1
|
Agyeman-Prempeh NO, Maas H, Burchell GL, Millar NL, Moen MH, Smit TH. Treatment options for Achilles tendinopathy: a scoping review of preclinical studies. PeerJ 2025; 13:e18143. [PMID: 39807157 PMCID: PMC11727660 DOI: 10.7717/peerj.18143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 01/16/2025] Open
Abstract
Background Achilles tendinopathy (AT) management can be difficult, given the paucity of effective treatment options and the degenerative nature of the condition. Innovative therapies for Achilles tendinopathy are therefore direly needed. New therapeutic developments predominantly begin with preclinical animal and in vitro studies to understand the effects at the molecular level and to evaluate toxicity. Despite the publication of many preclinical studies, a comprehensive, quality-assessed review of the basic molecular mechanisms in Achilles tendinopathy is lacking. Objectives This scoping review aims to summarize the literature regarding in vitro and in vivo animal studies examining AT treatments and evaluate their effect on tendon properties. Also, a quality assessment of the included animal studies is done. We provide a comprehensive insight into the current state of preclinical AT treatment research which may guide preclinical researchers in future research. Eligibility criteria Treatment options of Achilles tendinopathy in chemically or mechanically induced in vivo or in vitro Achilles tendinopathy models, reporting biomechanical, histological, and/or biochemical outcomes were included. Sources of evidence A systematically conducted scoping review was performed in PubMed, Embase.com, Clarivate Analytics/Web of Science, and the Wiley/Cochrane Library. Studies up to May 4, 2023 were included. Charting Methods Data from the included articles were extracted and categorized inductively in tables by one reviewer. The risk-of-bias quality assessment of the included animal studies is done with Systematic Review Centre for Laboratory Animal Experimentation risk-of-bias tool. Results A total of 98 studies is included, which investigated 65 different treatment options. 80% of studies reported significant improvement in the Achilles tendon characteristics after treatment. The main results were; maximum load and stiffness improvement; fibre structure recovered and less inflammation was observed; collagen I fibrils increased, collagen III fibrils decreased, and fewer inflammatory cells were observed after treatment. However, 65.4% to 92.5% of the studies had an uncertain to high risk of bias according to the risk-of-bias tool of the Systematic Review Centre for Laboratory Animal Experimentation. Conclusions Despite promising preclinical treatment outcomes, translation to clinical practice lags behind. This may be due to the poor face validity of animal models, heterogeneity in Achilles tendinopathy induction, and low quality of the included studies. Preclinical treatments that improved the biomechanical, histological, and biochemical tendon properties may be interesting for clinical trial investigation. Future efforts should focus on developing standardized preclinical Achilles tendinopathy models, improving reporting standards to minimize risk of bias, and facilitating translation to clinical practice.
Collapse
Affiliation(s)
- Nathanael Opoku Agyeman-Prempeh
- University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department Orthopedic Surgery and Sports Medicine, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Huub Maas
- Amsterdam Movement Sciences, Amsterdam, Netherlands
- VU University Amsterdam, Amsterdam, Noord-Holland, Netherlands
| | | | - Neal L. Millar
- University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Maarten H. Moen
- Department of Sports Medicine, Bergman Clinics, Naarden, the Netherlands, Unaffliated, Naarden, Netherlands
- High-Performance Team, Dutch National Olympic Committee & National Sports Federation, Arnhem, Netherlands
| | - Theodoor Henri Smit
- University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department Orthopedic Surgery and Sports Medicine, Amsterdam University Medical Centre, Amsterdam, Netherlands
- VU University Amsterdam, Amsterdam, Noord-Holland, Netherlands
| |
Collapse
|
2
|
Ramos-Barbero M, Pérez-Jiménez A, Serrano-Carmona S, Mokhtari K, Lupiáñez JA, Rufino-Palomares EE. The Efficacy of Intratissue Percutaneous Electrolysis (EPI ®) and Nutritional Factors for the Treatment of Induced Tendinopathy in Wistar Rats: Hepatic Intermediary Metabolism Effects. Int J Mol Sci 2024; 25:7315. [PMID: 39000426 PMCID: PMC11242821 DOI: 10.3390/ijms25137315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Achilles tendinopathy (TP) is characterized as the third most common disease of the musculoskeletal system, and occurs in three phases. There is currently no evidence of effective treatment for this medical condition. In this study, the modulatory effects of the minimally invasive technique intratissue percutaneous electrolysis (EPI) and combinations of EPI with four nutritional factors included in the diet, hydroxytyrosol (HT), maslinic acid (MA), glycine, and aspartate (AA), on hepatic intermediary metabolism was examined in Wistar rats with induced tendinopathy at various stages of TP. Results obtained showed that induced tendinopathy produced alterations in the liver intermediary metabolisms of the rats. Regarding carbohydrate metabolism, a reduction in the activity of pro-inflammatory enzymes in the later stages of TP was observed following treatment with EPI alone. Among the combined treatments using nutritional factors with EPI, HT+EPI and AA+EPI had the greatest effect on reducing inflammation in the late stages of TP. In terms of lipid metabolism, the HT+EPI and AA+EPI groups showed a decrease in lipogenesis. In protein metabolism, the HT+EPI group more effectively reduced the inflammatory effects of induced TP. Treatment with EPI combined with nutritional factors might help regulate intermediary metabolism in TP disease and reduce the inflammation process.
