2
|
Mixed cultures of allogeneic dendritic cells are phenotypically and functionally stable - a potential for primary cell-based "off the shelf" product generation. Cent Eur J Immunol 2021; 46:152-161. [PMID: 34764784 PMCID: PMC8568021 DOI: 10.5114/ceji.2021.107555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/12/2021] [Indexed: 11/29/2022] Open
Abstract
Vaccination against tumors using antigen-pulsed dendritic cell (DC) vaccines has greatly evolved over the last decade, with hundreds of active human clinical trials well on the way. The use of an autologous source for DC-based vaccine therapeutics remains the obvious choice in the majority of clinical studies; however, novel evidence suggests that an allogeneic source of DCs can yield success if administered in the right context. One of the challenges facing successful DC vaccination protocols is the generation of large enough numbers of DCs intended for vaccination and standardization of these procedures. In addition, variations in the quality of DC vaccines due to donor-to-donor variation represent an important therapeutic factor. To this day it has not been shown whether DCs from different donors can readily co-exist within the same co-culture for the extended periods required for vaccine manufacture. We demonstrate that generation of allogeneic DC co-cultures, generated from multiple unrelated donors, allows the preservation of their phenotypical and functional properties in vitro for up to 72 hours. Therefore, in the case of an allogeneic vaccination approach, one could ensure large numbers of DCs generated from a primary cell source intended for multiple vaccinations. By generating large amounts of ex vivo manufactured DCs from multiple donors, this would represent the possibility to ensure sufficient amounts of equipotent “off the shelf” product that could e.g. be used for an entire cohort of patients within a study.
Collapse
|
3
|
A protocol for rapid monocyte isolation and generation of singular human monocyte-derived dendritic cells. PLoS One 2020; 15:e0231132. [PMID: 32271804 PMCID: PMC7145147 DOI: 10.1371/journal.pone.0231132] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/17/2020] [Indexed: 01/01/2023] Open
Abstract
The monocyte-derived dendritic cells (moDCs) are a subset of dendritic cells widely used in immunological studies as a convenient and easy approach after isolation of mononuclear cells directly from peripheral blood mononuclear cells (PBMC). Both the purification and cell culture of monocytes impact on the differentiation of monocytes into moDCs. The methodology to isolate and differentiate monocytes into moDCs is still controversial. We aimed to compare three different protocols for monocyte isolation from PBMC: 1) Cold-aggregation; 2) Percoll gradient; and 3) Magnetic beads cell-enrichment. Additionally we also compared four different monocyte differentiation and culture techniques: 1) Cell culture media; 2) Serum sources; 3) required GM-CSF and IL-4 concentrations; 4) Cell culture systems. We used flow cytometry analysis of light scattering and/or expression of pan surface markers, such as CD3, CD14 and CD209 to determine isolation/differentiation degree. Purified PBMC followed by two steps of cold aggregation, yielded cell viability around 95% with poor monocyte enrichment (monocytes increase vs. lymphocytes reduction was not statistically significant, p>0.05). Conversely, monocyte isolation from PBMC with discontinuous Percoll gradient generated around 50% cell viability. Albeit, we observed a significant reduction (p≤0.05) of lymphocytes contaminants. The magnetic beads cell-enrichment yield cell viability higher than 95%, as high as a significant lymphocyte depletion (p≤0.005) when compared to all other techniques employed. The moDCs showed better differentiation based on increased CD209 expression, but lower CD14 levels, when cells were cultured in RPMI medium plus 500IU/mL of both GM-CSF and IL-4 in a semi-adherent fashion. Serum sources showed no influence on the culture performance. In conclusion, the magnetic beads cell-enrichment showed superior cell viability, indicating that this approach is a better choice to isolate monocytes, and moDCs cultured afterwards in appropriate medium, serum, cytokines and culture system might influence the monocytes differentiation into moDC.
Collapse
|
4
|
Chakhtoura M, Chain RW, Sato PY, Qiu CC, Lee MH, Meissler JJ, Eisenstein TK, Koch WJ, Caricchio R, Gallucci S. Ethyl Pyruvate Modulates Murine Dendritic Cell Activation and Survival Through Their Immunometabolism. Front Immunol 2019; 10:30. [PMID: 30761126 PMCID: PMC6362406 DOI: 10.3389/fimmu.2019.00030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022] Open
Abstract
Attenuating the innate immunity activation could ameliorate inflammation and disease in settings such as transplant rejection or autoimmunity. Recently, a pivotal role for metabolic re-programming in TLR-induced dendritic cell (DC) activation has emerged. Ethyl pyruvate (EP), a pyruvate derivative, possesses anti-inflammatory properties in vitro and in animal models of disease. However, its effects on DCs remain elusive. We found that EP attenuated LPS-induced activation of murine GM-CSF bone marrow-derived dendritic cells (DCs) in vitro, reducing pro-inflammatory cytokine and IL-10 production, costimulatory molecule and MHC expression, the type I Interferon (IFN-I) response, the LPS-induced cell death, and the ability of DCs to stimulate allogeneic T cells. DC activation induced by TLR7 and TLR9 ligands was also suppressed by EP in vitro. Finally, EP decreased TLR-induced activation stimulated in vivo in conventional DCs and inflammatory monocytes. Investigating EP mechanisms, we found that EP decreased glycolysis and mitochondrial respiration, upon and in absence of TLR stimulation, by reducing ERK, AKT, and nitric oxide (NO) activation. These results indicate that EP inhibits most of the DC biological responses to TLR triggering, altering the metabolic reprogramming necessary for DC activation.
