District, WuhanChina
| | - Junhua Liu
- Orthopedic SurgeryChibi Third Renmin HospitalChibiChina
| | - Yaming Li
- Orthopedic SurgeryRenmin Hospital of Wuhan University, Hubei General HospitalWuchang District, WuhanChina
| |
Collapse
|
10
|
AnandBabu K, Sen P, Angayarkanni N. Oxidized LDL, homocysteine, homocysteine thiolactone and advanced glycation end products act as pro-oxidant metabolites inducing cytokine release, macrophage infiltration and pro-angiogenic effect in ARPE-19 cells. PLoS One 2019; 14:e0216899. [PMID: 31086404 PMCID: PMC6516731 DOI: 10.1371/journal.pone.0216899] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/30/2019] [Indexed: 02/03/2023] Open
Abstract
Age-related Macular Degeneration (AMD) is one of the major vision-threatening diseases of the eye. Oxidative stress is one of the key factors in the onset and progression of AMD. In this study, metabolites associated with AMD pathology more so at the systemic level namely, oxidized LDL (oxLDL), homocysteine (Hcy), homocysteine thiolactone (HCTL), advanced glycation end product (AGE) were evaluated for their pro-oxidant nature in a localized ocular environment based on in vitro studies in human retinal pigment epithelial cells (ARPE-19 cells). Human ARPE-19 cells were treated with pro-oxidants 50 μg/mL oxLDL, 500 μM Hcy, 500 nM HCTL, 100 μg/mL AGE, 200 μM H2O2 and 200 μM H2O2 with and without pre-treatment of 5 mM N-acetyl cysteine (NAC). The cytokines IL-6, IL-8 and vascular endothelial growth factor (VEGF) secreted from ARPE-19 cells exposed to pro-oxidants were estimated by ELISA. In vitro angiogenesis assay was performed with conditioned media of the pro-oxidant treated ARPE-19 cells in Geltrex-Matrigel coated 96-well plate. The human acute monocytic leukemia cell line (THP-1) was differentiated into macrophages and its migration in response to conditioned media of ARPE-19 cells insulted with the pro-oxidants was studied by transwell migration assay. Western blot was performed to detect the protein expression of Bax, Bcl-2 and NF-κB to assess apoptotic changes. The compounds involved in the study showed a significant increase in reactive oxygen species (ROS) generation in ARPE-19 cells (oxLDL; Hcy; AGE: p < 0.001 and HCTL: p < 0.05). NAC pre-treatment significantly lowered the oxidative stress brought about by pro-oxidants as seen by lowered ROS and MDA levels in the cells. Treatment with pro-oxidants significantly increased the secretion of IL-6 (oxLDL: p < 0.05; Hcy, HCTL and AGE: p < 0.01) and IL-8 cytokines (oxLDL: p < 0.05; HCTL: p <. 001 and AGE: p < 0.01) in ARPE-19 cells. Serum samples of AMD patients (n = 23) revealed significantly higher IL-6 and IL-8 levels compared to control subjects (n = 23) (IL6: p < 0.01 and IL8: p < 0.05). The pro-oxidants also promoted VEGF secretion by ARPE-19 cells compared to untreated control (oxLDL: p < 0.001; Hcy: p < 0.01; HCTL and AGE: p < 0.05). In vitro angiogenesis assay showed that the conditioned media significantly increased the tube formation in RF/6A endothelial cells. Transwell migration assay revealed significant infiltration of macrophages in response to pro-oxidants. We further demonstrated that the pro-oxidants increased the Bax/Bcl-2 ratio and increased the NF-κB activation resulting in pro-apoptotic changes in ARPE-19 cells. Thus, oxLDL, Hcy, HCTL and AGE act as pro-oxidant metabolites in RPE that promote AMD through oxidative stress, inflammation, chemotaxis and neovascularization.
