1
|
Wang B, Lin C, Duan C, Li J, Chen H, Xu J, Zeng J, Gao W, Wei W. Physicochemical characterization of bioactive polysaccharides from three seaweed and application of functional fruit packaging films. Int J Biol Macromol 2024; 282:136765. [PMID: 39442836 DOI: 10.1016/j.ijbiomac.2024.136765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/20/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Seaweed polysaccharides show tremendous research and application value because of their significant and unique biological activities. However, reports on seaweed polysaccharides usually focus on in-depth studies of a specific biological activity, which severely limits their further development. Herein, three seaweed polysaccharides were isolated from Undaria pinnatifida (UPPS), Sargassum pallidum (SPPS), and Ulva lactuca (ULPS), respectively. The physicochemical properties, structure, rheological properties, antioxidant activities, antibacterial activities, and anti-glycation activities of UPPS, ULPS, and SPPS were comprehensively studied. It was first demonstrated that SPPS and UPPS had triple prominent biological activities. SPPS exhibited the best biological activities in antioxidation (IC50 in the ABTS test: 0.4616 ± 0.0134 mg/mL), antibacterial effect, and anti-glycation activity (inhibitory rate: 84.74 ± 0.07 %). Additionally, UPPS films (UPPSF) demonstrated superior ultraviolet shielding performance, lower water vapor permeability (1.78 ± 0.01 g/m·s·Pa × 10-11), higher hydrophobicity (water contact angle: 96.91 ± 2.52°), and higher antioxidant activity compared to ULPS films (ULPSF). UPPSF and ULPSF effectively prolonged the shelf life of strawberries to six days, and UPPSF showed better preservation properties. This work provides novel theoretical insights into the use of polysaccharides as medicinal nutraceuticals, bioactive agents, and food packaging films.
Collapse
Affiliation(s)
- Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Changhui Lin
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chengliang Duan
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Haoying Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenhua Gao
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenguang Wei
- Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying 257335, China.
| |
Collapse
|
2
|
Xu T, Hong A, Zhang X, Xu Y, Wang T, Zheng Q, Wei T, He Q, Ren Z, Qin T. Preparation and adjuvanticity against PCV 2 of Viola philippica polysaccharide loaded in Chitosan-Gold nanoparticle. Vaccine 2024; 42:2608-2620. [PMID: 38472066 DOI: 10.1016/j.vaccine.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
The present Porcine circovirus type 2 virus (PCV2) vaccine adjuvants suffer from numerous limitations, such as adverse effects, deficient cell-mediated immune responses, and inadequate antibody production. In this study, we explored the potential of a novel nanoparticle (CS-Au NPs) based on gold nanoparticles (Au NPs) and chitosan (CS) that modified Viola philippica polysaccharide (VPP) as efficient adjuvants for PCV2 vaccine. The characterization demonstrated that CS-Au-VPP NPs had a mean particle size of 507.42 nm and a zeta potential value of -21.93 mV. CS-Au-VPP NPs also exhibited good dispersion and a stable structure, which did not alter the polysaccharide properties. Additionally, the CS-Au-VPP NPs showed easy absorption and utilization by the organism. To investigate their immune-enhancing potential, mice were immunized with a mixture of CS-Au-VPP NPs and PCV2 vaccine. The evaluation of relevant immunological indicators, including specific IgG antibodies and their subclasses, cytokines, and T cell subpopulations, confirmed their immune-boosting effects. The in vivo experiments revealed that the medium-dose CS-Au-VPP NPs significantly elevated the levels of specific IgG antibodies and their subclasses, cytokines, and T cell subpopulations in PCV2-immunized mice. These findings suggest that CS-Au-VPP NPs can serve as a promising vaccine adjuvant due to their stable structure and immunoenhancement capabilities.
