1
|
Sharma S, Garg A, Agrawal R, Chopra H, Pathak D. A Comprehensive Review on Niosomes as a Tool for Advanced Drug Delivery. Pharm Nanotechnol 2024; 12:206-228. [PMID: 37496251 DOI: 10.2174/2211738511666230726154557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023]
Abstract
Over the past few decades, advancements in nanocarrier-based therapeutic delivery have been significant, and niosomes research has recently received much interest. The self-assembled nonionic surfactant vesicles lead to the production of niosomes. The most recent nanocarriers, niosomes, are self-assembled vesicles made of nonionic surfactants with or without the proper quantities of cholesterol or other amphiphilic molecules. Because of their durability, low cost of components, largescale production, simple maintenance, and high entrapment efficiency, niosomes are being used more frequently. Additionally, they enhance pharmacokinetics, reduce toxicity, enhance the solubility of poorly water-soluble compounds, & increase bioavailability. One of the most crucial features of niosomes is their controlled release and targeted diffusion, which is utilized for treating cancer, infectious diseases, and other problems. In this review article, we have covered all the fundamental information about niosomes, including preparation techniques, niosomes types, factors influencing their formation, niosomes evaluation, applications, and administration routes, along with recent developments.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Akash Garg
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Rutvi Agrawal
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Himansu Chopra
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Devender Pathak
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| |
Collapse
|
2
|
Shah S, Patel V. Targeting posterior eye infections with colloidal carriers: The case of Ganciclovir. Int J Pharm 2023; 645:123427. [PMID: 37729977 DOI: 10.1016/j.ijpharm.2023.123427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/09/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
The ocular system, unlike any other human body organ, is a system in which foreign bodies appear quite defenceless in front of the eye. Several infections of the ocular system occur due to various opportunistic conditions. Cytomegalovirus (CMV) is one of the opportunivores that causes several posterior eye infections. Ganciclovir (GCV),9-(2-hydroxy-1-(hydroxymethyl) ethoxymethyl), is aguanine-antiviral agent primarily used to treat CMV diseases. However, the major challenge is of lower bioavailability. Hence, GCV must be dosed repeatedly to enhance drug absorption. but this causes side effects like neutropenia and bone marrow suppression. So, formulators have used alternative formulation strategies such as prodrug formulation and colloidal drug delivery systems. In the prodrug strategy, they attempted to bind various compounds into the parent drug to increase the permeability and bioavailability of GCV. In colloidal drug delivery systems, mucoadhesive microspheres, nanoparticles, Niosome and liposome were employed to extend the drug residence time at the application site. This paper discusses several colloidal carriers combined with GCV to treat opportunistic CMV infection in the posterior ocular system. It reviews the limitations of conventional ocular therapy and explores various novel formulation approaches to improve the ocular bioavailability of GCV in the posterior chamber of the eye.
Collapse
Affiliation(s)
- Srushti Shah
- Parul Institute of Pharmacy, ParulUniversity, Gujarat 391760, India.
| | - Vandana Patel
- Krishna School of Pharmacy and Research, KPGU, Gujarat 391240, India
| |
Collapse
|
3
|
Raj A, Dua K, Nair RS, Sarath Chandran C, Alex AT. Transethosome: An ultra-deformable ethanolic vesicle for enhanced transdermal drug delivery. Chem Phys Lipids 2023; 255:105315. [PMID: 37356610 DOI: 10.1016/j.chemphyslip.2023.105315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Drug delivery through the skin improves solubility, bioavailability, and unwanted systemic side effects of the drug. The selection of a suitable carrier is a challenging process. The conventional lipid vesicles have some limitations. They deliver the drug in the stratum corneum and have poor colloidal stability. Here comes the need for ultra-deformable lipid vesicles to provide the drug beyond the stratum corneum. Transethosomes are novel ultra-deformable vesicles that can deliver drugs into deeper tissues. The composition of transethosomes includes phospholipid, ethanol and surfactants. Each ingredient has a pivotal role in the properties of the carrier. This review covers the design, preparation method, characterisation, and characteristics of the novel vesicle. Also, we cover the impact of surfactants on vesicular properties and the skin permeation behaviour of novel vesicles.