Collapse
Affiliation(s)
- Kannadasan AnandBabu
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Parveen Sen
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, India
| | - Narayanasamy Angayarkanni
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- * E-mail: ,
| |
Collapse
|
11
|
Donato L, Scimone C, Nicocia G, D'Angelo R, Sidoti A. Role of oxidative stress in Retinitis pigmentosa: new involved pathways by an RNA-Seq analysis. Cell Cycle 2018; 18:84-104. [PMID: 30569795 DOI: 10.1080/15384101.2018.1558873] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Retinitis pigmentosa (RP) is a very heterogeneous inherited ocular disorder group characterized by progressive retinal disruption. Retinal pigment epithelium (RPE) degeneration, due to oxidative stress which arrests the metabolic support to photoreceptors, represents one of the principal causes of RP. Here, the role of oxidative stress in RP onset and progression was analyzed by a comparative whole transcriptome analysis of human RPE cells, treated with 100 µg/ml of oxLDL and untreated, at different time points. Experiment was thrice repeated and performed on Ion ProtonTM sequencing system. Data analysis, including low quality reads trimming and gene expression quantification, was realized by CLC Genomics Workbench software. The whole analysis highlighted 14 clustered "macro-pathways" and many sub-pathways, classified by selection of 5271 genes showing the highest alteration of expression. Among them, 23 genes were already known to be RP causative ones (15 over-expressed and 8 down-expressed), and their enrichment and intersection analyses highlighted new 77 candidate related genes (49 over-expressed and 28 down-expressed). A final filtering analysis then highlighted 29 proposed candidate genes. This data suggests that many new genes, not yet associated with RP, could influence its etiopathogenesis.
Collapse
Affiliation(s)
- Luigi Donato
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| | - Concetta Scimone
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| | - Giacomo Nicocia
- c Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Rosalia D'Angelo
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| | - Antonina Sidoti
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| |
Collapse
|
12
|
He J, Zhang X, Lian C, Wu J, Fang Y, Ye X. KEAP1/NRF2 axis regulates H 2O 2-induced apoptosis of pancreatic β-cells. Gene 2018; 691:8-17. [PMID: 30594636 DOI: 10.1016/j.gene.2018.11.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023]
Abstract
In human pancreatic β-cells, oxidative stress and cellular injures can be induced by H2O2 treatment. The KEAP1/NRF2 axis is a key antioxidant signaling pathway. The present study attempted to elucidate the mechanism by which the KEAP1/NRF2 axis mediates oxidative stress-induced death in pancreatic β-cells. Our data showed that H2O2 treatment obviously induced the apoptosis of β-cells. Further experiments demonstrated that KEAP1 expression was downregulated in H2O2-treated pancreatic β-cells and this change correlated with increase in the cellular abundance and nuclear translocation of NRF2. The restoration of KEAP1 expression in cells resulted in a recovery of cell proliferation and inhibition of apoptosis. Furthermore, we found that KEAP1 overexpression negatively regulated the abundance of NRF2, subsequently causing decreased antioxidant response element activation. This led to HO-1 protein downregulation in H2O2-treated human pancreatic β-cells, which was also observed in NRF2-silenced β-cells. Conversely, the silencing of KEAP1 led to NRF2 upregulation and inhibited ARE and HO-1 signaling in pancreatic β-cells. The increase in the abundance of NRF2 following treatment with H2O2 drastically elevated the production of BAX, FAS, FAS-L, CASP-3, and CASP-9, and this change was reversed by KEAP1 overexpression or NRF2 silencing. Taken together, H2O2 treatment activated KEAP1/NRF2 signaling to promote the production of pro-apoptotic factors and consequently led to the apoptosis of human pancreatic β-cells.
Collapse
Affiliation(s)
- Jinshui He
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China
| | - Xu Zhang
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China
| | - Chaowei Lian
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China
| | - Jinzhi Wu
- Department of Endocrinology, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China
| | - Yanling Fang
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China
| | - Xiaoling Ye
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China.
| |
Collapse
|
13
|
Zheng Q, Ji H, Wei S, Tang J, Lu Y, Cai J, Jian J, Qin Q. Identification of a Bcl-xL homolog from orange-spotted grouper (Epinephelus coioides) involved in SGIV-induced nonapoptotic cell death. FISH & SHELLFISH IMMUNOLOGY 2018; 83:436-442. [PMID: 30243776 DOI: 10.1016/j.fsi.2018.09.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Bcl-2 family proteins play essential roles in modulating immune response and controlling cells' fate. Bcl-xL is one of anti-apoptotic protein in this family. In this study, a new Bcl-xL homolog (EcBcl-xL) was identified and characterized from orange-spotted grouper, Epinephelus coioides. EcBcl-xL encoded a 221 amino acid peptides that shared 86% identity to Larimichthys crocea Bcl-xL protein, contained four conserved BH domains and one transmembrane region. The predicted three-dimensional structure of EcBcl-xL was similar with Homo sapiens Bcl-xL. EcBcl-xL widely expressed in all tested tissues with highest expression in head kidney. Its expression level was significantly up-regulated after SGIV infection in vivo. Furthermore, overexpression of EcBcl-xL could inhibit SGIV-induced nonapoptotic cell death and suppressed viral genes transcriptions in GS cells. Our findings suggested that EcBcl-xL might play a role during virus infection through modulating SGIV-induced nonapoptotic cell death.
