1
|
Singh S, Singh L, Kumar V, Ali W, Ramamurthy PC, Singh Dhanjal D, Sivaram N, Angurana R, Singh J, Chandra Pandey V, Khan NA. Algae-based approaches for Holistic wastewater management: A low-cost paradigm. CHEMOSPHERE 2023; 345:140470. [PMID: 37858768 DOI: 10.1016/j.chemosphere.2023.140470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/22/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Aquatic algal communities demonstrated their appeal for diverse industrial applications due to their vast availability, ease of harvest, lower production costs, and ability to biosynthesize valuable molecules. Algal biomass is promising because it can multiply in water and on land. Integrated algal systems have a significant advantage in wastewater treatment due to their ability to use phosphorus and nitrogen, simultaneously accumulating heavy metals and toxic substances. Several species of microalgae have adapted to thrive in these harsh environmental circumstances. The potential of algal communities contributes to achieving the United Nations' sustainable development goals in improving aquaculture, combating climate change, reducing carbon dioxide (CO2) emissions, and providing biomass as a biofuel feedstock. Algal-based biomass processing technology facilitates the development of a circular bio-economy that is both commercially and ecologically viable. An integrated bio-refinery process featuring zero waste discharge could be a sustainable solution. In the current review, we will highlight wastewater management by algal species. In addition, designing and optimizing algal bioreactors for wastewater treatment have also been incorporated.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Lav Singh
- Department of Botany, University of Lucknow, Uttar Pradesh, India
| | - Vijay Kumar
- Department of Chemistry, CCRAS-CARI, Jhansi, U.P., 284003, India
| | - Wahid Ali
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Kingdom of Saudi Arabia
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012, India.
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Nikhita Sivaram
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, USA
| | - Ruby Angurana
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India; Department of Botany, Nagaland University, Lumami, Nagaland 798627, India
| | - Vimal Chandra Pandey
- CSIR-National Botanical Research Institute Lucknow, 226001, Uttar Pradesh, India.
| | - Nadeem A Khan
- Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
2
|
Mendes MC, Navalho S, Ferreira A, Paulino C, Figueiredo D, Silva D, Gao F, Gama F, Bombo G, Jacinto R, Aveiro SS, Schulze PSC, Gonçalves AT, Pereira H, Gouveia L, Patarra RF, Abreu MH, Silva JL, Navalho J, Varela JCS, Speranza LG. Algae as Food in Europe: An Overview of Species Diversity and Their Application. Foods 2022; 11:foods11131871. [PMID: 35804686 PMCID: PMC9265617 DOI: 10.3390/foods11131871] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 01/16/2023] Open
Abstract
Algae have been consumed for millennia in several parts of the world as food, food supplements, and additives, due to their unique organoleptic properties and nutritional and health benefits. Algae are sustainable sources of proteins, minerals, and fiber, with well-balanced essential amino acids, pigments, and fatty acids, among other relevant metabolites for human nutrition. This review covers the historical consumption of algae in Europe, developments in the current European market, challenges when introducing new species to the market, bottlenecks in production technology, consumer acceptance, and legislation. The current algae species that are consumed and commercialized in Europe were investigated, according to their status under the European Union (EU) Novel Food legislation, along with the market perspectives in terms of the current research and development initiatives, while evaluating the interest and potential in the European market. The regular consumption of more than 150 algae species was identified, of which only 20% are approved under the EU Novel Food legislation, which demonstrates that the current legislation is not broad enough and requires an urgent update. Finally, the potential of the European algae market growth was indicated by the analysis of the trends in research, technological advances, and market initiatives to promote algae commercialization and consumption.
