1
|
Kegulian NC, Moradian-Oldak J. Deletion within ameloblastin multitargeting domain reduces its interaction with artificial cell membrane. J Struct Biol 2024; 216:108143. [PMID: 39447937 PMCID: PMC11784912 DOI: 10.1016/j.jsb.2024.108143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
In human, mutations in the gene encoding the enamel matrix protein ameloblastin (Ambn) have been identified in cases of amelogenesis imperfecta. In mouse models, perturbations in the Ambn gene have caused loss of enamel and dramatic disruptions in enamel-making ameloblast cell function. Critical roles for Ambn in ameloblast cell signaling and polarization as well as adhesion to the nascent enamel matrix have been supported. Recently, we have identified a multitargeting domain (MTD) in Ambn that interacts with cell membrane, with the majority enamel matrix protein amelogenin, and with itself. This domain includes an amphipathic helix (AH) motif that directly interacts with cell membrane. In this study, we analyzed the sequence of the MTD for evolutionary conservation and found high conservation among mammals within the MTD and particularly within the AH motif. We computationally predicted that the AH motif lost its hydrophobic moment upon deleting hydrophobic but not hydrophilic residues from the motif. Furthermore, we rationally designed peptides that encompassed the Ambn MTD and contained deletions of largely hydrophobic or hydrophilic stretches of residues. To assess their AH-forming and membrane-binding abilities, we combined those peptides with synthetic phospholipid membrane vesicles and performed circular dichroism, membrane leakage, and vesicle clearance measurements. Circular dichroism showed retention of α-helix formation in all peptides except the one with the largest deletion of eleven amino acids including seven that were hydrophobic. This same peptide variant failed to cause leakage or clearance of synthetic membranes, while smaller deletions yielded intermediate membrane interaction as measured by leakage and clearance assays. Our data revealed that deletion of key hydrophobic residues from the AH leads to the most dramatic loss of Ambn-membrane interaction. Pinpointing roles of residues within the MTD has important implications for the multifunctionality of Ambn.
Collapse
Affiliation(s)
- Natalie C Kegulian
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
2
|
Kegulian NC, Visakan G, Bapat RA, Moradian-Oldak J. Ameloblastin and its multifunctionality in amelogenesis: A review. Matrix Biol 2024; 131:62-76. [PMID: 38815936 PMCID: PMC11218920 DOI: 10.1016/j.matbio.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Extracellular matrix proteins play crucial roles in the formation of mineralized tissues like bone and teeth via multifunctional mechanisms. In tooth enamel, ameloblastin (Ambn) is one such multifunctional extracellular matrix protein implicated in cell signaling and polarity, cell adhesion to the developing enamel matrix, and stabilization of prismatic enamel morphology. To provide a perspective for Ambn structure and function, we begin this review by describing dental enamel and enamel formation (amelogenesis) followed by a description of enamel extracellular matrix. We then summarize the established domains and motifs in Ambn protein, human amelogenesis imperfecta cases, and genetically engineered mouse models involving mutated or null Ambn. We subsequently delineate in silico, in vitro, and in vivo evidence for the amphipathic helix in Ambn as a proposed cell-matrix adhesive and then more recent in vitro evidence for the multitargeting domain as the basis for dynamic interactions of Ambn with itself, amelogenin, and membranes. The multitargeting domain facilitates tuning between Ambn-membrane interactions and self/co-assembly and supports a likely overall role for Ambn as a matricellular protein. We anticipate that this review will enhance the understanding of multifunctional matrix proteins by consolidating diverse mechanisms through which Ambn contributes to enamel extracellular matrix mineralization.