Collapse
Affiliation(s)
- Qi Zheng
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Huasong Ji
- Zhaoqing Dahuanong Biology Medicine Co., Ltd., China
| | - Shina Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China
| | - Jufen Tang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Jia Cai
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China.
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China.
| |
Collapse
|
14
|
Donato L, Bramanti P, Scimone C, Rinaldi C, Giorgianni F, Beranova-Giorgianni S, Koirala D, D'Angelo R, Sidoti A. miRNAexpression profile of retinal pigment epithelial cells under oxidative stress conditions. FEBS Open Bio 2018; 8:219-233. [PMID: 29435412 PMCID: PMC5794457 DOI: 10.1002/2211-5463.12360] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/03/2017] [Accepted: 11/24/2017] [Indexed: 12/22/2022] Open
Abstract
Deep analysis of regulative mechanisms of transcription and translation in eukaryotes could improve knowledge of many genetic pathologies such as retinitis pigmentosa (RP). New layers of complexity have recently emerged with the discovery that ‘junk’ DNA is transcribed and, among these, miRNAs have assumed a preponderant role. We compared changes in the expression of miRNAs obtained from whole transcriptome analyses, between two groups of retinal pigment epithelium (RPE) cells, one untreated and the other exposed to the oxidant agent oxidized low‐density lipoprotein (oxLDL), examining four time points (1, 2, 4 and 6 h). We found that 23 miRNAs exhibited altered expression in the treated samples, targeting genes involved in several biochemical pathways, many of them associated to RP for the first time, such as those mediated by insulin receptor signaling and son of sevenless. Moreover, five RP causative genes (KLHL7, RDH11,CERKL, AIPL1 and USH1G) emerged as already validated targets of five altered miRNAs (hsa‐miR‐1307, hsa‐miR‐3064, hsa‐miR‐4709, hsa‐miR‐3615 and hsa‐miR‐637), suggesting a tight connection between induced oxidative stress and RP development and progression. This miRNA expression analysis of oxidative stress‐induced RPE cells has discovered new regulative functions of miRNAs in RP that should lead to the discovery of new ways to regulate the etiopathogenesis of RP.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging Division of Medical Biotechnologies and Preventive Medicine University of Messina Italy.,Department of Cutting-Edge Medicine and Therapies Biomolecular Strategies and Neuroscience Section of Neuroscience-applied, Molecular Genetics and Predictive MedicineI.E.M E.S.T. Palermo Italy
| | | | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging Division of Medical Biotechnologies and Preventive Medicine University of Messina Italy.,Department of Cutting-Edge Medicine and Therapies Biomolecular Strategies and Neuroscience Section of Neuroscience-applied, Molecular Genetics and Predictive MedicineI.E.M E.S.T. Palermo Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging Division of Medical Biotechnologies and Preventive Medicine University of Messina Italy
| | | | | | | | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging Division of Medical Biotechnologies and Preventive Medicine University of Messina Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging Division of Medical Biotechnologies and Preventive Medicine University of Messina Italy.,Department of Cutting-Edge Medicine and Therapies Biomolecular Strategies and Neuroscience Section of Neuroscience-applied, Molecular Genetics and Predictive MedicineI.E.M E.S.T. Palermo Italy
| |
Collapse
|
15
|
Salvianolic Acid A Inhibits OX-LDL Effects on Exacerbating Choroidal Neovascularization via Downregulating CYLD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6210694. [PMID: 29081889 PMCID: PMC5610829 DOI: 10.1155/2017/6210694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/28/2017] [Accepted: 03/08/2017] [Indexed: 11/17/2022]
Abstract
Backgrounds Age-related macular degeneration is closely related to lipid oxidation, while relationship between OX-LDL and choroidal neovascularization is unclear. Recently, cylindromatosis is proved to regulate angiogenesis. However, its role in CNV progression remained unclear. Salvianolic acid A is widely used in vascular diseases. We investigated the relationship between OX-LDL and CNV and explore antineovascularization mechanism of Sal A. Methods C57BL6/J mice were randomized into four groups and injected with PBS or OX-LDL, together with Sal A for one week. CNV was induced by laser; CNV severity was analyzed by fundus fluorescein angiography, H&E staining, and choroid flat mount after 1 week. In in vitro experiments, ARPE-19 and HUVECs were cultured with OX-LDL (with or without Sal A) for 48 hours. Angiogenic proteins, cell junction integrity, and tube formation were measured. CYLD siRNA and specific inhibitors were used to explore mechanisms of CYLD in promoting OX-LDL-induced CNV progression. Results OX-LDL promoted laser-induced CNV volume by increasing VEGF, PDGF, and CYLD levels. Sal A antagonized OX-LDL effects and restrained CNV progression by decreasing VEGF/PDGF/CYLD, increasing antiangiostatin levels, and promoting P62-CYLD-TRAF6 interaction. Conclusions We demonstrated oxidation damage exacerbates CNV progression, and Sal A could be a clinical therapeutic reagent to exudative AMD.