Collapse
Affiliation(s)
- Alan Raj
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Rajesh Sreedharan Nair
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - C Sarath Chandran
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Government Medical College Kannur, Pariyaram, Kerala, India
| | - Angel Treasa Alex
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
4
|
Eid RK, Arafa MF, Ashour DS, Essa EA, El-Wakil ES, Younis SS, El Maghraby GM. Surfactant vesicles for enhanced antitoxoplasmic effect of norfloxacin: in vitro and in vivo evaluations. Int J Pharm 2023; 638:122912. [PMID: 37015296 DOI: 10.1016/j.ijpharm.2023.122912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/06/2023]
Abstract
The goal was to scrutinize niosomes as potential carriers for enhanced efficacy of norfloxacin against Toxoplasma gondii RH strain. This was assessed in vitro and in vivo. Standard niosomes of Span 60 and cholesterol were prepared. Gelucire 48/16 or Tween 80 was incorporated as hydrophilic fluidizer. The prepared vesicles were characterized for shape, size, viscosity and norfloxacin release. The in vitro anti-Toxoplasma was assessed by monitoring tachyzoites viability after incubation with niosomes. In vivo efficacy of niosomes encapsulated norfloxacin was evaluated on infected mice. Transmission electron micrographs showed nano-sized spherical vesicles. Norfloxacin release varied with niosomal composition to show faster liberation in presence of fluidizing agent. The half maximum effective concentration of norfloxacin against tachyzoites (EC50) was significantly reduced after niosomal encapsulation compared with simple drug solution with no significant difference between vesicular formulations. Tachyzoite count in the peritoneal fluid of infected mice was reduced by 45.2, 90.8, 88.3 and 84% after treatment with simple drug dispersion, standard niosomes, Gelucire containing and Tween containing vesicles, respectively compared to infected untreated mice. These results correlate with the in vitro data and reflects the efficacy of niosomes. The study introduced surfactant vesicles as a tool for enhanced efficacy of norfloxacin against toxoplasma.
Collapse
Affiliation(s)
- Rania K Eid
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Mona F Arafa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Dalia S Ashour
- Department of Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Ebtessam A Essa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Eman S El-Wakil
- Department of Parasitology, Theodor Bilharz Research Institute, Kornaish El-Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza, 12411, Egypt.
| | - Salwa S Younis
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt.
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
5
|
Moghtaderi M, Sedaghatnia K, Bourbour M, Fatemizadeh M, Salehi Moghaddam Z, Hejabi F, Heidari F, Quazi S, Farasati Far B. Niosomes: a novel targeted drug delivery system for cancer. Med Oncol 2022; 39:240. [PMID: 36175809 DOI: 10.1007/s12032-022-01836-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/27/2022] [Indexed: 10/25/2022]
Abstract
Recently, nanotechnology is involved in various fields of science, of which medicine is one of the most obvious. The use of nanoparticles in the process of treating and diagnosing diseases has created a novel way of therapeutic strategies with effective mechanisms of action. Also, due to the remarkable progress of personalized medicine, the effort is to reduce the side effects of treatment paths as much as possible and to provide targeted treatments. Therefore, the targeted delivery of drugs is important in different diseases, especially in patients who receive combined drugs, because the delivery of different drug structures requires different systems so that there is no change in the drug and its effectiveness. Niosomes are polymeric nanoparticles that show favorable characteristics in drug delivery. In addition to biocompatibility and high absorption, these nanoparticles also provide the possibility of reducing the drug dosage and targeting the release of drugs, as well as the delivery of both hydrophilic and lipophilic drugs by Niosome vesicles. Since various factors such as components, preparation, and optimization methods are effective in the size and formation of niosomal structures, in this review, the characteristics related to niosome vesicles were first examined and then the in silico tools for designing, prediction, and optimization were explained. Finally, anticancer drugs delivered by niosomes were compared and discussed to be a suitable model for designing therapeutic strategies. In this research, it has been tried to examine all the aspects required for drug delivery engineering using niosomes and finally, by presenting clinical examples of the use of these nanocarriers in cancer, its clinical characteristics were also expressed.
Collapse
Affiliation(s)
- Maryam Moghtaderi
- Department of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Kamand Sedaghatnia
- Department of Applied Chemistry, Azad University of Tehran South Branch, Tehran, Iran
| | - Mahsa Bourbour
- Department of Biotechnology, Alzahra University, Tehran, Iran
| | - Mahdi Fatemizadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi Moghaddam
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Faranak Hejabi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Fatemeh Heidari
- Department of Cellular and Molecular Biology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore, Karnataka, India.
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge, UK.
- Clinical Bioinformatics, School of Health Sciences, The University of Manchester, Manchester, UK.
