1
|
Plaza Moral V, Alobid I, Álvarez Rodríguez C, Blanco Aparicio M, Ferreira J, García G, Gómez-Outes A, Garín Escrivá N, Gómez Ruiz F, Hidalgo Requena A, Korta Murua J, Molina París J, Pellegrini Belinchón FJ, Plaza Zamora J, Praena Crespo M, Quirce Gancedo S, Sanz Ortega J, Soto Campos JG. GEMA 5.3. Spanish Guideline on the Management of Asthma. OPEN RESPIRATORY ARCHIVES 2023; 5:100277. [PMID: 37886027 PMCID: PMC10598226 DOI: 10.1016/j.opresp.2023.100277] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
The Spanish Guideline on the Management of Asthma, better known by its acronym in Spanish GEMA, has been available for more than 20 years. Twenty-one scientific societies or related groups both from Spain and internationally have participated in the preparation and development of the updated edition of GEMA, which in fact has been currently positioned as the reference guide on asthma in the Spanish language worldwide. Its objective is to prevent and improve the clinical situation of people with asthma by increasing the knowledge of healthcare professionals involved in their care. Its purpose is to convert scientific evidence into simple and easy-to-follow practical recommendations. Therefore, it is not a monograph that brings together all the scientific knowledge about the disease, but rather a brief document with the essentials, designed to be applied quickly in routine clinical practice. The guidelines are necessarily multidisciplinary, developed to be useful and an indispensable tool for physicians of different specialties, as well as nurses and pharmacists. Probably the most outstanding aspects of the guide are the recommendations to: establish the diagnosis of asthma using a sequential algorithm based on objective diagnostic tests; the follow-up of patients, preferably based on the strategy of achieving and maintaining control of the disease; treatment according to the level of severity of asthma, using six steps from least to greatest need of pharmaceutical drugs, and the treatment algorithm for the indication of biologics in patients with severe uncontrolled asthma based on phenotypes. And now, in addition to that, there is a novelty for easy use and follow-up through a computer application based on the chatbot-type conversational artificial intelligence (ia-GEMA).
Collapse
Affiliation(s)
| | - Isam Alobid
- Otorrinolaringología, Hospital Clinic de Barcelona, España
| | | | | | - Jorge Ferreira
- Hospital de São Sebastião – CHEDV, Santa Maria da Feira, Portugal
| | | | - Antonio Gómez-Outes
- Farmacología clínica, Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), Madrid, España
| | - Noé Garín Escrivá
- Farmacia Hospitalaria, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | | | | | - Javier Korta Murua
- Neumología Pediátrica, Hospital Universitario Donostia, Donostia-San, Sebastián, España
| | - Jesús Molina París
- Medicina de familia, semFYC, Centro de Salud Francia, Fuenlabrada, Dirección Asistencial Oeste, Madrid, España
| | | | - Javier Plaza Zamora
- Farmacia comunitaria, Farmacia Dr, Javier Plaza Zamora, Mazarrón, Murcia, España
| | | | | | - José Sanz Ortega
- Alergología Pediátrica, Hospital Católico Universitario Casa de Salud, Valencia, España
| | | |
Collapse
|
2
|
Qiu AY, Leng S, McCormack M, Peden DB, Sood A. Lung Effects of Household Air Pollution. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2807-2819. [PMID: 36064186 DOI: 10.1016/j.jaip.2022.08.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Biomass fuel smoke, secondhand smoke, and oxides of nitrogen are common causes of household air pollution (HAP). Almost 2.4 billion people worldwide use solid fuels for cooking and heating, mostly in low- and middle-income countries. Wood combustion for household heating is also common in many areas of high-income countries, and minorities are particularly vulnerable. HAP in low- and middle-income countries is associated with asthma, acute respiratory tract infections in adults and children, chronic obstructive pulmonary disease, lung cancer, tuberculosis, and respiratory mortality. Although wood smoke exposure levels in high-income countries are typically lower than in lower-income countries, it is similarly associated with accelerated lung function decline, higher prevalence of airflow obstruction and chronic bronchitis, and higher all-cause and respiratory cause-specific mortality. Household air cleaners with high-efficiency particle filters have mixed effects on asthma and chronic obstructive pulmonary disease outcomes. Biomass fuel interventions in low-income countries include adding chimneys to cookstoves, improving biomass fuel combustion stoves, and switching fuel to liquid petroleum gas. Still, the impact on health outcomes is inconsistent. In high-income countries, strategies for reducing biomass fuel-related HAP are centered on community-level woodstove changeout programs, although the results are again inconsistent. In addition, initiatives to encourage home smoking bans have mixed success in households with children. Environmental solutions to reduce HAP have varying success in reducing pollutants and health problems. Improved understanding of indoor air quality factors and actions that prevent degradation or improve polluted indoor air may lead to enhanced environmental health policies, but health outcomes must be rigorously examined.