Collapse
Affiliation(s)
- Marta Ramos-Barbero
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Amalia Pérez-Jiménez
- Department of Zoology, Faculty of Science, University of Granada, 18071 Granada, Spain
| | | | - Khalida Mokhtari
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - José Antonio Lupiáñez
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Eva E Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain
| |
Collapse
|
3
|
Liu J, Wang W, Wang Z, Wu Q, Zhu Y, Wu W, Zhou Q. The Association between Dietary Habits and Rapid Postoperative Recovery of Rotator Cuff Repair. Nutrients 2023; 15:4587. [PMID: 37960241 PMCID: PMC10648498 DOI: 10.3390/nu15214587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Some nutritional factors have been suggested to improve postoperative outcomes in rotator cuff (RC) repair, but dietary effects on the recovery speed after the surgery remain undefined. To investigate the potential roles of dietary habits in this context, we analyzed the 12-month follow-up data of 55 patients with RC repair and found that these patients could be categorized into a rapid recovery group (n = 35) and slow recovery group (n = 20) according to their postoperative recovery patterns. Group-based logistic analysis revealed that habitual intakes of meat (OR = 1.84, 95%CI, 1.22-2.76, p = 0.003), fruits (OR = 2.33, 95%CI, 1.26-5.67, p = 0.01), and wheat-flour foods (OR = 1.62, 95%CI, 1.2-2.25, p = 0.002) were significantly associated with rapid recovery. Moreover, among all intakes of wheat-flour foods, intakes of steamed and boiled flour products were also associated with rapid recovery. Further mediation analysis showed that eosinophilic granulocytes (EOs) significantly mediated the association between rapid RC recovery and the habitual intakes of meat (mediation proportion = 17.5%, P-mediation < 0.0001), fruits (17.9%, p < 0.0001), and wheat-flour foods (11.4%, p < 0.0001). Thus, our study suggests that certain dietary habits play beneficial roles in the context of postoperative recovery for RC repair.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China; (J.L.); (W.W.); (Y.Z.)
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China; (Z.W.); (Q.W.)
- Rugao Research Institute of Longevity and Aging, Fudan University, Rugao 226500, China
| | - Wei Wang
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China; (J.L.); (W.W.); (Y.Z.)
| | - Zhifeng Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China; (Z.W.); (Q.W.)
- Rugao Research Institute of Longevity and Aging, Fudan University, Rugao 226500, China
| | - Qingyun Wu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China; (Z.W.); (Q.W.)
- Rugao Research Institute of Longevity and Aging, Fudan University, Rugao 226500, China
| | - Yunli Zhu
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China; (J.L.); (W.W.); (Y.Z.)
| | - Weicheng Wu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China; (Z.W.); (Q.W.)