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
6
|
Shah S, Chougule MB, Kotha AK, Kashikar R, Godugu C, Raghuvanshi RS, Singh SB, Srivastava S. Nanomedicine based approaches for combating viral infections. J Control Release 2021; 338:80-104. [PMID: 34375690 PMCID: PMC8526416 DOI: 10.1016/j.jconrel.2021.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Millions of people die each year from viral infections across the globe. There is an urgent need to overcome the existing gap and pitfalls of the current antiviral therapy which include increased dose and dosing frequency, bioavailability challenges, non-specificity, incidences of resistance and so on. These stumbling blocks could be effectively managed by the advent of nanomedicine. Current review emphasizes over an enhanced understanding of how different lipid, polymer and elemental based nanoformulations could be potentially and precisely used to bridle the said drawbacks in antiviral therapy. The dawn of nanotechnology meeting vaccine delivery, role of RNAi therapeutics in antiviral treatment regimen, various regulatory concerns towards clinical translation of nanomedicine along with current trends and implications including unexplored research avenues for advancing the current drug delivery have been discussed in detail.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mahavir Bhupal Chougule
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS, USA; Department Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Arun K Kotha
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS, USA; Department Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Rama Kashikar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS, USA; Department Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Chandraiah Godugu
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
7
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021; 90:895-1107. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interest in functional supramolecular systems for the design of innovative materials and technologies, able to fundamentally change the world, is growing at a high pace. The huge array of publications that appeared in recent years in the global literature calls for systematization of the structural trends inherent in the formation of these systems revealed at different molecular platforms and practically useful properties they exhibit. The attention is concentrated on the topics related to functional supramolecular systems that are actively explored in institutes and universities of Russia in the last 10–15 years, such as the chemistry of host–guest complexes, crystal engineering, self-assembly and self-organization in solutions and at interfaces, biomimetics and molecular machines and devices.The bibliography includes 1714 references.
Collapse
|
8
|
An illustrated review on nonionic surfactant vesicles (niosomes) as an approach in modern drug delivery: Fabrication, characterization, pharmaceutical, and cosmetic applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102234] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Sita V, Jadhav D, Vavia P. Niosomes for nose-to-brain delivery of bromocriptine: Formulation development, efficacy evaluation and toxicity profiling. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Chen S, Hanning S, Falconer J, Locke M, Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm 2019; 144:18-39. [PMID: 31446046 DOI: 10.1016/j.ejpb.2019.08.015] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 01/17/2023]
Abstract
Development of nanocarriers for drug delivery has received considerable attention due to their potential in achieving targeted delivery to the diseased site while sparing the surrounding healthy tissue. Safe and efficient drug delivery has always been a challenge in medicine. During the last decade, a large amount of interest has been drawn on the fabrication of surfactant-based vesicles to improve drug delivery. Niosomes are self-assembled vesicular nano-carriers formed by hydration of non-ionic surfactant, cholesterol or other amphiphilic molecules that serve as a versatile drug delivery system with a variety of applications ranging from dermal delivery to brain-targeted delivery. A large number of research articles have been published reporting their fabrication methods and applications in pharmaceutical and cosmetic fields. Niosomes have the same advantages as liposomes, such as the ability to incorporate both hydrophilic and lipophilic compounds. Besides, niosomes can be fabricated with simple methods, require less production cost and are stable over an extended period, thus overcoming the major drawbacks of liposomes. This review provides a comprehensive summary of niosomal research to date, it provides a detailed overview of the formulation components, types of niosomes, effects of components on the formation of niosomes, fabrication and purification methods, physical characterization techniques of niosomes, recent applications in pharmaceutical field such as in oral, ocular, topical, pulmonary, parental and transmucosal drug delivery, and cosmetic applications. Finally, limitations and the future outlook for this delivery system have also been discussed.
Collapse
Affiliation(s)
- Shuo Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Sara Hanning
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - James Falconer
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Level 4, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Michelle Locke
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Department of Plastic and Reconstructive Surgery, Middlemore Hospital, Counties Manukau District Health Board, Private Bag 93311, Otahuhu, Auckland 1640, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand.