Collapse
Affiliation(s)
- Anna Y Qiu
- Johns Hopkins University, School of Medicine, Baltimore, Md
| | - Shuguang Leng
- University of New Mexico School of Medicine, Albuquerque, NM; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | | | - David B Peden
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Akshay Sood
- University of New Mexico School of Medicine, Albuquerque, NM; Miners Colfax Medical Center, Raton, NM.
| |
Collapse
|
3
|
Uddin S, Amour A, Lewis DJ, Edwards CD, Williamson MG, Hall S, Lione LA, Hessel EM. PI3Kδ inhibition prevents IL33, ILC2s and inflammatory eosinophils in persistent airway inflammation. BMC Immunol 2021; 22:78. [PMID: 34920698 PMCID: PMC8684271 DOI: 10.1186/s12865-021-00461-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/30/2021] [Indexed: 01/30/2023] Open
Abstract
Background Phosphoinositide-3-kinase-delta (PI3Kδ) inhibition is a promising therapeutic approach for inflammatory conditions due to its role in leucocyte proliferation, migration and activation. However, the effect of PI3Kδ inhibition on group 2 innate lymphoid cells (ILC2s) and inflammatory eosinophils remains unknown. Using a murine model exhibiting persistent airway inflammation we sought to understand the effect of PI3Kδ inhibition, montelukast and anti-IL5 antibody treatment on IL33 expression, group-2-innate lymphoid cells, inflammatory eosinophils, and goblet cell metaplasia. Results Mice were sensitised to house dust mite and after allowing inflammation to resolve, were re-challenged with house dust mite to re-initiate airway inflammation. ILC2s were found to persist in the airways following house dust mite sensitisation and after re-challenge their numbers increased further along with accumulation of inflammatory eosinophils. In contrast to montelukast or anti-IL5 antibody treatment, PI3Kδ inhibition ablated IL33 expression and prevented group-2-innate lymphoid cell accumulation. Only PI3Kδ inhibition and IL5 neutralization reduced the infiltration of inflammatory eosinophils. Moreover, PI3Kδ inhibition reduced goblet cell metaplasia. Conclusions Hence, we show that PI3Kδ inhibition dampens allergic inflammatory responses by ablating key cell types and cytokines involved in T-helper-2-driven inflammatory responses. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00461-5.
Collapse
Affiliation(s)
- Sorif Uddin
- Immunology Research Unit, Respiratory Therapy Area Unit, GSK Medicines Research Centre, GlaxoSmithKline Research and Development Limited, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK.