- Rugao Research Institute of Longevity and Aging, Fudan University, Rugao 226500, China
| | - Qi Zhou
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China; (J.L.); (W.W.); (Y.Z.)
| |
Collapse
|
4
|
Dang R, Chen L, Sefat F, Li X, Liu S, Yuan X, Ning X, Zhang YS, Ji P, Zhang X. A Natural Hydrogel with Prohealing Properties Enhances Tendon Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105255. [PMID: 35304821 DOI: 10.1002/smll.202105255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Tendon regeneration and reduction of peritendinous adhesion remain major clinical challenges. This study addresses these challenges by adopting a unique hydrogel derived from the skin secretion of Andrias davidianus (SSAD) and taking advantage of its biological effects, adhesiveness, and controllable microstructures. The SSAD-derived hydrogel contains many cytokines, which could promote tendon healing. In vitro, leach liquid of SSAD powder could promote tendon stem/progenitor cells migration. In vivo, the SSAD-derived hydrogel featuring double layers possesses strong adhesiveness and could reconnect ruptured Achilles tendons of Sprague-Dawley rats without suturing. The intimal SSAD-derived hydrogel, with a pore size of 241.7 ± 21.0 µm, forms the first layer of the hydrogel to promote tendon healing, and the outer layer SSAD-derived hydrogel, with a pore size of 3.3 ± 1.4 µm, reducing peritendinous adhesion by serving as a dense barrier. Additionally, the SSAD-derived hydrogel exhibits antioxidant and antibacterial characteristics, which further contribute to the reduction of peritendinous adhesion. In vivo studies suggest that the SSAD-derived hydrogel reduces peritendinous adhesion, increases collagen fiber deposition, promotes cell proliferation, and improves the biomechanical properties of the regenerated tendons, indicating better functional restoration. The SSAD-derived bilayer hydrogel may be a feasible biomaterial for tendon repair in the future.
Collapse
Affiliation(s)
- Ruyi Dang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Liling Chen
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Farshid Sefat
- Interdisciplinary Research Centre in Polymer Science and Technology (Polymer IRC), University of Bradford, Bradford, BD7 1DP, UK
- Biomedical and Electronics Engineering Department, School of Engineering, University of Bradford, Bradford, BD7 1DP, UK
| | - Xian Li
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Shilin Liu
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Xulei Yuan
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Xiaoqiao Ning
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ping Ji
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| |
Collapse
|
5
|
Wang F, Shan H, Song G, Chen S, Zhang C, Liu Y, Wu T. 17β-Estradiol attenuates inflammation and tendon degeneration in a rat model of Achilles tendinitis. Immunopharmacol Immunotoxicol 2022; 44:556-564. [PMID: 35404181 DOI: 10.1080/08923973.2022.2065639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/09/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION 17β-Estradiol (E2) is an immune-regulatory agent with anti-inflammatory effects. However, it is still unknown whether E2 exerts pharmacological properties against Achilles tendinitis (AT). This study aims to investigate the effects of E2 on AT and its underlying mechanisms. MATERIALS AND METHODS The established model of Achilles tendinitis was intraperitoneally injected with E2 (10, 20, or 30 μg/kg/d). After 8 weeks, biomechanical properties of the Achilles tendon were determined. Hydroxyproline content and tendon degeneration-related biomarkers were determined. The levels of inflammatory cytokines and apoptotic-related biomarkers in tendon tissues were determined. Furthermore, western blotting was determined to detect the expressions of ER-α and the PI3K/Akt pathway in tendon tissues. RESULTS E2 relieved AT-related symptoms in a dose-dependent manner. E2 ameliorated tendon degeneration by regulating tendon degeneration-related biomarkers (e.g. collagen types I and III, Decorin (DCN), and tenascin-C). Besides, treatment with E2 suppressed inflammatory cytokines and increased anti-inflammatory cytokines. Treatment with E2 also regulated cell apoptosis in tendon tissues. The underlying mechanism study revealed that treatment with E2 activated ER-α and upregulated the PI3K/Akt pathway. CONCLUSION The regulatory effects of E2 on inflammation and tendon degeneration in a rat model of AT were associated with the ER-α and the PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Feng Wang
- Department of Orthopaedical Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Haojie Shan
- Department of Orthopaedical Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guoxun Song
- Department of Orthopaedical Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Song Chen
- Department of Orthopaedical Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chengyuan Zhang
- Department of Orthopaedical Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yingjie Liu
- Department of Orthopaedical Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tianyi Wu
- Department of Orthopaedical Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
6
|
Modulation of Inflammation by Plant-Derived Nutraceuticals in Tendinitis. Nutrients 2022; 14:nu14102030. [PMID: 35631173 PMCID: PMC9143056 DOI: 10.3390/nu14102030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