Collapse
Affiliation(s)
- Natalie C Kegulian
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA
| | - Gayathri Visakan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA
| | - Rucha Arun Bapat
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA.
| |
Collapse
|
3
|
Hany U, Watson C, Liu L, Nikolopoulos G, Smith C, Poulter J, Brown C, Patel A, Rodd H, Balmer R, Harfoush A, Al-Jawad M, Inglehearn C, Mighell A. Novel Ameloblastin Variants, Contrasting Amelogenesis Imperfecta Phenotypes. J Dent Res 2024; 103:22-30. [PMID: 38058155 PMCID: PMC10734210 DOI: 10.1177/00220345231203694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Amelogenesis imperfecta (AI) comprises a group of rare, inherited disorders with abnormal enamel formation. Ameloblastin (AMBN), the second most abundant enamel matrix protein (EMP), plays a critical role in amelogenesis. Pathogenic biallelic loss-of-function AMBN variants are known to cause recessive hypoplastic AI. A report of a family with dominant hypoplastic AI attributed to AMBN missense change p.Pro357Ser, together with data from animal models, suggests that the consequences of AMBN variants in human AI remain incompletely characterized. Here we describe 5 new pathogenic AMBN variants in 11 individuals with AI. These fall within 3 groups by phenotype. Group 1, consisting of 6 families biallelic for combinations of 4 different variants, have yellow hypoplastic AI with poor-quality enamel, consistent with previous reports. Group 2, with 2 families, appears monoallelic for a variant shared with group 1 and has hypomaturation AI of near-normal enamel volume with pitting. Group 3 includes 3 families, all monoallelic for a fifth variant, which are affected by white hypoplastic AI with a thin intact enamel layer. Three variants, c.209C>G; p.(Ser70*) (groups 1 and 2), c.295T>C; p.(Tyr99His) (group 1), and c.76G>A; p.(Ala26Thr) (group 3) were identified in multiple families. Long-read AMBN locus sequencing revealed these variants are on the same conserved haplotype, implying they originate from a common ancestor. Data presented therefore provide further support for possible dominant as well as recessive inheritance for AMBN-related AI and for multiple contrasting phenotypes. In conclusion, our findings suggest pathogenic AMBN variants have a more complex impact on human AI than previously reported.
Collapse
Affiliation(s)
- U. Hany
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
| | - C.M. Watson
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, St. James’s University Hospital, Leeds, UK
| | - L. Liu
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - G. Nikolopoulos
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
| | - C.E.L. Smith
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
| | - J.A. Poulter
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
| | - C.J. Brown
- Birmingham Dental Hospital, Mill Pool Way, Edgbaston, Birmingham, UK
| | - A. Patel
- LCRN West Midlands Core Team, NIHR Clinical Research Network (CRN), Birmingham Research Park (West Wing), Edgbaston, Birmingham, UK
| | - H.D. Rodd
- Academic Unit of Oral Health Dentistry and Society, School of Clinical Dentistry, University of Sheffield, Sheffield, S Yorks, UK
| | - R. Balmer
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - A. Harfoush
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - M. Al-Jawad
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - C.F. Inglehearn
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
| | - A.J. Mighell
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Shao C, Bapat RA, Su J, Moradian-Oldak J. Regulation of Hydroxyapatite Nucleation In Vitro through Ameloblastin-Amelogenin Interactions. ACS Biomater Sci Eng 2023; 9:1834-1842. [PMID: 35068157 PMCID: PMC9308824 DOI: 10.1021/acsbiomaterials.1c01113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Amelogenin (Amel) and ameloblastin (Ambn) are two primary extracellular enamel matrix proteins that play crucial roles for proper thickness, prismatic structure, and robust mechanical properties. Previous studies have shown that Amel and Ambn bind to each other, but the effect of their coassembly on the nucleation of hydroxyapatite (HAP) is unclear. Here, we systematically investigated the coassembly of recombinant mouse Amel and Ambn in various ratios using in situ atomic force microscopy, dynamic light scattering, and transmission electron microscopy. The size of protein particles decreased as the Ambn:Amel ratio increased. To define the coassembly domain on Ambn, we used Ambn-derived peptides and Ambn variants to examine their effects on the amelogenin particle size distribution. We found that the peptide sequence encoded by exon 5 of Ambn affected Amel self-assembly but the variant lacking this sequence did not have any effect on Amel self-assembly. Furthermore, through monitoring the pH change in bulk mineralization solution, we tracked the nucleation behavior of HAP in the presence of Ambn and Amel and found that their coassemblies at different ratios showed varying abilities to stabilize amorphous calcium phosphate. These results demonstrated that Ambn and Amel coassemble with each other via a motif within the sequence encoded by exon 5 of Ambn and cooperate in regulating the nucleation of HAP crystals, enhancing our understanding of the important role of enamel matrix proteins in amelogenesis.