| | - Augustin Amour
- Immunology Research Unit, Respiratory Therapy Area Unit, GSK Medicines Research Centre, GlaxoSmithKline Research and Development Limited, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - David J Lewis
- In Vivo/In Vitro Translation, GlaxoSmithKline Research and Development Limited, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Chris D Edwards
- In Vivo/In Vitro Translation, GlaxoSmithKline Research and Development Limited, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Matthew G Williamson
- Immunology Research Unit, Respiratory Therapy Area Unit, GSK Medicines Research Centre, GlaxoSmithKline Research and Development Limited, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Simon Hall
- Immunology Research Unit, Respiratory Therapy Area Unit, GSK Medicines Research Centre, GlaxoSmithKline Research and Development Limited, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Lisa A Lione
- Department of Clinical and Pharmaceutical Sciences, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Edith M Hessel
- Eligo Bioscience, 29 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| |
Collapse
|
4
|
Khindri S, Cahn A, Begg M, Montembault M, Leemereise C, Cui Y, Hogg A, Wajdner H, Yang S, Robertson J, Hamblin JN, Ludwig-Sengpiel A, Kornmann O, Hessel EM. A Multicentre, Randomized, Double-Blind, Placebo-Controlled, Crossover Study To Investigate the Efficacy, Safety, Tolerability, and Pharmacokinetics of Repeat Doses of Inhaled Nemiralisib in Adults with Persistent, Uncontrolled Asthma. J Pharmacol Exp Ther 2018; 367:405-413. [PMID: 30217958 DOI: 10.1124/jpet.118.249516] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/11/2018] [Indexed: 12/29/2022] Open
Abstract
Phosphoinositide 3-kinase δ (PI3Kδ) is a lipid kinase involved in leukocyte recruitment and activation. Activation of PI3Kδ has been linked to airway inflammation and asthma pathogenesis. This randomized, double-blind, placebo-controlled, crossover study investigated the efficacy, safety, tolerability, and pharmacokinetics of a PI3Kδ inhibitor, nemiralisib (GSK2269557), in patients with persistent, uncontrolled asthma. Patients (n = 50) received once-daily inhaled nemiralisib (1000 µg) or placebo for 28 days, with a crossover to the alternative treatment following a 4-week washout period. Spirometry demonstrated no discernible difference in trough forced expiratory volume in 1 second (FEV1) from baseline (adjusted posterior median 7 ml; 95% credible interval -83, 102 ml) between nemiralisib and placebo treatment at day 28 (primary endpoint). These results were supported by most secondary endpoints, including weighted mean FEV1 (0-4 hours) and change in trough forced vital capacity at day 28. Nemiralisib was generally well-tolerated, with few side effects except for post-inhalation cough (nemiralisib: 35%; placebo: 9%). At day 14, sputum interleukin (IL)-5, IL-13, IL-6, and IL-8 levels were reduced by a median of 17%, 7%, 15%, and 8%, respectively, when comparing nemiralisib with placebo [n = 15 (IL-5, IL-8) or 16 (IL-6, IL-13); posterior probability of a true ratio >0%: 78%, 64%, 76%, and 63%, respectively]. These results suggest that nemiralisib inhibited PI3Kδ locally; however, this did not translate into meaningful clinical improvement. Further studies will investigate the potential efficacy of nemiralisib in patients with asthma with other specific more severe phenotypes, including those who are colonized with bacteria and frequently exacerbate.
Collapse
Affiliation(s)
- Sanjeev Khindri
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Anthony Cahn
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Malcolm Begg
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Mickael Montembault
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Claudia Leemereise
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Yi Cui
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Annabel Hogg
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Hannah Wajdner
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Shuying Yang
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Jon Robertson
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - J Nicole Hamblin
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Andrea Ludwig-Sengpiel
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Oliver Kornmann
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Edith M Hessel
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| |
Collapse
|
5
|
Reznikov LR, Meyerholz DK, Abou Alaiwa M, Kuan SP, Liao YSJ, Bormann NL, Bair TB, Price M, Stoltz DA, Welsh MJ. The vagal ganglia transcriptome identifies candidate therapeutics for airway hyperreactivity. Am J Physiol Lung Cell Mol Physiol 2018; 315:L133-L148. [PMID: 29631359 PMCID: PMC6139658 DOI: 10.1152/ajplung.00557.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mainstay therapeutics are ineffective in some people with asthma, suggesting a need for additional agents. In the current study, we used vagal ganglia transcriptome profiling and connectivity mapping to identify compounds beneficial for alleviating airway hyperreactivity (AHR). As a comparison, we also used previously published transcriptome data from sensitized mouse lungs and human asthmatic endobronchial biopsies. All transcriptomes revealed agents beneficial for mitigating AHR; however, only the vagal ganglia transcriptome identified agents used clinically to treat asthma (flunisolide, isoetarine). We also tested one compound identified by vagal ganglia transcriptome profiling that had not previously been linked to asthma and found that it had bronchodilator effects in both mouse and pig airways. These data suggest that transcriptome profiling of the vagal ganglia might be a novel strategy to identify potential asthma therapeutics.