Collapse
Affiliation(s)
- Madalena Caria Mendes
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Sofia Navalho
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Alice Ferreira
- LNEG, National Laboratory of Energy and Geology I.P., Bioenergy Unit, 1649-038 Lisbon, Portugal;
| | - Cristina Paulino
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Daniel Figueiredo
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Daniel Silva
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Fengzheng Gao
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands;
| | - Florinda Gama
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Gabriel Bombo
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Rita Jacinto
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Susana S. Aveiro
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Peter S. C. Schulze
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Ana Teresa Gonçalves
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Hugo Pereira
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Luisa Gouveia
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
- LNEG, National Laboratory of Energy and Geology I.P., Bioenergy Unit, 1649-038 Lisbon, Portugal;
| | - Rita F. Patarra
- cE3c—Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, Faculty of Sciences and Technology, University of the Azores, 500-321 Ponta Delgada, Portugal;
- Expolab—Ciência Viva Science Centre, Avenida da Ciência—Beta, 9560-421 Lagoa, Portugal
| | - Maria Helena Abreu
- ALGAplus, Produção e Comercialização de Algas e Seus Derivados, Lda., 3830-196 Ílhavo, Portugal;
| | - Joana L. Silva
- Allmicroalgae—Natural Products, 2445-413 Pataias, Portugal;
| | - João Navalho
- Necton S.A., Belamandil s/n, 8700-152 Olhão, Portugal;
| | - João C. S. Varela
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Lais Galileu Speranza
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
- Correspondence:
| |
Collapse
|
3
|
The Cultivation of Lipid-Rich Microalgae Biomass as Anaerobic Digestate Valorization Technology—A Pilot-Scale Study. Processes (Basel) 2020. [DOI: 10.3390/pr8050517] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to determine the use of digestate from anaerobic digestion of dairy wastewater as a culture medium for microalgae to obtain bio-oil. The experiments were conducted at a small scale in a closed raceway pond. The efficiency of the microalgae biomass production, the digestate treatment efficiency as well as the content and properties of the bio-oil obtained from the microalgal cells were analyzed. The produced biomass concentration was about 3000 ± 10.5 mg dry biomass/L, with an average growth rate of 160 ± 6.6 mgdm/L·d. The efficiency of organic compound and nutrient removal was above 90%. The bio-oil content in the biomass was about 20%. Based on the results of the study, a concept for technical-scale technology was developed.
Collapse
|
4
|
The past, present and future of algal continuous cultures in basic research and commercial applications. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101636] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Erkelens M, Ball AS, Lewis DM. The influence of protozoa with a filtered and non-filtered seawater culture of Tetraselmis sp., and effects to the bacterial and algal communities over 10 days. BIORESOURCE TECHNOLOGY 2014; 173:361-366. [PMID: 25314666 DOI: 10.1016/j.biortech.2014.09.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 09/19/2014] [Accepted: 09/23/2014] [Indexed: 06/04/2023]
Abstract
In this study a filter was used to remove protozoa and its effects on a Tetraselmis sp. culture were evaluated in terms of final total lipid, final total dry weight, cell counts, and both the bacterial and algal communities. The protozoa species observed within this study was identified as Cohnilembus reniformis. It was observed that on the final day no C. reniformis were present in filtered cultures compared to the non-filtered culture which contained 40±3 C. reniformis/mL. The presence of C. reniformis within the culture did not affect the total lipid or the total dry weight recovered, suggesting that Tetraselmis sp. was capable of surviving and growing in the presence of C. reniformis. Overall it is suggested that an 11 μm filter was effective at removing protozoa, though growing a microalgae culture without filtration did not show any significant effect.
Collapse
Affiliation(s)
- Mason Erkelens
- School of Chemical Engineering, University of Adelaide, 5005, Australia; School of Applied Sciences, RMIT University, 3083, Australia.