| |
Collapse
|
11
|
Albash R, Abdelbary AA, Refai H, El-Nabarawi MA. Use of transethosomes for enhancing the transdermal delivery of olmesartan medoxomil: in vitro, ex vivo, and in vivo evaluation. Int J Nanomedicine 2019; 14:1953-1968. [PMID: 30936696 PMCID: PMC6421897 DOI: 10.2147/ijn.s196771] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction and aim Olmesartan medoxomil (OLM) is an antihypertensive drug with low oral bioavailability due to extensive first-pass metabolism. This study aimed to prepare transetho somes (TEs) for enhancing the transdermal delivery of OLM to avoid its oral problems. Methods TE formulae were prepared utilizing 51.31 full factorial design using various surfactants (SAAs) and different phospholipid-to-SAA ratios. The formulae were characterized regarding their entrapment efficiency percentage (EE%), particle size (PS), polydispersity index (PDI), zeta potential (ZP), and the amount of drug released after 6 hours (Q6h). Design Expert® software was employed to select the optimum formula. Results The optimum formula (TE14) had an EE% of 58.50%±1.30%, PS of 222.60±2.50 nm, PDI of 0.11±0.06, ZP of -20.80±0.30 mV, and Q6h of 67.40%±0.20%. In addition, TE14 was compared to transferosomes (TFs) in terms of elasticity and was found to show higher deformability index. Further, evaluation of ex vivo permeation using both rat and shed snake skin showed higher permeability of TE14 compared to TFs and OLM suspension. Confocal laser scanning microscopy confirmed the capability of the fluorolabeled TE14 to penetrate deep within the skin, while the histopathological study confirmed its safety. TE14 successfully maintained normal blood pressure values of rats up to 24 hours. Moreover, TE14 showed superiority in dermatokinetic study when compared with drug suspension. Conclusion Taken together, the obtained results confirmed the potential of employing TEs as a successful carrier for the transdermal delivery of OLM.
Collapse
Affiliation(s)
- Rofida Albash
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Aly A Abdelbary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt, .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Hanan Refai
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt,
| |
Collapse
|
12
|
Yeo LK, Olusanya TOB, Chaw CS, Elkordy AA. Brief Effect of a Small Hydrophobic Drug (Cinnarizine) on the Physicochemical Characterisation of Niosomes Produced by Thin-Film Hydration and Microfluidic Methods. Pharmaceutics 2018; 10:pharmaceutics10040185. [PMID: 30322124 PMCID: PMC6321096 DOI: 10.3390/pharmaceutics10040185] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/05/2023] Open
Abstract
Novel niosomal formulations containing cinnarizine were developed to enhance its drug characteristics. In this work, niosomes (non-ionic surfactant vesicles) were prepared by conventional thin-film hydration (TFH) and microfluidic (MF) methods with sorbitan monostearate (Span® 60), cholesterol, and co-surfactants (Cremophor® ELP, Cremophor® RH40 and Solutol® HS15) as key excipients. The aim was to study the effect of cinnarizine on the characteristics of different niosomal formulations manufactured by using different methods. For effective targeted oral drug delivery, the efficacy of niosomes for therapeutic applications is correlated to their physiochemical properties. Niosome vesicles prepared were characterised using dynamic light scattering technique and the morphology of niosomes dispersion was characterised using optical microscopy. Dialysis was carried out to purify niosome suspensions to determine drug loading and drug release studies was performed to study the potential use of niosomal systems for cinnarizine.
Collapse
Affiliation(s)
- Li Key Yeo
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK.
| | - Temidayo O B Olusanya
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK.
| | - Cheng Shu Chaw
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK.
| | - Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK.
| |
Collapse
|
13
|
Abstract
Ganciclovir is synthetic nucleoside analog of guanine closely related to acyclovir but has greater activity against cytomegalovirus. This comprehensive profile on ganciclovir starts with a description of the drug: nomenclature, formulae, chemical structure, elemental composition, and appearance. The uses and application of the drug are explained. The methods that were used for the preparation of ganciclovir are described and their respective schemes are outlined. The methods which were used for the physical characterization of the dug are: ionization constant, solubility, X-ray powder diffraction pattern, crystal structure, melting point, and differential scanning calorimetry. The chapter contains the spectra of the drug: ultraviolet spectrum, vibrational spectrum, nuclear magnetic resonance spectra, and the mass spectrum. The compendial methods of analysis of ganciclovir include the United States Pharmacopeia methods. Other methods of analysis that were reported in the literature include: high-performance liquid chromatography alone or with mass spectrometry, electrophoresis, spectrophotometry, voltammetry, chemiluminescence, and radioimmunoassay. Biological investigation on the drug includes: pharmacokinetics, metabolism, bioavailability, and biological analysis. Reviews on the methods used for preparation or for analysis of the drug are provided. The stability of the drug in various media and storage conditions is reported. More than 240 references are listed at the end of the chapter.