Tendinitis (tendinopathy) is a pro-inflammatory and painful tendon disease commonly linked with mechanical overuse and associated injuries, drug abuse, and lifestyle factors (including poor diet and physical inactivity) that causes significant healthcare expenditures due to its high incidence. Nuclear factor kappa B (NF-κB) is one of the major pro-inflammatory transcription factors, along with other inflammation signaling pathways, triggered by a variety of stimuli, including cytokines, endotoxins, physical and chemical stressors, hypoxia, and other pro-inflammatory factors. Their activation is known to regulate the expression of a multitude of genes involved in inflammation, degradation, and cell death. The pathogenesis of tendinitis is still poorly understood, whereas efficient and sustainable treatment is missing. Targeting drug suppression of the key inflammatory regulators represents an effective strategy for tendinitis therapy, but requires a comprehensive understanding of their principles of action. Conventional monotherapies are often ineffective and associated with severe side effects in patients. Therefore, agents that modulate multiple cellular targets represent therapeutic treatment potential. Plant-derived nutraceuticals have been shown to act as multi-targeting agents against tendinitis via various anti-oxidant and anti-inflammatory mechanisms, whereat they were able to specifically modulate numerous signaling pathways, including NF-κB, p38/MAPK, JNK/STAT3, and PI3K/Akt, thus down-regulating inflammatory processes. This review discusses the utility of herbal nutraceuticals that have demonstrated safety and tolerability as anti-inflammatory agents for the prevention and treatment of tendinitis through the suppression of catabolic signaling pathways. Limitations associated with the use of nutraceuticals are also described.
Collapse
|
7
|
Nutritional Considerations for Injury Prevention and Recovery in Combat Sports. Nutrients 2021; 14:nu14010053. [PMID: 35010929 PMCID: PMC8746600 DOI: 10.3390/nu14010053] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Sports participation is not without risk, and most athletes incur at least one injury throughout their careers. Combat sports are popular all around the world, and about one-third of their injuries result in more than 7 days of absence from competition or training. The most frequently injured body regions are the head and neck, followed by the upper and lower limbs, while the most common tissue types injured are superficial tissues and skin, followed by ligaments and joint capsules. Nutrition has significant implications for injury prevention and enhancement of the recovery process due to its effect on the overall physical and psychological well-being of the athlete and improving tissue healing. In particular, amino acid and protein intake, antioxidants, creatine, and omega-3 are given special attention due to their therapeutic roles in preventing muscle loss and anabolic resistance as well as promoting injury healing. The purpose of this review is to present the roles of various nutritional strategies in reducing the risk of injury and improving the treatment and rehabilitation process in combat sports. In this respect, nutritional considerations for muscle, joint, and bone injuries as well as sports-related concussions are presented. The injury risk associated with rapid weight loss is also discussed. Finally, preoperative nutrition and nutritional considerations for returning to a sport after rehabilitation are addressed.
Collapse
|
8
|
Mlyniec A, Dabrowska S, Heljak M, Weglarz WP, Wojcik K, Ekiert-Radecka M, Obuchowicz R, Swieszkowski W. The dispersion of viscoelastic properties of fascicle bundles within the tendon results from the presence of interfascicular matrix and flow of body fluids. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112435. [PMID: 34702520 DOI: 10.1016/j.msec.2021.112435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 01/12/2023]
Abstract
In this work, we investigate differences in the mechanical and structural properties of tendon fascicle bundles dissected from different areas of bovine tendons. The properties of tendon fascicle bundles were investigated by means of uniaxial tests with relaxation periods and hysteresis, dynamic mechanical analysis (DMA), as well as magnetic resonance imaging (MRI). Uniaxial tests with relaxation periods revealed greater elastic modulus, hysteresis, as well as stress drop during the relaxation of samples dissected from the posterior side of the tendon. However, the normalized stress relaxation curves did not show a statistically significant difference in the stress drop between specimens cut from different zones or between different strain levels. Using dynamic mechanical analysis, we found that fascicle bundles dissected from the anterior side of the tendon had lower storage and loss moduli, which could result from altered fluid flow within the interfascicular matrix (IFM). The lower water content, diffusivity, and higher fractional anisotropy of the posterior part of the tendon, as observed using MRI, indicates a different structure of the IFM, which controls the flow of fluids within the tendon. Our results show that the viscoelastic response to dynamic loading is correlated with fluid flow within the IFM, which was confirmed during analysis of the MRI results. In contrast to this, the long-term relaxation of tendon fascicle bundles is controlled by viscoplasticity of the IFM and depends on the spatial distribution of the matrix within the tendon. Comparison of results from tensile tests, DMA, and MRI gives new insight into tendon mechanics and the role of the IFM. These findings may be useful in improving the diagnosis of tendon injury and effectiveness of medical treatments for tendinopathies.