| | - Andrew S Ball
- School of Applied Sciences, RMIT University, 3083, Australia
| | - David M Lewis
- School of Chemical Engineering, University of Adelaide, 5005, Australia
| |
Collapse
|
6
|
Skjånes K, Rebours C, Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol 2013; 33:172-215. [PMID: 22765907 PMCID: PMC3665214 DOI: 10.3109/07388551.2012.681625] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 01/25/2012] [Accepted: 03/29/2012] [Indexed: 12/31/2022]
Abstract
Green microalgae for several decades have been produced for commercial exploitation, with applications ranging from health food for human consumption, aquaculture and animal feed, to coloring agents, cosmetics and others. Several products from green algae which are used today consist of secondary metabolites that can be extracted from the algal biomass. The best known examples are the carotenoids astaxanthin and β-carotene, which are used as coloring agents and for health-promoting purposes. Many species of green algae are able to produce valuable metabolites for different uses; examples are antioxidants, several different carotenoids, polyunsaturated fatty acids, vitamins, anticancer and antiviral drugs. In many cases, these substances are secondary metabolites that are produced when the algae are exposed to stress conditions linked to nutrient deprivation, light intensity, temperature, salinity and pH. In other cases, the metabolites have been detected in algae grown under optimal conditions, and little is known about optimization of the production of each product, or the effects of stress conditions on their production. Some green algae have shown the ability to produce significant amounts of hydrogen gas during sulfur deprivation, a process which is currently studied extensively worldwide. At the moment, the majority of research in this field has focused on the model organism, Chlamydomonas reinhardtii, but other species of green algae also have this ability. Currently there is little information available regarding the possibility for producing hydrogen and other valuable metabolites in the same process. This study aims to explore which stress conditions are known to induce the production of different valuable products in comparison to stress reactions leading to hydrogen production. Wild type species of green microalgae with known ability to produce high amounts of certain valuable metabolites are listed and linked to species with ability to produce hydrogen during general anaerobic conditions, and during sulfur deprivation. Species used today for commercial purposes are also described. This information is analyzed in order to form a basis for selection of wild type species for a future multi-step process, where hydrogen production from solar energy is combined with the production of valuable metabolites and other commercial uses of the algal biomass.
Collapse
Affiliation(s)
- Kari Skjånes
- Bioforsk - Norwegian Institute for Agricultural and Environmental Research, Fredrik A. Dahls vei 20, Ås, Norway.
| | | | | |
Collapse
|
7
|
Huang TY, Lu WC, Chu IM. A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22:6 proportions in total fatty acid. BIORESOURCE TECHNOLOGY 2012; 123:8-14. [PMID: 22929740 DOI: 10.1016/j.biortech.2012.07.068] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 06/01/2023]
Abstract
During the fermentation process, dissolved oxygen values and carbon-to-nitrogen ratios are critical factors influencing DHA productivity. This study employed an intermittent oxygen feeding method to maintain a 50% dissolved oxygen level and produced a dissolved oxygen fluctuation environment to facilitate both Aurantiochytrium limacinum SR21 growth and lipid accumulation. Study results indicated that at a 1.25 C:N ratio and medium composition of 100gL(-1) glycerol, 40gL(-1) yeast extract, and 40gL(-1) peptone, A. limacinum SR21 achieved biomass at 61.76gL(-1), lipid content at 65.2%, DHA concentration at 20.3gL(-1), and DHA productivity at 122.62mgL(-1)h(-1), this result were better than most similar researches. Dissolved oxygen fluctuation environment also altered the fatty acid composition of A. limacinum SR21. In the late period of the fermentation process, C16:0 fatty acid ratios decreased significantly to below 5%, and C22:6 fatty acid ratios increased to 70%.