Collapse
Affiliation(s)
- Changyu Shao
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90033, United States
| | - Rucha Arun Bapat
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90033, United States
| | - Jingtan Su
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90033, United States
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90033, United States
| |
Collapse
|
5
|
Zhang H, Hu Y, Seymen F, Koruyucu M, Kasimoglu Y, Wang S, Wright JT, Havel MW, Zhang C, Kim J, Simmer JP, Hu JC. ENAM mutations and digenic inheritance. Mol Genet Genomic Med 2019; 7:e00928. [PMID: 31478359 PMCID: PMC6785452 DOI: 10.1002/mgg3.928] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND ENAM mutations cause autosomal dominant or recessive amelogenesis imperfecta (AI) and show a dose effect: enamel malformations are more severe or only penetrant when both ENAM alleles are defective. METHODS Whole exome sequences of recruited AI probands were initially screened for mutations in known AI candidate genes. Sanger sequencing was used to confirm sequence variations and their segregation with the disease phenotype. The co-occurrence of ENAM and LAMA3 mutations in one family raised the possibility of digenic inheritance. Enamel formed in Enam+/+ Ambn+/+ , Enam+/- , Ambn+/- , and Enam+/- Ambn+/- mice was characterized by dissection and backscattered scanning electron microscopy (bSEM). RESULTS ENAM mutations segregating with AI in five families were identified. Two novel ENAM frameshift mutations were identified. A single-nucleotide duplication (c.395dupA/p.Pro133Alafs*13) replaced amino acids 133-1142 with a 12 amino acid (ATTKAAFEAAIT*) sequence, and a single-nucleotide deletion (c.2763delT/p.Asp921Glufs*32) replaced amino acids 921-1142 with 31 amino acids (ESSPQQASYQAKETAQRRGKAKTLLEMMCPR*). Three families were heterozygous for a previously reported single-nucleotide ENAM deletion (c.588+1delG/p.Asn197Ilefs*81). One of these families also harbored a heterozygous LAMA3 mutation (c.1559G>A/p.Cys520Tyr) that cosegregated with both the AI phenotype and the ENAM mutation. In mice, Ambn+/- maxillary incisors were normal. Ambn+/- molars were also normal, except for minor surface roughness. Ambn+/- mandibular incisors were sometimes chalky and showed minor chipping. Enam+/- incisor enamel was thinner than normal with ectopic mineral deposited laterally. Enam+/- molars were sometimes chalky and rough surfaced. Enam+/- Ambn+/- enamel was thin and rough, in part due to ectopic mineralization, but also underwent accelerated attrition. CONCLUSION Novel ENAM mutations causing AI were identified, raising to 22 the number of ENAM variations known to cause AI. The severity of the enamel phenotype in Enam+/- Ambn+/- double heterozygous mice is caused by composite digenic effects. Digenic inheritance should be explored as a cause of AI in humans.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Yuanyuan Hu
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Figen Seymen
- Department of Pedodontics, Faculty of DentistryIstanbul UniversityIstanbulTurkey
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of DentistryIstanbul UniversityIstanbulTurkey
| | - Yelda Kasimoglu
- Department of Pedodontics, Faculty of DentistryIstanbul UniversityIstanbulTurkey
| | - Shih‐Kai Wang
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMIUSA
- Department of DentistryNational Taiwan University School of DentistryTaipei CityTaiwan R.O.C.