Collapse
Affiliation(s)
- Ting Xu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ancan Hong
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xueli Zhang
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yizhou Xu
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tao Wang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qiang Zheng
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tiantian Wei
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qiuyue He
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhe Ren
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Tao Qin
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
3
|
Gasztych M, Malamis A, Musiał W. The Influence of Initiators, Particle Size and Composition on the Electrokinetic Potential of N-(Isopropyl)acrylamide Derivatives. Polymers (Basel) 2024; 16:907. [PMID: 38611165 PMCID: PMC11013650 DOI: 10.3390/polym16070907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
The aim of this study was to characterize and compare the zeta potential of particles sensitive to external thermal stimuli. Poly N-(isopropyl) acrylamide (PNIPA) was selected as the thermosensitive polymer with a volume phase transition temperature (VPTT) between 32 and 33 °C. The hydrodynamic diameter (DH) of the nanoparticles was measured by dynamic light scattering. Zeta potential (ZP) measurements were performed with the same instrument used for DH measurements. ZP measurements allow the prediction of the stability of colloidal systems in aqueous solutions. These measurements were combined with a pH study before and after the purification process of the particles. The ZP was measured to determine the electrostatic interactions between the particles, which can lead to particle aggregation and decrease their colloidal stability. The effect of the composition of the synthesized particles on the ZP was assessed. One of the most important factors influencing ZP is pH, especially in aqueous solutions. The initiator did not significantly affect the DH of the particles, but it did significantly affect the ZP. The synthesized particles were subjected to a visible radiation absorption study in the selected temperature range to determine the VPTT.
Collapse
Affiliation(s)
| | | | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (M.G.); (A.M.)
| |
Collapse
|
4
|
Wang Y, Qiu F, Zheng Q, Hong A, Wang T, Zhang J, Lin L, Ren Z, Qin T. Preparation, characterization and immune response of chitosan‑gold loaded Myricaria germanica polysaccharide. Int J Biol Macromol 2024; 257:128670. [PMID: 38070794 DOI: 10.1016/j.ijbiomac.2023.128670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/27/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
In this study, a novel nano-drug delivery system (CS-Au NPs) based on gold nanoparticles (Au NPs) and chitosan (CS) that modified Myricaria germanica polysaccharide (MGP) was developed to enhance immune responses. At a MGP to CS Au ratio of 5:1, CS-Au-MGP NPs had a loading capacity of 78.27 %. The structure of CS-Au-MGP NPs were characterized by Transmission electron microscope, TEM-energy dispersive spectroscopy mapping, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometer, particle size and zeta-potential distribution analysis. Under weakly acidic conditions, in vitro CS-Au-MGP NPs release was most effective. In vivo showed that co-immunization with CS-Au-MGP NPs and PCV2 significantly increased the organ index of the thymus, spleen, and liver in mice. Additionally, CS-Au-MGP NPs significantly increased the levels of IgG, IgG1, and IgG2a antibodies, as well as IFN-γ and IL-6 levels. Furthermore, the CS-Au-MGP NPs promoted proliferation of spleen T and B lymphocytes, increased the number of CD3+, CD4+, and CD8+ cells, and increased the CD4+/CD8+ T cell ratio. Meanwhile, CS-Au-MGP NPs remarkably TLR2/IRAK4 pathway activation and mRNA levels of cytokines (IFN-γ and IL-6). These results indicated that CS-Au-MGP NPs could enhance the immune activity, and it could be potentially used as an MGP delivery system for the induction of strong immune responses.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Fuan Qiu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qiang Zheng
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ancan Hong
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tao Wang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Junwen Zhang
- Non-human Primate Laboratory Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, PR China
| | - Lifan Lin
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhe Ren
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Tao Qin
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
5
|
Arad D, Deckel R, Pe'er O, Ross M, Sebbag L, Ofri R. Is it necessary to wait several minutes between applications of different topical ophthalmic solutions? A preliminary study with tropicamide eye drops in healthy dogs. Vet Ophthalmol 2021; 24:374-379. [PMID: 34402570 DOI: 10.1111/vop.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate the efficacy of topical tropicamide when placed at different time intervals before or after a saline drop. ANIMALS STUDIED Eight healthy Labrador and golden retriever dogs. PROCEDURES The effect of 1% tropicamide on pupillary diameter (PD) was measured over 240 min when administered alone (control) and then 1 and 5 min prior to, or following, application of a saline drop, with 1-week washout between each of the five trials. Data were analyzed using repeated-measures ANOVA and Tukey post hoc test. RESULTS Only 6/110 pairwise comparisons among the 5 trials were statistically significant (p ≤ .035), with post-hoc analysis showing no significant differences (p ≥ .14) between the overall means of all trials. In all five trials, maximal PD was reached 30 min after tropicamide application and maintained until 210 min for 180 min (p = .0005). CONCLUSIONS Our results suggest that waiting 1 min between applications of different ophthalmic solutions may be sufficient for maximal drug effect. Care should be taken when extrapolating these results to other species and different ophthalmic formulations.