Collapse
Affiliation(s)
- Ting Yen Huang
- Chemical Engineering Department, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | | | | |
Collapse
|
8
|
The Plackett–Burman Design for Evaluating the Production of Polyunsaturated Fatty Acids by Physcomitrella patens. J AM OIL CHEM SOC 2010. [DOI: 10.1007/s11746-009-1532-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Chi Z, Pyle D, Wen Z, Frear C, Chen S. A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 2007. [DOI: 10.1016/j.procbio.2007.08.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Fontes AG, Moreno J, Vargas MA, Rivas J. Dependence on growth phase and temperature of the composition of a nitrogen-fixing cyanobacterium. Biotechnol Bioeng 2004; 40:681-5. [DOI: 10.1002/bit.260400606] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Abstract
Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid that plays an important role in the regulation of biological functions and prevention and treatment of a number of human diseases such as heart and inflammatory diseases. As fish oil fails to meet the increasing demand for purified EPA, alternative sources are being sought. Microalgae contain large quantities of high-quality EPA and they are considered a potential source of this important fatty acid. Some microalgae can be grown heterotrophically on cheap organic substrate without light. This mode of cultivation can be well controlled and provides the possibility to maximize EPA production on a large scale. Numerous strategies have been investigated for commercial production of EPA by microalgae. These include screening of high EPA-yielding microalgal strains, improvement of strains by genetic manipulation, optimization of culture conditions, and development of efficient cultivation systems. This paper reviews recent advances in heterotrophic production of EPA by microalgae with an emphasis on the use of diatoms as producing organisms.
Collapse
Affiliation(s)
- Zhi-You Wen
- Department of Botany, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China
| | | |
Collapse
|
12
|
Wen ZY, Chen F. Application of statistically-based experimental designs for the optimization of eicosapentaenoic acid production by the diatom Nitzschia laevis. Biotechnol Bioeng 2001; 75:159-69. [PMID: 11536138 DOI: 10.1002/bit.1175] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Statistically based experimental designs were applied to the optimization of medium components and environmental factors for eicosapentaenoic acid (EPA) production by the diatom Nitzschia laevis in heterotrophic conditions. First, the Plackett-Burman design was used to evaluate the effects of variables including medium components and environmental factors on cell growth and EPA production. Among these variables, NaCl, CaCl(2), PI metal solution, pH, and temperature were identified to have the significant effects (with confidence level > 90 %). Subsequently, the concentrations of NaCl, CaCl(2), PI metal solution as well as the values of pH and temperature were optimized using central composite design. The cell growth and EPA production were found to respectively correlate to NaCl, CaCl(2), pH, and temperature that could be represented by second-order polynomial models. The optimal values of the four parameters were determined by response surface and numerical analyses as 8 g/L NaCl, 0.10 g/L CaCl(2), pH 8.5 and 19.8 degrees C for cell dry weight (DW), and 14 g/L NaCl, 0.10 g/L CaCl(2), pH 8.5 and 18 degrees C for EPA production, respectively. The subsequent verification experiments confirmed the validity of the models. This optimization strategy led to a DW of 9 g/L, an EPA yield of 280 mg/L and an EPA productivity of 28 mg/L/d, respectively, which were considerably higher than those obtained in the previous studies.
Collapse
Affiliation(s)
- Z Y Wen
- Department of Botany, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | | |
Collapse
|
13
|
Jiang Y, Chen F. Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalge Crypthecodinium cohnii. J AM OIL CHEM SOC 2000. [DOI: 10.1007/s11746-000-0099-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yue Jiang
- ; Department of Botany; The University of Hong Kong; Pokfulam Road Hong Kong, People's Republic of China
| | - Feng Chen
- ; Department of Botany; The University of Hong Kong; Pokfulam Road Hong Kong, People's Republic of China
| |
Collapse
|
14
|
|
15
|
|
16
|
|
17
|
Fábregas J, Cid A, Morales E, Cordero B, Otero A. Discrepancies between cell volume and organic content in semi-continuous cultures of a marine microalga. Lett Appl Microbiol 1996. [DOI: 10.1111/j.1472-765x.1996.tb01144.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
|
19
|
Arad S(M, Yaron A. Natural pigments from red microalgae for use in foods and cosmetics. Trends Food Sci Technol 1992. [DOI: 10.1016/0924-2244(92)90145-m] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Lee YK, Low CS. Effect of photobioreactor inclination on the biomass productivity of an outdoor algal culture. Biotechnol Bioeng 1991; 38:995-1000. [DOI: 10.1002/bit.260380906] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
|