Collapse
Affiliation(s)
- Abdullah A Al-Badr
- College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Tariq D S Ajarim
- College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Lembo D, Donalisio M, Civra A, Argenziano M, Cavalli R. Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opin Drug Deliv 2017; 15:93-114. [DOI: 10.1080/17425247.2017.1360863] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- David Lembo
- Department of Clinical and Biological Sciences, University of Torino, S. Luigi Gonzaga Hospital, Torino, Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, University of Torino, S. Luigi Gonzaga Hospital, Torino, Italy
| | - Andrea Civra
- Department of Clinical and Biological Sciences, University of Torino, S. Luigi Gonzaga Hospital, Torino, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Torino, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, Turin, Italy
| |
Collapse
|
15
|
Mohsen AM, AbouSamra MM, ElShebiney SA. Enhanced oral bioavailability and sustained delivery of glimepiride via niosomal encapsulation:in-vitrocharacterization andin-vivoevaluation. Drug Dev Ind Pharm 2017; 43:1254-1264. [DOI: 10.1080/03639045.2017.1310224] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Amira Mohamed Mohsen
- Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo, Egypt
| | | | - Shaimaa Ahmed ElShebiney
- Narcotics, Poisons and Ergogenics Department, Medical Research Division, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
16
|
Ullah S, Shah MR, Shoaib M, Imran M, Shah SWA, Ali I, Ahmed F. Creatinine-based non-phospholipid vesicular carrier for improved oral bioavailability of Azithromycin. Drug Dev Ind Pharm 2017; 43:1011-1022. [DOI: 10.1080/03639045.2017.1291667] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shafi Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Muhammad Raza Shah
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Mohammad Shoaib
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Muhammad Imran
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | | | - Imdad Ali
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Farid Ahmed
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
17
|
Abstract
Lipid vesicular systems composed of hydrated amphihiles with or without bilayer inducing agents such as cholesterol. On the basis of used amphiphilic molecule different nomenclature are used as liposomes, ufasomes and niosomes. Nonionic surfactants with mono-, di- or trialkyl chains form niosomes which are lipid vesicles with more chemical stability in comparison with phospholipids of liposomes. Both hydrophobic and hydrophilic chemicals can be encapsulated in niosomes as a new drug delivery system. This drug carrier system could have administered via injection, oral, pulmonary, vaginal, rectal, ophthalmic, nasal or transdermal routes with penetration enhancing potential. This chapter presents a detailed explain about niosome forming components, methods of preparation and routes of administration. Many examples for drug delivery potential of niosomes are also available in this review. Vaccine adjuvant and genetic substances vector capabilities are not given here.
Collapse
|
18
|
Pardakhty A. Non-Ionic Surfactant Vesicles (Niosomes) as New Drug Delivery Systems. ADVANCES IN MEDICAL TECHNOLOGIES AND CLINICAL PRACTICE 2017. [DOI: 10.4018/978-1-5225-0751-2.ch004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lipid vesicular systems composed of hydrated amphihiles with or without bilayer inducing agents such as cholesterol. On the basis of used amphiphilic molecule different nomenclature are used as liposomes, ufasomes and niosomes. Nonionic surfactants with mono-, di- or trialkyl chains form niosomes which are lipid vesicles with more chemical stability in comparison with phospholipids of liposomes. Both hydrophobic and hydrophilic chemicals can be encapsulated in niosomes as a new drug delivery system. This drug carrier system could have administered via injection, oral, pulmonary, vaginal, rectal, ophthalmic, nasal or transdermal routes with penetration enhancing potential. This chapter presents a detailed explain about niosome forming components, methods of preparation and routes of administration. Many examples for drug delivery potential of niosomes are also available in this review. Vaccine adjuvant and genetic substances vector capabilities are not given here.