Collapse
Affiliation(s)
- Leah R Reznikov
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | | | - Mahmoud Abou Alaiwa
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Shin-Ping Kuan
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | - Yan-Shin J Liao
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | | | - Thomas B Bair
- Iowa Institute of Human Genetics, University of Iowa , Iowa City, Iowa
| | - Margaret Price
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - David A Stoltz
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa.,Molecular Physiology and Biophysics, University of Iowa , Iowa City, Iowa.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Department of Biomedical Engineering, College of Engineering, University of Iowa , Iowa City, Iowa
| | - Michael J Welsh
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa.,Molecular Physiology and Biophysics, University of Iowa , Iowa City, Iowa.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Howard Hughes Medical Institute, University of Iowa , Iowa City, Iowa
| |
Collapse
|
6
|
Brown ES, Sayed N, Van Enkevort E, Kulikova A, Nakamura A, Khan DA, Ivleva EI, Sunderajan P, Bender BG, Holmes T. A Randomized, Double-Blind, Placebo-Controlled Trial of Escitalopram in Patients with Asthma and Major Depressive Disorder. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 6:1604-1612. [PMID: 29409976 DOI: 10.1016/j.jaip.2018.01.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Depression is common in asthma and is associated with poor outcomes. However, antidepressant therapy in depressed patients with asthma has been the topic of little research. OBJECTIVE This study examined the impact of antidepressant treatment with escitalopram versus placebo on the Hamilton Rating Scale for Depression (HRSD), Inventory of Depressive Symptomatology-Self Report (IDS-SR), Asthma Control Questionnaire (ACQ), and oral corticosteroid use in patients with asthma and major depressive disorder (MDD). METHODS Single-site 12-week, randomized, double-blind, placebo-controlled, parallel-group trial of escitalopram (10 mg/d) was conducted in 139 outpatients with asthma and MDD. Randomization was stratified by oral corticosteroid use (≥3 bursts in past 12 months, yes or no) and baseline depressive symptom severity (HRSD score ≥ 20) (higher severity, n = 42) versus less than 3 bursts, HRSD score less than 20, or both (lower severity, n = 97). The primary data analysis was conducted using hierarchical linear modeling Version 7.01 on the higher and lower severity samples and post hoc was conducted on the combined sample. RESULTS Among the higher severity completers (n = 21), a significant reduction in the ACQ score (P = .04) and oral corticosteroid use (P = .04) was observed with escitalopram. In the combined sample, no significant differences were observed, but a trend toward greater reduction in the IDS-SR score was observed with escitalopram (P = .07). Side effects were comparable across groups. CONCLUSIONS The findings suggest that patients with more severe asthma and depression symptomatology may have a positive response, in terms of both asthma and depressive symptom reduction, to antidepressant treatment.
Collapse
Affiliation(s)
- E Sherwood Brown
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Nasreen Sayed
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Erin Van Enkevort
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alexandra Kulikova
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alyson Nakamura
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - David A Khan
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elena I Ivleva
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Prabha Sunderajan
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Traci Holmes
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
7
|
Active Ingredients of Epimedii Folium and Ligustri Lucidi Fructus Balanced GR/HSP90 to Improve the Sensitivity of Asthmatic Rats to Budesonide. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7961231. [PMID: 28584561 PMCID: PMC5444006 DOI: 10.1155/2017/7961231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/02/2017] [Accepted: 04/12/2017] [Indexed: 01/04/2023]
Abstract
This study aimed to investigate the possible molecular mechanisms of active ingredients of Epimedii Folium (EF) and Ligustri Lucidi Fructus (LLF) combined with Budesonide (Bun) in asthmatic rats. Rats were divided into 5 groups, including normal group, asthma model group, Bun group, group of active ingredients of EL and LLF (EL), and group of coadministration of Bun with EL (Bun&EL). The asthmatic model was prepared by ovalbumin sensitizing and challenging. Lymphocyte apoptosis, GR protein and binding, and the protein and mRNA of GRα, GRβ, and HSP90 were tested. The results showed that Bun&EL ① markedly increased lymphocyte apoptosis, GR and HSP90 protein, and GR binding in BALF and ② enhanced the expressions of GRα and HSP90 and the ratio of GRα to GRβ or to HSP90 both in protein and in mRNA levels in lung, ③ while decrease occurred in GRβ mRNA and the mRNA ratio of GRβ to HSP90 compared with asthma or Bun group. Moreover, there was a significant correlation between GRα and GRβ in protein level, or between GRα and HSP90 both in protein and in mRNA levels. EL may effectively enhance the sensitivity of asthmatic rats to Bun via balancing GR/HSP90. And these findings will be beneficial for the treatment of asthma in the future.