| | - John Timothy Wright
- Department of Pediatric DentistryUniversity of North Carolina School of DentistryChapel HillNCUSA
| | - Michael W. Havel
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Chuhua Zhang
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Jung‐Wook Kim
- Department of Molecular Genetics and Department of Pediatric Dentistry and Dental Research Institute, School of DentistrySeoul National UniversitySeoulKorea
| | - James P. Simmer
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Jan C.‐C. Hu
- Department of Biologic and Materials SciencesUniversity of Michigan School of DentistryAnn ArborMIUSA
| |
Collapse
|
6
|
Shin M, Chavez MB, Ikeda A, Foster BL, Bartlett JD. MMP20 Overexpression Disrupts Molar Ameloblast Polarity and Migration. J Dent Res 2018; 97:820-827. [PMID: 29481294 DOI: 10.1177/0022034518758657] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ameloblasts responsible for enamel formation express matrix metalloproteinase 20 (MMP20), an enzyme that cleaves enamel matrix proteins, including amelogenin (AMELX) and ameloblastin (AMBN). Previously, we showed that continuously erupting incisors from transgenic mice overexpressing active MMP20 had a massive cell infiltrate present within their enamel space, leading to enamel mineralization defects. However, effects of MMP20 overexpression on mouse molars were not analyzed, although these teeth more accurately represent human odontogenesis. Therefore, MMP20-overexpressing mice ( Mmp20+/+Tg+) were assessed by multiscale analyses, combining several approaches from high-resolution micro-computed tomography to enamel organ immunoblots. During the secretory stage at postnatal day 6 (P6), Mmp20+/+Tg+ mice had a discontinuous ameloblast layer and, unlike incisors, molar P12 maturation stage ameloblasts abnormally migrated away from the enamel layer into the stratum intermedium/stellate reticulum. TOPflash assays performed in vitro demonstrated that MMP20 expression promoted β-catenin nuclear localization and that MMP20 expression promoted invasion through Matrigel-coated filters. However, for both assays, significant differences were eliminated in the presence of the β-catenin inhibitor ICG-001. This suggests that MMP20 activity promotes cell migration via the Wnt pathway. In vivo, the unique molar migration of amelogenin-expressing ameloblasts was associated with abnormal deposition of ectopic calcified nodules surrounding the adherent enamel layer. Enamel content was assessed just prior to eruption at P15. Compared to wild-type, Mmp20+/+Tg+ molars exhibited significant reductions in enamel thickness (70%), volume (60%), and mineral density (40%), and MMP20 overexpression resulted in premature cleavage of AMBN, which likely contributed to the severe defects in enamel mineralization. In addition, Mmp20+/+Tg+ mouse molar enamel organs had increased levels of inactive p-cofilin, a protein that regulates cell polarity. These data demonstrate that increased MMP20 activity in molars causes premature degradation of ameloblastin and inactivation of cofilin, which may contribute to pathological Wnt-mediated cell migration away from the enamel layer.
Collapse
Affiliation(s)
- M Shin
- 1 Fukuoka Dental College, Sawara-ku, Fukuoka, Japan
| | - M B Chavez
- 2 Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - A Ikeda
- 2 Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - B L Foster
- 2 Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - J D Bartlett
- 2 Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Boskey AL, Villarreal-Ramirez E. Intrinsically disordered proteins and biomineralization. Matrix Biol 2016; 52-54:43-59. [PMID: 26807759 DOI: 10.1016/j.matbio.2016.01.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 01/21/2023]
Abstract
In vertebrates and invertebrates, biomineralization is controlled by the cell and the proteins they produce. A large number of these proteins are intrinsically disordered, gaining some secondary structure when they interact with their binding partners. These partners include the component ions of the mineral being deposited, the crystals themselves, the template on which the initial crystals form, and other intrinsically disordered proteins and peptides. This review speculates why intrinsically disordered proteins are so important for biomineralization, providing illustrations from the SIBLING (small integrin binding N-glycosylated) proteins and their peptides. It is concluded that the flexible structure, and the ability of the intrinsically disordered proteins to bind to a multitude of surfaces is crucial, but details on the precise-interactions, energetics and kinetics of binding remain to be determined.