Collapse
|
19
|
Imran M, Shah MR, Ullah F, Ullah S, Elhissi AMA, Nawaz W, Ahmad F, Sadiq A, Ali I. Sugar-based novel niosomal nanocarrier system for enhanced oral bioavailability of levofloxacin. Drug Deliv 2016; 23:3653-3664. [DOI: 10.1080/10717544.2016.1214991] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Muhammad Imran
- Department of Pharmacy, University of Malakand, Khyber Pakhtoonkhwa, Pakistan,
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, Karachi University, Karachi, Pakistan,
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Khyber Pakhtoonkhwa, Pakistan,
| | - Shafi Ullah
- Department of Pharmacy, University of Malakand, Khyber Pakhtoonkhwa, Pakistan,
| | | | - Waqas Nawaz
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Farid Ahmad
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, Karachi University, Karachi, Pakistan,
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Khyber Pakhtoonkhwa, Pakistan,
| | - Imdad Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, Karachi University, Karachi, Pakistan,
| |
Collapse
|
20
|
Sohrabi S, Haeri A, Mahboubi A, Mortazavi A, Dadashzadeh S. Chitosan gel-embedded moxifloxacin niosomes: An efficient antimicrobial hybrid system for burn infection. Int J Biol Macromol 2016; 85:625-33. [DOI: 10.1016/j.ijbiomac.2016.01.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/13/2015] [Accepted: 01/02/2016] [Indexed: 12/17/2022]
|
21
|
Ganesan P, Ko HM, Kim IS, Choi DK. Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in Parkinson's disease models. Int J Nanomedicine 2015; 10:6757-72. [PMID: 26604750 PMCID: PMC4631432 DOI: 10.2147/ijn.s93918] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress plays a very critical role in neurodegenerative diseases, such as Parkinson's disease (PD), which is the second most common neurodegenerative disease among elderly people worldwide. Increasing evidence has suggested that phytobioactive compounds show enhanced benefits in cell and animal models of PD. Curcumin, resveratrol, ginsenosides, quercetin, and catechin are phyto-derived bioactive compounds with important roles in the prevention and treatment of PD. However, in vivo studies suggest that their concentrations are very low to cross blood-brain barrier thereby it limits bioavailability, stability, and dissolution at target sites in the brain. To overcome these problems, nanophytomedicine with the controlled size of 1-100 nm is used to maximize efficiency in the treatment of PD. Nanosizing of phytobioactive compounds enhances the permeability into the brain with maximized efficiency and stability. Several nanodelivery techniques, including solid lipid nanoparticles, nanostructured lipid carriers, nanoliposomes, and nanoniosomes can be used for controlled delivery of nanobioactive compounds to brain. Nanocompounds, such as ginsenosides (19.9 nm) synthesized using a nanoemulsion technique, showed enhanced bioavailability in the rat brain. Here, we discuss the most recent trends and applications in PD, including 1) the role of phytobioactive compounds in reducing oxidative stress and their bioavailability; 2) the role of nanotechnology in reducing oxidative stress during PD; 3) nanodelivery systems; and 4) various nanophytobioactive compounds and their role in PD.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Nanotechnology Research Center, Department of Applied Life Science, Konkuk University, Chungju, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Hyun-Myung Ko
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - In-Su Kim
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Dong-Kug Choi
- Nanotechnology Research Center, Department of Applied Life Science, Konkuk University, Chungju, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
22
|
Arzani G, Haeri A, Daeihamed M, Bakhtiari-Kaboutaraki H, Dadashzadeh S. Niosomal carriers enhance oral bioavailability of carvedilol: effects of bile salt-enriched vesicles and carrier surface charge. Int J Nanomedicine 2015; 10:4797-813. [PMID: 26251598 PMCID: PMC4524462 DOI: 10.2147/ijn.s84703] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Carvedilol (CRV) is an antihypertensive drug with both alpha and beta receptor blocking activity used to preclude angina and cardiac arrhythmias. To overcome the low, variable oral bioavailability of CRV, niosomal formulations were prepared and characterized: plain niosomes (without bile salts), bile salt-enriched niosomes (bilosomes containing various percentages of sodium cholate or sodium taurocholate), and charged niosomes (negative, containing dicetyl phosphate and positive, containing hexadecyl trimethyl ammonium bromide). All formulations were characterized in terms of encapsulation efficiency, size, zeta potential, release profile, stability, and morphology. Various formulations were administered orally to ten groups of Wistar rats (n=6 per group). The plasma levels of CRV were measured by a validated high-performance liquid chromatography (HPLC) method and pharmacokinetic properties of different formulations were characterized. Contribution of lymphatic transport to the oral bioavailability of niosomes was also investigated using a chylomicron flow-blocking approach. Of the bile salt-enriched vesicles examined, bilosomes containing 20% sodium cholate (F2) and 30% sodium taurocholate (F5) appeared to give the greatest enhancement of intestinal absorption. The relative bioavailability of F2 and F5 formulations to the suspension was estimated to be 1.84 and 1.64, respectively. With regard to charged niosomes, the peak plasma concentrations (Cmax) of CRV for positively (F7) and negatively charged formulations (F10) were approximately 2.3- and 1.7-fold higher than after a suspension. Bioavailability studies also revealed a significant increase in extent of drug absorption from charged vesicles. Tissue histology revealed no signs of inflammation or damage. The study proved that the type and concentration of bile salts as well as carrier surface charge had great influences on oral bioavailability of niosomes. Blocking the lymphatic absorption pathway significantly reduced oral bioavailability of CRV niosomes. Overall twofold enhancement in bioavailability in comparison with drug suspension confers the potential of niosomes as suitable carriers for improved oral delivery of CRV.