Collapse
|
16
|
Wu S, Zhou Y, Yang G, Tian H, Geng Y, Hu Y, Lin K, Wu W. Sulforaphane-cysteine induces apoptosis by sustained activation of ERK1/2 and caspase 3 in human glioblastoma U373MG and U87MG cells. Oncol Rep 2017; 37:2829-2838. [PMID: 28393231 DOI: 10.3892/or.2017.5562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/22/2017] [Indexed: 11/05/2022] Open
Abstract
We previously demonstrated that sulforaphane (SFN) inhibited invasion via sustained activation of ERK1/2 in human glioblastoma cells. However, sulforaphane-cysteine (SFN-Cys), an analog of SFN, enriched in plasma with longer half-life, had more potentiality to induce apoptosis. Here we investigated the molecular mechanisms of SFN-Cys-induced apoptosis in human glioblastoma U373MG and U87MG cells. Cell viability assay showed that SFN-Cys inhibited cell viability in a dose-dependent manner. Cell morphology observation also showed SFN-Cys increased the phenotype of cell death in a dose-dependent manner. Furthermore, flow cytometry assay showed that SFN-Cys induced apoptosis significantly in a dose-dependent manner in both cell lines. Furthermore, western blot analysis demonstrated that SFN-Cys induced activation of ERK1/2 in a sustained manner and the activation contributed to upregulation of Bax/Bcl-2 ratio and cleaved caspase 3, and these results can be reversed by the ERK1/2 blocker PD98059. Our results showed that SFN-Cys induced cell apoptosis via sustained activation of ERK1/2 and the ERK1/2 mediated signaling pathways such as activation of caspase 3 and apoptosis-related proteins, thus indicating that SFN-Cys might be a more promising therapeutic agent versus SFN to resist glioblastoma cells, especially in Taxol-resistant cancer cells.
Collapse
Affiliation(s)
- Sai Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Gaoxiang Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Hua Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Yang Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Yabin Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Kai Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
17
|
Plössl K, Weber BHF, Friedrich U. The X-linked juvenile retinoschisis protein retinoschisin is a novel regulator of mitogen-activated protein kinase signalling and apoptosis in the retina. J Cell Mol Med 2016; 21:768-780. [PMID: 27995734 PMCID: PMC5345684 DOI: 10.1111/jcmm.13019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/26/2016] [Indexed: 02/01/2023] Open
Abstract
X-linked juvenile retinoschisis (XLRS) is a hereditary retinal dystrophy in young males, caused by mutations in the RS1 gene. The function of the encoded protein, termed retinoschisin, and the molecular mechanisms underlying XLRS pathogenesis are still unresolved, although a direct interaction partner of the secreted retinoschisin, the retinal Na/K-ATPase, was recently identified. Earlier gene expression studies in retinoschisin-deficient (Rs1h-/Y ) mice provided a first indication of pathological up-regulation of mitogen-activated protein (MAP) kinase signalling in disease pathogenesis. To further investigate the role for retinoschisin in MAP kinase regulation, we exposed Y-79 cells and murine Rs1h-/Y retinae to recombinant retinoschisin and the XLRS-associated mutant RS1-C59S. Although normal retinoschisin stably bound to retinal cells, RS1-C59S exhibited a strongly reduced binding affinity. Simultaneously, exposure to normal retinoschisin significantly reduced phosphorylation of C-RAF and MAP kinases ERK1/2 in Y-79 cells and murine Rs1h-/Y retinae. Expression of MAP kinase target genes C-FOS and EGR1 was also down-regulated in both model systems. Finally, retinoschisin treatment decreased pro-apoptotic BAX-2 transcript levels in Y-79 cells and Rs1h-/Y retinae. Upon retinoschisin treatment, these cells showed increased resistance against apoptosis, reflected by decreased caspase-3 activity (in Y-79 cells) and increased photoreceptor survival (in Rs1h-/Y retinal explants). RS1-C59S did not influence C-RAF or ERK1/2 activation, C-FOS or EGR1 expression, or apoptosis. Our data imply that retinoschisin is a novel regulator of MAP kinase signalling and exerts an anti-apoptotic effect on retinal cells. We therefore discuss that disturbances of MAP kinase signalling by retinoschisin deficiency could be an initial step in XLRS pathogenesis.