Collapse
|
8
|
Ban GY, Pham DL, Trinh THK, Lee SI, Suh DH, Yang EM, Ye YM, Shin YS, Chwae YJ, Park HS. Autophagy mechanisms in sputum and peripheral blood cells of patients with severe asthma: a new therapeutic target. Clin Exp Allergy 2016; 46:48-59. [PMID: 26112695 DOI: 10.1111/cea.12585] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 06/02/2015] [Accepted: 06/19/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Autophagy and genetic predisposition have been suggested to potentially play roles in the development of asthma. However, little is known about the role of autophagy in the pathogenesis of severe asthma. OBJECTIVE We compared autophagy in the sputum granulocytes, peripheral blood cells (PBCs) and peripheral blood eosinophils (PBEs) between patients with severe asthma and those with non-severe asthma and investigated the functional effects of autophagy. METHODS We enrolled 36 patients with severe asthma, 14 with non-severe asthma and 23 normal healthy controls in this study. Sputum granulocytes, PBCs and PBEs were isolated from each subject. Autophagy was evaluated based on the expression of microtubule-associated protein light chain 3 (LC3) by Western blot, confocal microscopy, transmission electron microscopy and flow cytometry. IL-8 levels were measured by ELISA. To induce autophagy, HL-60 cells, human primary small airway epithelial cells (SAECs) and A549 cells were treated with IL-5, IL-1β and TNF-α. To inhibit autophagy, PI3K inhibitors (LY29400 and 3-methyladenine [3-MA]) and hydroxychloroquine (HCQ) were used. Knockdown of ATG5 and Beclin-1 was performed in A549 cells, and the therapeutic effects of dexamethasone were evaluated. RESULTS Higher autophagy levels were noted in sputum granulocytes, PBCs and PBEs from patients with severe asthma than from patients with non-severe asthma and healthy controls (P < 0.05 for all). IL-5 increased autophagy levels in both PBCs and PBEs (P < 0.05). 3-MA attenuated the increased expression of LC3-II and eosinophil cationic protein in HL-60 cells induced by IL-5 (P = 0.034 for both). Dexamethasone did not affect autophagy levels in PBEs. IL-1β increased LC3-II expression and IL-8 production (P < 0.01) in SAECs, and this was attenuated by LY294002, 3-MA, HCQ and knockdown of ATG5 and Beclin-1 (in A549 cells) (P < 0.01). CONCLUSIONS AND CLINICAL RELEVANCE Autophagy could play a role in the pathogenesis of severe asthma. Autophagy modulation may be a novel therapeutic target for conventional therapy-resistant severe asthma.