Collapse
Affiliation(s)
- Adele L Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY 10021, USA.
| | | |
Collapse
|
8
|
Papp T, Hollo K, Meszar-Katona E, Nagy Z, Polyak A, Miko E, Bai P, Felszeghy S. TLR signalling can modify the mineralization of tooth germ. Acta Odontol Scand 2016; 74:307-14. [PMID: 26763602 DOI: 10.3109/00016357.2015.1130853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The aim of this work is to investigate the possible role of Toll-like receptor 4 (TLR4) during the development of mouse tooth germ. TLR4 is well known to inhibit mineralization and cause inflammation in mature odontoblasts and dental pulp cells. However, unlike these pathological functions of TLR4, little is known about the developmental function(s) of TLR4 during tooth development. MATERIALS AND METHODS TLR4 expression was studied via Western blot in developing lower mouse incisors from E13.5 to E18.5. To generate functional data about the effects of TLR4, a specific agonist (LPS) was applied to the medium of in vitro tooth germ cultures, followed by Western blot, histochemical staining, ELISA assay, in situ hybridization and RT-qPCR. RESULTS Increased accumulation of biotin-labelled LPS was detected in the enamel organ and in preodontoblasts. LPS treatment induced degradation of the inhibitor molecule (IκB) of the NF-κB signalling pathway. However, no morphological alterations were detected in cultured tissue after LPS addition at the applied dosage. Activation of TLR4 inhibited the mineralization of enamel and dentin, as demonstrated by alizarin red staining and as decreased levels of collagen type X. mRNA expression of ameloblastin was elevated after LPS administration. CONCLUSION These results demonstrate that TLR4 may decrease the mineralization of hard tissues of the tooth germ and may trigger the maturation of ameloblasts; it can give valuable information to understand better congenital tooth abnormalities.
Collapse
Affiliation(s)
- Tamas Papp
- a Department of Anatomy, Histology and Embryology; Faculty of Medicine , University of Debrecen , Debrecen , Hungary
| | - Krisztina Hollo
- a Department of Anatomy, Histology and Embryology; Faculty of Medicine , University of Debrecen , Debrecen , Hungary
| | - Eva Meszar-Katona
- a Department of Anatomy, Histology and Embryology; Faculty of Medicine , University of Debrecen , Debrecen , Hungary
| | - Zoltan Nagy
- a Department of Anatomy, Histology and Embryology; Faculty of Medicine , University of Debrecen , Debrecen , Hungary
| | - Angela Polyak
- a Department of Anatomy, Histology and Embryology; Faculty of Medicine , University of Debrecen , Debrecen , Hungary
| | - Edit Miko
- b Department of Medical Chemistry , University of Debrecen , Debrecen , Hungary
- c MTA-DE Lendület Laboratory of Cellular Metabolism Research Group , Debrecen , Hungary
- d Research Center for Molecular Medicine, University of Debrecen , Debrecen , Hungary
| | - Peter Bai
- b Department of Medical Chemistry , University of Debrecen , Debrecen , Hungary
- c MTA-DE Lendület Laboratory of Cellular Metabolism Research Group , Debrecen , Hungary
- d Research Center for Molecular Medicine, University of Debrecen , Debrecen , Hungary
| | - Szabolcs Felszeghy
- a Department of Anatomy, Histology and Embryology; Faculty of Medicine , University of Debrecen , Debrecen , Hungary
- e Department of Oral Anatomy, Faculty of Dentistry , University of Debrecen , Debrecen , Hungary
| |
Collapse
|