Collapse
Affiliation(s)
- Andrzej Mlyniec
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland.
| | - Sylwia Dabrowska
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland
| | - Marcin Heljak
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland
| | | | - Kaja Wojcik
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland
| | - Martyna Ekiert-Radecka
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland
| | - Rafal Obuchowicz
- Jagiellonian University Collegium Medicum, Department of Radiology, Krakow, Poland
| | - Wojciech Swieszkowski
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland
| |
Collapse
|
9
|
Nutrition for the Prevention and Treatment of Injuries in Track and Field Athletes. Int J Sport Nutr Exerc Metab 2019; 29:189-197. [PMID: 30676133 DOI: 10.1123/ijsnem.2018-0290] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Injuries are an inevitable consequence of athletic performance with most athletes sustaining one or more during their athletic careers. As many as one in 12 athletes incur an injury during international competitions, many of which result in time lost from training and competition. Injuries to skeletal muscle account for over 40% of all injuries, with the lower leg being the predominant site of injury. Other common injuries include fractures, especially stress fractures in athletes with low energy availability, and injuries to tendons and ligaments, especially those involved in high-impact sports, such as jumping. Given the high prevalence of injury, it is not surprising that there has been a great deal of interest in factors that may reduce the risk of injury, or decrease the recovery time if an injury should occur: One of the main variables explored is nutrition. This review investigates the evidence around various nutrition strategies, including macro- and micronutrients, as well as total energy intake, to reduce the risk of injury and improve recovery time, focusing upon injuries to skeletal muscle, bone, tendons, and ligaments.
Collapse
|
10
|
Vieira CP, Viola M, Carneiro GD, D'Angelo ML, Vicente CP, Passi A, Pimentel ER. Glycine improves the remodeling process of tenocytes in vitro. Cell Biol Int 2018; 42:804-814. [PMID: 29345399 DOI: 10.1002/cbin.10937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/13/2018] [Indexed: 01/07/2023]
Abstract
Tendinitis changes the biochemical and morphological properties of the tendon, promoting an increase of activity of metalloproteinases and disorganization of collagen bundles. Tenocytes, the primary cells in tendon, are scattered throughout the collagenic fibers, and are responsible of tendon remodeling and tissue repair in pathological condition. In vivo, glycine, component of the typical Gly-X-Y collagen tripeptide, showed beneficial effects in biochemical and biomechanical properties of Achilles tendon with tendinitis. In this study, we analyzed the effect of glycine in tenocytes subjected to inflammation. Tenocytes from Achilles tendon of rats were treated with TNF-α (10 ng/mL) with and without previous treatment with glycine (20 mM). Cell proliferation and migration were evaluated, as well as the expression of matrix molecules such as glycosaminoglycans, metalloproteinases (MMPs), TIMPs, and collagen I. Glycine can revert the inflammation due to the action of TNF-α by controlling the MMPs quantity and activity. These data indicated that the molecules involved to remodeling process of extracellular matrix are modulated both by TNF-α and the availability of collagen precursors; in fact, this study indicates the glycine can be useful for treatment of inflammation and for modulating tenocytes metabolism in tendons.