Collapse
Affiliation(s)
- G-Y Ban
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - D L Pham
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, South Korea
| | - T H K Trinh
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - S-I Lee
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - D-H Suh
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - E-M Yang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Y-M Ye
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Y S Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Y-J Chwae
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, South Korea.,Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| | - H-S Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, South Korea
| |
Collapse
|
9
|
Southworth T, Plumb J, Gupta V, Pearson J, Ramis I, Lehner MD, Miralpeix M, Singh D. Anti-inflammatory potential of PI3Kδ and JAK inhibitors in asthma patients. Respir Res 2016; 17:124. [PMID: 27716212 PMCID: PMC5051065 DOI: 10.1186/s12931-016-0436-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/17/2016] [Indexed: 01/20/2023] Open
Abstract
Background Phosphatidylinositol 3-kinase delta (PI3Kδ) and Janus-activated kinases (JAK) are both novel anti-inflammatory targets in asthma that affect lymphocyte activation. We have investigated the anti-inflammatory effects of PI3Kδ and JAK inhibition on cytokine release from asthma bronchoalveolar lavage (BAL) cells and T-cell activation, and measured lung PI3Kδ and JAK signalling pathway expression. Method Cells isolated from asthma patients and healthy subjects were treated with PI3Kδ or JAK inhibitors, and/or dexamethasone, before T-cell receptor stimulation. Levels of IFNγ, IL-13 and IL-17 were measured by ELISA and flow cytometry was used to assess T-cell activation. PI3Kδ, PI3Kγ, phosphorylated protein kinase B (pAKT) and Signal Transducer and Activator of Transcription (STAT) protein expression were assessed by immunohistochemistry in bronchial biopsy tissue from asthma patients and healthy subjects. PI3Kδ expression in BAL CD3 cells was measured by flow cytometry. Results JAK and PI3Kδ inhibitors reduced cytokine levels from both asthma and healthy BAL cells. Combining dexamethasone with either a JAK or PI3Kδ inhibitor showed an additive anti-inflammatory effect. JAK and PI3Kδ inhibitors were shown to have direct effects on T-cell activation. Immunohistochemistry showed increased numbers of PI3Kδ expressing cells in asthma bronchial tissue compared to controls. Asthma CD3 cells in BAL expressed higher levels of PI3Kδ protein compared to healthy cells. Conclusions Targeting PI3Kδ or JAK may prove effective in reducing T-cell activation and the resulting cytokine production in asthma. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0436-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Southworth
- The University of Manchester; Division of Infection, Immunity & Respiratory Medicine; Manchester Academic Health Science Centre; University Hospital South Manchester NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, UK.
| | - Jonathan Plumb
- The University of Manchester; Division of Infection, Immunity & Respiratory Medicine; Manchester Academic Health Science Centre; University Hospital South Manchester NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, UK
| | - Vandana Gupta
- The University of Manchester; Division of Infection, Immunity & Respiratory Medicine; Manchester Academic Health Science Centre; University Hospital South Manchester NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, UK
| | - James Pearson
- The University of Manchester; Division of Infection, Immunity & Respiratory Medicine; Manchester Academic Health Science Centre; University Hospital South Manchester NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, UK
| | - Isabel Ramis
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | - Martin D Lehner
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | | | - Dave Singh
- The University of Manchester; Division of Infection, Immunity & Respiratory Medicine; Manchester Academic Health Science Centre; University Hospital South Manchester NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, UK
| |
Collapse
|
10
|
Increased serum VDBP as a risk predictor for steroid resistance in asthma patients. Respir Med 2016; 114:111-6. [PMID: 27109820 DOI: 10.1016/j.rmed.2016.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND Asthmatic symptoms usually can be controlled with corticosteroids, but partly asthmatic patients do not respond to corticosteroids, steroid resistance (SR) play a significant role in the poorly responding. However, no approach can accurately predict steroid responsiveness in asthma patients, so prediction of SR with noninvasive means has become a critical issue. OBJECTIVE The aim of this study was to evaluate the difference in serum proteomes between steroid-sensitive asthma (SSA) and steroid-resistant asthma (SRA) patients and identify potential biomarkers for the prediction of SR in asthma patients. METHODS We performed a proteomic approach of fluorescence-based difference gel electrophoresis (DIGE) and mass spectrometry to identify biomarkers in the serum obtained from SRA and SSA patients (n = 6 in each group). The interesting biomarker was further studied using western blot and enzyme-linked immunosorbent assays (ELISA). RESULTS Seven differentially expressed proteins between SSA and SRA group were identified. Among them, vitamin D-binding protein (VDBP) attracted our further attention as the greatest changed protein. Serum VDBP was significantly up-regulated in SRA group compared with SSA group, and the differential expression was confirmed with western blot analysis. The ELISA data showed the serum level of VDBP was significantly higher in SRA group than that in SSA and control group (496.50 ± 204.62 vs. 279.73 ± 163.65, 241.93 ± 98.58 μg/ml, respectively, p < 0.01). Correlation analysis indicated serum VDBP was positively correlated with neutrophils% and monocytes% (p < 0.05), but inversely correlate with serum 25OHD (p < 0.05). Regression analysis showed increased serum VDBP was a risk predictor of SRA, and serum 25OHD was an independent influential factor of serum VDBP. Using the receiver operating characteristic curve, we determined the area under the curve (AUC) of VDBP was 0.792, and the optimal serum cutoff value of VDBP was 355.8 μg/ml, which can discriminate SRA from asthma patients with 65.2% sensitivity and 83.7% specificity. CONCLUSIONS This study provides a novel overview of the difference in serum proteomes of SSA and SRA. We suppose serum VDBP may serve as a useful biomarker for predicting SR in asthma patients, and may participate in the pathogenesis of SRA.