Collapse
Affiliation(s)
- Karolina Plössl
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Ulrike Friedrich
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| |
Collapse
|
18
|
Is Hydrogen Peroxide a Suitable Apoptosis Inducer for All Cell Types? BIOMED RESEARCH INTERNATIONAL 2016; 2016:7343965. [PMID: 27595106 PMCID: PMC4993923 DOI: 10.1155/2016/7343965] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/11/2016] [Indexed: 11/17/2022]
Abstract
Hydrogen peroxide is currently the most widely used apoptosis inducer due to its broad cytotoxic efficacy against nearly all cell types. However, equivalent cytotoxicity is achieved over a wide range of doses, although the reasons for this differential sensitivity are not always clear. In this study, three kinds of cells, the 293T cell line, primary fibroblasts, and terminally differentiated myocardial cells, were treated with a wide range of H2O2 doses. Times to apoptosis initiation and end were measured cytochemically and the changes in expression of caspase-9, P53, NF-κB, and RIP were determined by RT-PCR. The 293T cell line was the most sensitive to H2O2, undergoing necroptosis and/or apoptosis at all concentrations from 0.1 to 1.6 mM. At > 0.4 mM, H2O2 also caused necroptosis in primary cells. At < 0.4 mM, however, primary cells exhibited classic signs of apoptosis, although they tended to survive for 36 hours in < 0.2 mM H2O2. Thus, H2O2 is a broadly effective apoptosis inducer, but the dose range differs by cell type. For cell lines, a low dose is required and the exposure time must be reduced compared to primary cells to avoid cell death primarily by necroptosis or necrosis.
Collapse
|
19
|
Liu RT, Wang GR, Liu C, Qiu J, Yan LK, Li XJ, Wang XQ. RNAi-mediated downregulation of DNA binding protein A inhibits tumorigenesis in colorectal cancer. Int J Mol Med 2016; 38:703-12. [PMID: 27430286 PMCID: PMC4990294 DOI: 10.3892/ijmm.2016.2662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 06/22/2016] [Indexed: 12/14/2022] Open
Abstract
DNA binding protein A (dbpA) belongs to the Y-box binding protein family and has been reported to play an important role in carcinogenesis. Our previous study demonstrated that the knockdown of dbpA in gastric cancer cells inhibited cell proliferation by modulating the cell cycle. However, the role of dbpA in human colorectal cancer (CRC) remains unclear. In this study, immunohistochemical (IHC) staining and clinicopathological parameter analysis were employed to detect dbpA expression in 44 paired CRC samples and 7 CRC cell lines. Lentivirus-mediated short hairpin RNA (shRNA) was used to silence dbpA, and the effects of dbpA knockdown on cell proliferation were determined by MTT assay, colony formation assay and flow cytometry. Furthermore, a xenograft model was established to observe tumor growth in vivo. Functional analysis indicated that dbpA was overexpressed in the CRC tissues and cell lines, and a high dbpA expression was associated with the depth of invasion (p<0.001), the degree of differentiation (p<0.001), lymphatic metastasis (p<0.001) and vessel invasion (p<0.001). The suppression of dbpA expression resulted in decreased cell proliferation in vitro and tumor growth in vivo, and it induced cell cycle arrest and promoted the apoptosis of the CRC cells. As a whole, our findings illustrate the crucial role of dbpA in colorectal tumorigenesis. Thus, dbpA may be used as a novel and potent therapeutic target in CRC.
Collapse
Affiliation(s)
- Rui-Ting Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guo-Rong Wang
- Department of General Surgery, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jian Qiu
- Department of General Surgery, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Li-Kun Yan
- Department of General Surgery, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Xiao-Jun Li
- Department of General Surgery, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Xiao-Qiang Wang
- Department of General Surgery, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|