Collapse
Affiliation(s)
- Gelareh Arzani
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Daeihamed
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Bakhtiari-Kaboutaraki
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran ; Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Wang G, Wang J, Wu W, Tony To SS, Zhao H, Wang J. Advances in lipid-based drug delivery: enhancing efficiency for hydrophobic drugs. Expert Opin Drug Deliv 2015; 12:1475-99. [PMID: 25843160 DOI: 10.1517/17425247.2015.1021681] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Many drug candidates with high therapeutic efficacy have low water solubility, which limits the administration and transport across physiological barriers, for example, the tumor tissue barrier. Therefore, strategies are needed to permeabilize the physiological barriers safely so that hydrophobic drugs may be delivered efficiently. AREAS COVERED This review focuses on prospects for therapeutic application of lipid-based drug delivery carriers that increase hydrophobic drugs to improve their solubility, bioavailability, drug release, targeting and absorption. Moreover, novel techniques to prepare for lipid-based drug delivery to extend pharmaceuticals with poor bioavailability such as surface modifications of lipid-based drug delivery are presented. Industrial developments of several drug candidates employing these strategies are discussed, as well as applications and clinical trials. EXPERT OPINION Overall, hydrophobic drugs can be encapsulated in the lipid-based drug delivery systems, represent a relatively safe and promising strategy to extend drug retention, lengthen the lifetime in the circulation, and allow active targeting to specific tissues and controllable drug release in the desirable sites. However, there are still noticeable gaps that need to be filled before the theoretical advantage of these formulations may truly be realized such as investigation on the use of lipid-based drug delivery for administration routes. This research may provide further interest within the area of lipid-based systems, both in industry and in the clinic.
Collapse
Affiliation(s)
- Gang Wang
- Shanghai Eighth People's Hospital, Department of Pharmaceutics , Shanghai , China
| | | | | | | | | | | |
Collapse
|
24
|
Ring-opening polymerization of ε-caprolactone initiated by ganciclovir (GCV) for the preparation of GCV-tagged polymeric micelles. Molecules 2015; 20:2857-67. [PMID: 25675152 PMCID: PMC6272954 DOI: 10.3390/molecules20022857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/03/2015] [Indexed: 11/21/2022] Open
Abstract
Ganciclovir (GCV) is a nucleoside analogue with antiviral activity against herpes viral infections, and the most widely used antiviral to treat cytomegalovirus infections. However, the low bioavailability and short half-life of GCV necessitate the development of a carrier for sustained delivery. In this study, guanosine-based GCV was used as the initiator directly in ring-opening polymerization of ε-caprolactone (ε-CL) to form hydrophobic GCV-poly(caprolactone) (GCV-PCL) which was then grafted with hydrophilic chitosan to form amphiphilic copolymers for the preparation of stable micellar nanoparticles. Successful synthesis of GCV-PCL and GCV-PCL-chitosan were verified by 1H-NMR analysis. Self-assembled micellar nanoparticles were characterized by dynamic light scattering and zetasizer with an average size of 117 nm and a positive charge of 24.2 mV. The drug release kinetics of GCV was investigated and cytotoxicity assay demonstrated that GCV-tagged polymeric micelles were non-toxic. Our results showed that GCV could be used directly in the initiation of ring-opening polymerization of ε-CL and non-toxic polymeric micelles for GCV delivery can be formed.
Collapse
|
25
|
Niosomes from 80s to present: the state of the art. Adv Colloid Interface Sci 2014; 205:187-206. [PMID: 24369107 DOI: 10.1016/j.cis.2013.11.018] [Citation(s) in RCA: 300] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/26/2013] [Indexed: 01/14/2023]
Abstract
Efficient and safe drug delivery has always been a challenge in medicine. The use of nanotechnology, such as the development of nanocarriers for drug delivery, has received great attention owing to the potential that nanocarriers can theoretically act as "magic bullets" and selectively target affected organs and cells while sparing normal tissues. During the last decades the formulation of surfactant vesicles, as a tool to improve drug delivery, brought an ever increasing interest among the scientists working in the area of drug delivery systems. Niosomes are self assembled vesicular nanocarriers obtained by hydration of synthetic surfactants and appropriate amounts of cholesterol or other amphiphilic molecules. Just like liposomes, niosomes can be unilamellar or multilamellar, are suitable as carriers of both hydrophilic and lipophilic drugs and are able to deliver drugs to the target site. Furthermore, niosomal vesicles, that are usually non-toxic, require less production costs and are stable over a longer period of time in different conditions, so overcoming some drawbacks of liposomes. The niosome properties are specifically dictated by size, shape, and surface chemistry which are able to modify the drug's intrinsic pharmacokinetics and eventual drug targeting to the areas of pathology. This up-to-date review deals with composition, preparation, characterization/evaluation, advantages, disadvantages and application of niosomes.