Collapse
Affiliation(s)
- Marita Chakhtoura
- Laboratory of Dendritic Cell Biology, Department of Microbiology-Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Robert W Chain
- Laboratory of Dendritic Cell Biology, Department of Microbiology-Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Priscila Y Sato
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Connie C Qiu
- Laboratory of Dendritic Cell Biology, Department of Microbiology-Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael H Lee
- Laboratory of Dendritic Cell Biology, Department of Microbiology-Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Joseph J Meissler
- Department of Microbiology-Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Toby K Eisenstein
- Department of Microbiology-Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Roberto Caricchio
- Division of Rheumatology, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology-Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
5
|
El-Awady AR, Miles B, Scisci E, Kurago ZB, Palani CD, Arce RM, Waller JL, Genco CA, Slocum C, Manning M, Schoenlein PV, Cutler CW. Porphyromonas gingivalis evasion of autophagy and intracellular killing by human myeloid dendritic cells involves DC-SIGN-TLR2 crosstalk. PLoS Pathog 2015; 10:e1004647. [PMID: 25679217 PMCID: PMC4352937 DOI: 10.1371/journal.ppat.1004647] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/30/2014] [Indexed: 11/18/2022] Open
Abstract
Signaling via pattern recognition receptors (PRRs) expressed on professional antigen presenting cells, such as dendritic cells (DCs), is crucial to the fate of engulfed microbes. Among the many PRRs expressed by DCs are Toll-like receptors (TLRs) and C-type lectins such as DC-SIGN. DC-SIGN is targeted by several major human pathogens for immune-evasion, although its role in intracellular routing of pathogens to autophagosomes is poorly understood. Here we examined the role of DC-SIGN and TLRs in evasion of autophagy and survival of Porphyromonas gingivalis in human monocyte-derived DCs (MoDCs). We employed a panel of P. gingivalis isogenic fimbriae deficient strains with defined defects in Mfa-1 fimbriae, a DC-SIGN ligand, and FimA fimbriae, a TLR2 agonist. Our results show that DC-SIGN dependent uptake of Mfa1+P. gingivalis strains by MoDCs resulted in lower intracellular killing and higher intracellular content of P. gingivalis. Moreover, Mfa1+P. gingivalis was mostly contained within single membrane vesicles, where it survived intracellularly. Survival was decreased by activation of TLR2 and/or autophagy. Mfa1+P. gingivalis strain did not induce significant levels of Rab5, LC3-II, and LAMP1. In contrast, P. gingivalis uptake through a DC-SIGN independent manner was associated with early endosomal routing through Rab5, increased LC3-II and LAMP-1, as well as the formation of double membrane intracellular phagophores, a characteristic feature of autophagy. These results suggest that selective engagement of DC-SIGN by Mfa-1+P. gingivalis promotes evasion of antibacterial autophagy and lysosome fusion, resulting in intracellular persistence in myeloid DCs; however TLR2 activation can overcome autophagy evasion and pathogen persistence in DCs. Among the most successful of human microbes are intracellular pathogens. By entering the intracellular milieu, these pathogens are protected from harsh environmental factors in the host, including the humoral and cellular immune responses. Porphyromonas gingivalis is an opportunistic pathogen that colonizes the oral mucosa and accesses the bloodstream and distant sites such as the blood vessel walls, brain, placenta and other organs. Still unclear is how P. gingivalis traverses from oral mucosa to these distant sites. Dendritic cells are highly migratory antigen presenting cells that “patrol” the blood, skin, mucosa and all the major organ systems. Capture of microbes by dendritic cells activates a tightly regulated series of events, including directed migration towards the secondary lymphoid organs, where processed antigens are ostensibly presented to T cells. Autophagy is now recognized as an integral component of microbial clearance, antigen processing and presentation by dendritic cells. We report here that P. gingivalis is able to subvert autophagic destruction within dendritic cells. This occurs through its glycoprotein fimbriae, called Mfa-1, which targets the C-type lectin DC-SIGN on dendritic cells. The other major fimbriae on P. gingivalis, FimA, targets TLR2, which promotes autophagic destruction of P. gingivalis. We conclude that DC-SIGN-TLR2 crosstalk determines the intracellular fate of this pathogen within dendritic cells, and may have profound implications for the treatment of many chronic diseases involving low-grade infections.
Collapse
Affiliation(s)
- Ahmed R. El-Awady
- Department of Periodontics, Georgia Regents University, Augusta, Georgia, United States of America
| | - Brodie Miles
- Department of Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - Elizabeth Scisci
- School of Dental Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Zoya B. Kurago
- Department of Oral Health and Diagnostic Sciences, Georgia Regents University, Augusta, Georgia, United States of America
| | - Chithra D. Palani
- Department of Oral Health and Diagnostic Sciences, Georgia Regents University, Augusta, Georgia, United States of America
| | - Roger M. Arce
- Department of Periodontics, Georgia Regents University, Augusta, Georgia, United States of America
| | - Jennifer L. Waller
- Department of Biostatistics and Epidemiology, Georgia Regents University, Augusta, Georgia, United States of America
| | - Caroline A. Genco
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Connie Slocum
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Matthew Manning
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, Georgia, United States of America
| | - Patricia V. Schoenlein
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, Georgia, United States of America
| | - Christopher W. Cutler
- Department of Periodontics, Georgia Regents University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|