Collapse
|
11
|
Prevalence of IgE-mediated allergy and evaluation of Th1/Th2 cytokine profiles in patients with severe bronchial asthma. Postepy Dermatol Alergol 2015; 32:274-80. [PMID: 26366151 PMCID: PMC4565842 DOI: 10.5114/pdia.2015.53323] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 01/26/2015] [Accepted: 02/06/2015] [Indexed: 12/15/2022] Open
Abstract
Introduction The pathogenesis of asthma remains unclear, especially in cases of the severe disease. Aim To explore IgE-mediated inhalant sensitization in severe asthma compared with a group of patients with chronic mild disease and evaluate the Th1/Th2 cytokine profiles in asthma by different disease severities. Material and methods One hundred and fifty-four patients (age range: 28–69) with severe chronic asthma (study group) and 141 patients with chronic mild disease (control group) diagnosed according to GINA criteria were included in the study. Seventy-eight severe asthmatics and 43 subjects with mild disease were randomly selected for serum Th1/Th2 cytokine level estimation. The groups were matched in terms of age and atopy features (skin prick tests, specific and total serum IgE). Results Positive skin tests to at least one allergen were observed with comparable frequencies. Sensitization to Dermatophagoides pteronyssinus was the most prevalent positive result in both groups. An earlier onset of asthma together with a greater number of exacerbations was noted in severe asthmatics compared to patients with mild disease. Serum levels of interleukin 4 and 2 (IL-4 and IL-2) were detectable only in severe asthmatics irrespective of atopy features. The levels of interferon γ and tumour necrosis factor α were undetectable in both groups. IL-10 and IL-5 were detected in the serum of only 7 and 12 severe asthmatics, respectively. Conclusions The serum level of IL-2 and IL-4 could be perceived as a marker of severe asthma. Neither IL-2 nor IL-4 levels in the serum could differentiate allergic and non-allergic asthma.
Collapse
|
12
|
|
13
|
Guidelines for severe uncontrolled asthma. Arch Bronconeumol 2015; 51:235-46. [PMID: 25677358 DOI: 10.1016/j.arbres.2014.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/02/2014] [Accepted: 12/06/2014] [Indexed: 01/29/2023]
Abstract
Since the publication, 9 years ago, of the latest SEPAR (Spanish Society of Pulmonology and Thoracic Surgery) Guidelines on Difficult-to-Control Asthma (DCA), much progress has been made in the understanding of asthmatic disease. These new data need to be reviewed, analyzed and incorporated into the guidelines according to their level of evidence and recommendation. Recently, consensus documents and clinical practice guidelines (CPG) addressing this issue have been published. In these guidelines, specific mention will be made of what the previous DCA guidelines defined as "true difficult-to-control asthma". This is asthma that remains uncontrolled after diagnosis and a systematic evaluation to rule out factors unrelated to the disease itself that lead to poor control ("false difficult-to-control asthma"), and despite an appropriate treatment strategy (Spanish Guidelines for the Management of Asthma [GEMA] steps 5 and 6): severe uncontrolled asthma. In this respect, the guidelines propose a revised definition, an attempt to classify the various manifestations of this type of asthma, a proposal for a stepwise diagnostic procedure, and phenotype-targeted treatment. A specific section has also been included on DCA in childhood, aimed at assisting healthcare professionals to improve the care of these patients.