Collapse
Affiliation(s)
- Cristiano Pedrozo Vieira
- Department of Pharmacology, State University of Campinas, 13083-863 CP 6109, Campinas, São Paulo, Brazil
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, Varese, 21100, Italy
| | - Giane Daniela Carneiro
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-863 CP 6109, Campinas, São Paulo, Brazil
| | - Maria Luisa D'Angelo
- Department of Medicine and Surgery, University of Insubria, Varese, 21100, Italy
| | - Cristina Pontes Vicente
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-863 CP 6109, Campinas, São Paulo, Brazil
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, 21100, Italy
| | - Edson Rosa Pimentel
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-863 CP 6109, Campinas, São Paulo, Brazil
| |
Collapse
|
11
|
Gong F, Cui L, Zhang X, Zhan X, Gong X, Wen Y. Piperine ameliorates collagenase-induced Achilles tendon injury in the rat. Connect Tissue Res 2018; 59:21-29. [PMID: 28165813 DOI: 10.1080/03008207.2017.1289188] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tendinopathy is a common clinical pathology found in athletes and workers with mixed treatment results. Piperine, a major alkaloid found in the black and long pepper, has been demonstrated to have variety of pharmacological properties such as analgesic and anti-inflammatory effects. The present study was designed to investigate the effects of piperine on collagenase-induced Achilles tendon injury. Rats were intratendineously injected with collagenase in the right Achilles tendon, followed by intragastrical administration of piperine (100 mg/kg). Morphological structure and biochemical analysis of glycosaminoglycans, hydroxyproline, collagen III, and the activity of matrix metallopeptidases in the tendon tissues were performed. Our results showed that collagenase injection resulted in clear degenerative changes in the tendon. Administration of piperine improved the morphological structure of tendon, increased glycosaminoglycans and hydroxyproline levels, and inhibited the expression and activities of MMP-2 and MMP-9. Furthermore, piperine inhibited the activation of ERK and p38 signaling pathways in injured tendon. These results indicate a beneficial role of piperine against collagenase-induced tendon injury.
Collapse
Affiliation(s)
- Fengyan Gong
- a Department of Gynaecology and Obstetrics , The First Hospital of Jilin University , Changchun , China
| | - Lifeng Cui
- a Department of Gynaecology and Obstetrics , The First Hospital of Jilin University , Changchun , China
| | - Xiaona Zhang
- b Department of Anesthesiology , The First Hospital of Jilin University , Changchun , China
| | - Xiangbo Zhan
- c Department of Gynaecology and Obstetrics , Qingyuan People's Hospital , Qingyuan , China
| | - Xu Gong
- d Department of Hand and Foot Surgery , The First Hospital of Jilin University , Changchun , China
| | - Yan Wen
- a Department of Gynaecology and Obstetrics , The First Hospital of Jilin University , Changchun , China
| |
Collapse
|
12
|
McCarty MF, O'Keefe JH, DiNicolantonio JJ. Dietary Glycine Is Rate-Limiting for Glutathione Synthesis and May Have Broad Potential for Health Protection. Ochsner J 2018; 18:81-87. [PMID: 29559876 PMCID: PMC5855430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Glutathione is a key scavenging antioxidant that opposes the proinflammatory signaling of hydrogen peroxide. Boosting cellular glutathione levels may have broad utility in the prevention and treatment of disorders driven by oxidative stress. Supplemental N-acetylcysteine has been employed for this purpose. Could supplemental glycine likewise promote glutathione synthesis? METHODS We conducted a review of the pertinent literature using PubMed. RESULTS Tissue glycine levels are lower than the glutathione synthase Michaelis constant (Km) for glycine. When glycine availability is too low to sustain a normal rate of glutathione synthesis, the consequent rise in tissue levels of gamma-glutamylcysteine leads to an increase in urinary excretion of its alternative metabolite 5-L-oxoproline. The fact that urinary excretion of this metabolite is elevated in vegetarians and others consuming relatively low-protein diets strongly suggests that dietary glycine can be rate-limiting for glutathione synthesis in normally fed humans. Moreover, supplemental glycine has been reported to increase tissue glutathione levels in several animal studies. Glycine is a biosynthetic precursor for porphyrins, purines, creatine, sarcosine, and bile salts; is an agonist for glycine-gated chloride channels and a coagonist for N-methyl-D-aspartate receptors; inhibits protein glycation; and increases hepatic production of pyruvate, an effective scavenger of hydrogen peroxide. Supplemental glycine may have the potential for improving endothelial function, preventing cardiac hypertrophy, aiding control of metabolic syndrome, preventing the complications of diabetes, dampening inflammation, protecting the liver, and promoting effective sleep. CONCLUSION Clinical research is warranted to evaluate the impact of supplemental glycine on glutathione levels and on various health disorders.
Collapse
Affiliation(s)
| | - James H. O'Keefe
- Department of Cardiology, Mid America Heart Institute, Saint Luke's Health System, Kansas City, MO
| | - James J. DiNicolantonio
- Department of Cardiology, Mid America Heart Institute, Saint Luke's Health System, Kansas City, MO
| |
Collapse
|