Collapse
Affiliation(s)
- Dikla Arad
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Reut Deckel
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Oren Pe'er
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maya Ross
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lionel Sebbag
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ron Ofri
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
6
|
Adapted nano-carriers for gastrointestinal defense components: surface strategies and challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102277. [DOI: 10.1016/j.nano.2020.102277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/18/2020] [Accepted: 07/18/2020] [Indexed: 12/21/2022]
|
7
|
Hanif M, Zaman M. Thiolation of arabinoxylan and its application in the fabrication of controlled release mucoadhesive oral films. Daru 2017; 25:6. [PMID: 28320456 PMCID: PMC5359919 DOI: 10.1186/s40199-017-0172-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/28/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Mucoadhesion is an important property that helps oral drug delivery system to remain attached with buccal mucosa and hence to improve the delivery of the drug. The current study was designed to achieve the thiol modification of Arabinoxylan (ARX) and to develop a mucoadhesive oral film for the improved delivery of tizanidine hydrochloride (TZN HCl). METHOD Synthesis of thiolated arabinoxylan (TARX) was accomplished by esterification of ARX with thioglycolic acid (TGA). TARX was further used for the development of mucoadhesive oral films which were prepared by using a solvent casting technique. Formulation of the films was designed and optimized by using central composite design (CCRD), selecting TARX (X1) and glycerol (X2) as variables. Prepared film formulations were evaluated for mechanical strength, ex-vivo mucoadhesion, in-vitro drug release, ex-vivo drug permeation, surface morphology and drug contents. RESULTS Thiolation of ARX was confirmed by fourier transform infra-red spectroscopy (FTIR) as a peak related to thiol group appeared at 2516 cm-1. The claim of successful thiolation of ARX was strengthened by the presence of 2809.003 ± 1.03 μmoles of thiol contents per gram of the polymer, which was determined by Ellman's reagent method. From the results, it was observed that the films were of satisfactory mechanical strength and mucoadhesiveness with folding endurance greater than 300 and mucoadhesive strength 11.53 ± 0.17 N, respectively. Reasonable drug retention was observed during in-vitro dissolution (85.03% cumulative drug release) and ex-vivo permeation (78.90% cumulative amount of permeated drug) studies conducted for 8 h. Effects of varying concentrations of both polymer and plasticizer on prepared mucoadhesive oral films were evaluated by ANOVA and it was observed that glycerol can enhanced the dissolution as well as permeation of the drug while TARX has opposite impact on these parameters. CONCLUSION In nutshell, TARX in combination with glycerolwas found to be suitable for the development of controlled release mucoadhesive oral films of TZN HCl. Schematic diagram showing conversion of ARX to TARX, TARX to oral film and evaluation of fabricated oral film.