Collapse
|
14
|
Population of sensory neurons essential for asthmatic hyperreactivity of inflamed airways. Proc Natl Acad Sci U S A 2014; 111:11515-20. [PMID: 25049382 DOI: 10.1073/pnas.1411032111] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Asthma is a common debilitating inflammatory lung disease affecting over 200 million people worldwide. Here, we investigated neurogenic components involved in asthmatic-like attacks using the ovalbumin-sensitized murine model of the disease, and identified a specific population of neurons that are required for airway hyperreactivity. We show that ablating or genetically silencing these neurons abolished the hyperreactive broncho-constrictions, even in the presence of a fully developed lung inflammatory immune response. These neurons are found in the vagal ganglia and are characterized by the expression of the transient receptor potential vanilloid 1 (TRPV1) ion channel. However, the TRPV1 channel itself is not required for the asthmatic-like hyperreactive airway response. We also demonstrate that optogenetic stimulation of this population of TRP-expressing cells with channelrhodopsin dramatically exacerbates airway hyperreactivity of inflamed airways. Notably, these cells express the sphingosine-1-phosphate receptor 3 (S1PR3), and stimulation with a S1PR3 agonist efficiently induced broncho-constrictions, even in the absence of ovalbumin sensitization and inflammation. Our results show that the airway hyperreactivity phenotype can be physiologically dissociated from the immune component, and provide a platform for devising therapeutic approaches to asthma that target these pathways separately.
Collapse
|
15
|
Chen X, Gan Y, Li W, Su J, Zhang Y, Huang Y, Roberts AI, Han Y, Li J, Wang Y, Shi Y. The interaction between mesenchymal stem cells and steroids during inflammation. Cell Death Dis 2014; 5:e1009. [PMID: 24457953 PMCID: PMC4040685 DOI: 10.1038/cddis.2013.537] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 01/18/2023]
Abstract
Mesenchymal stem cells (MSCs) are believed to exert their regenerative effects through differentiation and modulation of inflammatory responses. However, the relationship between the severity of inflammation and stem cell-mediated tissue repair has not been formally investigated. In this study, we applied different concentrations of dexamethasone (Dex) to anti-CD3-activated splenocyte cultured with or without MSCs. As expected, Dex exhibited a classical dose-dependent inhibition of T-cell proliferation. Surprisingly, although MSCs also blocked T-cell proliferation, the presence of Dex unexpectedly showed a dose-dependent reversion of T-cell proliferation. This effect of Dex was found to be exerted through interfering STAT1 phosphorylation-prompted expression of inducible nitric oxide synthase (iNOS). Interestingly, inflammation-induced chemokines in MSCs was unaffected. To test the role of inflammation severity in stem cell-mediated tissue repair, we employed mice with carbon tetrachloride-induced advanced liver fibrosis and found that although MSCs alone were effective, concurrent administration of Dex abrogated the therapeutic effects of MSCs on fibrin deposition, serum levels of bilirubin, albumin, and aminotransferases, as well as T-lymphocyte infiltration, especially IFN-γ(+)CD4(+) and IL-17A(+)CD4(+)T cells. Likewise, iNOS(-/-) MSCs, which produce chemokines but not nitric oxide under inflammatory conditions, are ineffective in treating advanced liver fibrosis. Therefore, inflammation has a critical role in MSC-mediated tissue repair. In addition, concomitant application of MSCs with steroids should be avoided.
Collapse
Affiliation(s)
- X Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Gan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - W Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Su
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Huang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - A I Roberts
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School-Rutgers Biomedical and Health Sciences, New Brunswick, NJ, USA
| | - Y Han
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School-Rutgers Biomedical and Health Sciences, New Brunswick, NJ, USA
| |
Collapse
|