Collapse
|
26
|
Tran TH, Ramasamy T, Poudel BK, Marasini N, Moon BK, Cho HJ, Choi HG, Yong CS, Kim JO. Preparation and characterization of spray-dried gelatin microspheres encapsulating ganciclovir. Macromol Res 2013. [DOI: 10.1007/s13233-014-2018-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Song S, Tian B, Chen F, Zhang W, Pan Y, Zhang Q, Yang X, Pan W. Potentials of proniosomes for improving the oral bioavailability of poorly water-soluble drugs. Drug Dev Ind Pharm 2013; 41:51-62. [PMID: 24111828 DOI: 10.3109/03639045.2013.845841] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED Abstract Objective: The objectives of this study were, first, to develop a free-flowing and stable proniosome formulation for poorly water-soluble drugs such as vinpocetine; and second, to estimate its bioavailability as oral drug delivery system. METHODS The proniosomes consisting of span60, cholesterol, sorbitol and vinpocetine were prepared by a novel approach. After the proniosomes were contacted with water, the suspension of vinpocetine-loaded niosomes formed automatically. The proniosomes and reconstituted niosomes were evaluated for their physicochemical characteristics, in vitro drug dissolution and release, integrity and stability at different GI tract pH conditions, in situ single-pass intestinal perfusion and in vivo bioavailability. RESULTS The proniosome powder exhibited excellent flowability. The reconstituted niosomes with high drug entrapment efficiency (89.67 ± 3.28%) showed spherical morphology with smooth surface under transmission electron microscope (TEM). X-ray diffraction (XRD) indicated that the drug was in an amorphous or molecular state in proniosome powder. In vitro dissolution and release study, proniosomes did enhance the dissolution and release rate compared to vinpocetine suspension in phosphate buffer solution (pH 7.2). Proniosome-derived niosomes could keep their integrity and stability at different GI tract pH conditions. The in situ single-pass intestinal perfusion indicated that encapsulation of vinpocetine into niosomes could largely improved the absorption of vinpocetine. The AUC(0-∞) of F2 and F3 was about 4.0- and 4.9-fold higher than that of the vinpocetine suspension, respectively. The results demonstrated the proniosomes indeed remarkably enhanced the oral bioavailability of vinpocetine. CONCLUSION This study suggested the potential of proniosomes as stable precursors for the immediate preparation of niosome carrier systems.
Collapse
Affiliation(s)
- Shuangshuang Song
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , China and
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Cho HJ, Kim JE, Kim DD, Yoon IS. In vitro–in vivoextrapolation (IVIVE) for predicting human intestinal absorption and first-pass elimination of drugs: principles and applications. Drug Dev Ind Pharm 2013; 40:989-98. [DOI: 10.3109/03639045.2013.831439] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Ahmad I, Akhter S, Ahmad MZ, Shamim M, Rizvi MA, Khar RK, Ahmad FJ. Collagen loaded nano-sized surfactant based dispersion for topical application: formulation development, characterization and safety study. Pharm Dev Technol 2013; 19:460-7. [DOI: 10.3109/10837450.2013.795167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Kumar S, Randhawa JK. High melting lipid based approach for drug delivery: Solid lipid nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:1842-52. [DOI: 10.1016/j.msec.2013.01.037] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 12/13/2022]
|
31
|
Polysorbate 20 vesicles as oral delivery system: In vitro characterization. Colloids Surf B Biointerfaces 2013; 104:200-6. [DOI: 10.1016/j.colsurfb.2012.10.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 11/21/2022]
|
32
|
Wang S, Ye T, Yang B, Yi X, Yao H. 7-Ethyl-10-hydroxycamptothecin proliposomes with a novel preparation method: optimized formulation, characterization and in-vivo evaluation. Drug Dev Ind Pharm 2012; 39:393-401. [DOI: 10.3109/03639045.2012.683441] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|