Collapse
Affiliation(s)
- Muhammad Hanif
- Department of Pharmacy, Bahauddin Zakariya University, Multan, 60800 Pakistan
| | - Muhammad Zaman
- Department of Pharmacy, Bahauddin Zakariya University, Multan, 60800 Pakistan
| |
Collapse
|
8
|
Song Y, Han J, Feng R, Wang M, Tian Q, Zhang T, Liu X, Cheng X, Deng Y. The 12-3-12 cationic gemini surfactant as a novel gastrointestinal bioadhesive material for improving the oral bioavailability of coenzyme Q10 naked nanocrystals. Drug Dev Ind Pharm 2016; 42:2044-2054. [DOI: 10.1080/03639045.2016.1195399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jie Han
- R&D Center, Harbin Pharmaceutical Group Bioengineering Co, Ltd, Harbin, China
| | - Rui Feng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Mengjing Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qingjing Tian
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Ting Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaobo Cheng
- R&D Center, Deli Wei Biological Technology Co, Ltd, Beijing, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
9
|
S-protected thiolated hydroxyethyl cellulose (HEC): Novel mucoadhesive excipient with improved stability. Carbohydr Polym 2016; 144:514-21. [PMID: 27083843 DOI: 10.1016/j.carbpol.2016.02.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 11/21/2022]
Abstract
The aim of this study was the design of novel S-protected thiolated hydroxyethyl cellulose (HEC) and the assessment of its mucoadhesive properties and biodegradability compared to the corresponding unmodified polymer. Thiolated HEC was S-protected via disulfide bond formation between 6-mercaptonicotinamide (6-MNA) and the thiol substructures of the polymer. In vitro screening of mucoadhesive properties was accomplished using two different methods: rotating cylinder studies and viscosity measurements. Moreover, biodegradability of these polymers by cellulase, xylanase and lysozyme was evaluated. MTT and LDH assays were performed on Caco-2 cells to determine the cytotoxicity of S-protected thiolated HEC. Thiolated HEC displayed 280.09±1.70μmol of free thiol groups per gram polymer. S-protected thiolated HEC exhibiting 270.8±21.11μmol immobilized 6-MNA ligands per gram of polymer was shown being 2.4-fold more mucoadhesive compared to thiolated HEC. No mucoadhesion was observed in case of unmodified HEC. Results were in a good agreement with rheological studies. The presence of free thiol moieties likely caused lower degree of hydrolysis by xylanase, whereas the degradation by both enzymes cellulase and xylanase was more hampered when 6-MNA was introduced as ligand for thiol group's protection. Findings in cell viability revealed that all three conjugates were non-toxic. S-protection of thiolated hydroxyethyl cellulose improved mucoadhesive properties and provided pronounced stability towards enzymatic attack, that makes this excipient superior for non-invasive drug administration over thiolated and unmodified forms.
Collapse
|
10
|
Abstract
INTRODUCTION With the introduction of mucoadhesion in 1980, pharmaceutical researchers have gained interest in mucoadhesive compositions. This interest has led to the development of mucoadhesive drug delivery systems aiming (I) to target a specific tissue, (II) to overcome barriers to absorption as well as (III) to control drug release of the therapeutic compositions. AREAS COVERED In this review, the term mucoadhesion and a variety of targetable mucosa are described through review of the literature. Mucoadhesive drug delivery systems and mucoadhesive polymers, such as thiomers, which are reported within the patent literature or in related publications are described in detail, including their therapeutic uses. EXPERT OPINION Mucoadhesion is associated with benefits such as controlled, sustained release, prolonged residence time at the site of action, the ability to target specific mucosae and ease of application which leads to higher rates of patient compliance. Although many research groups are investigating in this domain, not many drug delivery systems based on mucoadhesive polymers have got from bench to market. The most promising and advanced applications seen in patent literature within the last five years seems to be for oral application.
Collapse
Affiliation(s)
- Flavia Laffleur
- a Department of Pharmaceutical Technology , Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
11
|
Laffleur F, Röggla J, Idrees MA, Griessinger J. Chemical Modification of Hyaluronic Acid for Intraoral Application. J Pharm Sci 2014; 103:2414-23. [DOI: 10.1002/jps.24060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/14/2014] [Accepted: 05/29/2014] [Indexed: 01/23/2023]
|