1
|
Bhaloo A, Nguyen S, Lee BH, Valimukhametova A, Gonzalez-Rodriguez R, Sottile O, Dorsky A, Naumov AV. Doped Graphene Quantum Dots as Biocompatible Radical Scavenging Agents. Antioxidants (Basel) 2023; 12:1536. [PMID: 37627531 PMCID: PMC10451549 DOI: 10.3390/antiox12081536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidative stress is proven to be a leading factor in a multitude of adverse conditions, from Alzheimer's disease to cancer. Thus, developing effective radical scavenging agents to eliminate reactive oxygen species (ROS) driving many oxidative processes has become critical. In addition to conventional antioxidants, nanoscale structures and metal-organic complexes have recently shown promising potential for radical scavenging. To design an optimal nanoscale ROS scavenging agent, we have synthesized ten types of biocompatible graphene quantum dots (GQDs) augmented with various metal dopants. The radical scavenging abilities of these novel metal-doped GQD structures were, for the first time, assessed via the DPPH, KMnO4, and RHB (Rhodamine B protectant) assays. While all metal-doped GQDs consistently demonstrate antioxidant properties higher than the undoped cores, aluminum-doped GQDs exhibit 60-95% radical scavenging ability of ascorbic acid positive control. Tm-doped GQDs match the radical scavenging properties of ascorbic acid in the KMnO4 assay. All doped GQD structures possess fluorescence imaging capabilities that enable their tracking in vitro, ensuring their successful cellular internalization. Given such multifunctionality, biocompatible doped GQD antioxidants can become prospective candidates for multimodal therapeutics, including the reduction of ROS with concomitant imaging and therapeutic delivery to cancer tumors.
Collapse
Affiliation(s)
- Adam Bhaloo
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | - Steven Nguyen
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | - Bong Han Lee
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | - Alina Valimukhametova
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | | | - Olivia Sottile
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | - Abby Dorsky
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | - Anton V. Naumov
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| |
Collapse
|
2
|
Wu C, Wang J, Xu W, Zhang W, Mai K. Dietary ascorbic acid modulates the expression profile of stress protein genes in hepatopancreas of adult Pacific abalone Haliotis discus hannai Ino. FISH & SHELLFISH IMMUNOLOGY 2014; 41:120-125. [PMID: 25193867 DOI: 10.1016/j.fsi.2014.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 06/03/2023]
Abstract
This study was conducted to investigate the effects of dietary ascorbic acid (AA) on transcriptional expression patterns of antioxidant proteins, heat shock proteins (HSP) and nuclear factor kappa B (NF-κB) in the hepatopancreas of Pacific abalone Haliotis discus hannai Ino (initial average length: 84.36 ± 0.24 mm) using real-time quantitative PCR assays. L-ascorbyl-2-molyphosphate (LAMP) was added to the basal diet to formulate four experimental diets containing 0.0, 70.3, 829.8 and 4967.5 mg AA equivalent kg(-1) diets, respectively. Each diet was fed to triplicate groups of adult abalone in acrylic tanks (200 L) in a flow-through seawater system. Each tank was stocked with 15 abalone. Animals were fed once daily (17:00) to apparent satiation for 24 weeks. The results showed that the dietary AA (70.3 mg kg(-1)) could significantly up-regulate the expression levels of Cu/Zn superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), feritin (FT) and heat shock protein 26 (HSP26) in the hepatopancreas of abalone in this treatment compared to the controls. However, the expression levels of Mn-SOD, glutathione peroxidase (GPX), thioredoxin peroxidase (TPx), selenium-binding protein (SEBP), HSP70 and HSP90 were significantly down-regulated. Compared with those in the group with 70.3 mg kg(-1) dietary AA, the expression levels of CAT, GST and HSP26 were decreased in abalone fed with very high dietary AA (4967.5 mg kg(-1)). In addition, significant up-regulations of expression levels of Mn-SOD, GPX, TPx, SEBP, FT, HSP70, HSP90 and NF-κB were observed in abalone fed with apparently excessive dietary AA (829.8 and 4967.5 mg kg(-1)) as compared to those fed 70.3 mg kg(-1) dietary AA. These findings showed that dietary AA influenced the expression levels of antioxidant proteins, heat shock proteins and NF-κB in the hepatopancreas of abalone at transcriptional level. Levels of dietary AA that appeared adequate (70.3 mg kg(-1)) reduced the oxidative stress by influencing gene expression of antioxidant proteins, but excessive dietary AA (829.8 and 4967.5 mg kg(-1)) induced oxidative stress in Pacific abalone H. discus hannai.
Collapse
Affiliation(s)
- Chenglong Wu
- The Key Laboratory of Mariculture (Education Ministry of China), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, PR China; Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Huzhou University, 1 Xueshi Road, Huzhou 313000, PR China
| | - Jia Wang
- The Key Laboratory of Mariculture (Education Ministry of China), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, PR China
| | - Wei Xu
- The Key Laboratory of Mariculture (Education Ministry of China), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, PR China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Education Ministry of China), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, PR China.
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Education Ministry of China), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, PR China
| |
Collapse
|
3
|
Zhang BZ, Guo XT, Chen JW, Zhao Y, Cong X, Jiang ZL, Cao RF, Cui K, Gao SS, Tian WR. Saikosaponin-D attenuates heat stress-induced oxidative damage in LLC-PK1 cells by increasing the expression of anti-oxidant enzymes and HSP72. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:1261-77. [PMID: 25169909 DOI: 10.1142/s0192415x14500797] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heat stress stimulates the production of reactive oxygen species (ROS), which cause oxidative damage in the kidney. This study clarifies the mechanism by which saikosaponin-d (SSd), which is extracted from the roots of Bupleurum falcatum L, protects heat-stressed pig kidney proximal tubular (LLC-PK1) cells against oxidative damage. SSd alone is not cytotoxic at concentrations of 1 or 3 μg/mL as demonstrated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. To assess the effects of SSd on heat stress-induced cellular damage, LLC-PK1 cells were pretreated with various concentrations of SSd, heat stressed at 42°C for 1 h, and then returned to 37°C for 9 h. DNA ladder and MTT assays demonstrated that SSd helped to prevent heat stress-induced cellular damage when compared to untreated cells. Additionally, pretreatment with SSd increased the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) but decreased the concentration of malondialdehyde (MDA) in a dose-dependent manner when compared to controls. Furthermore, real-time PCR and Western blot analysis demonstrated that SSd significantly increased the expression of copper and zinc superoxide dismutase (SOD-1), CAT, GPx-1 and heat shock protein 72 (HSP72) at both the mRNA and protein levels. In conclusion, these results are the first to demonstrate that SSd ameliorates heat stress-induced oxidative damage by modulating the activity of anti-oxidant enzymes and HSP72 in LLC-PK1 cells.
Collapse
Affiliation(s)
- Bao-Zhen Zhang
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Trovato A, Taviano MF, Pergolizzi S, Campolo L, De Pasquale R, Miceli N. Citrus bergamia Risso & Poiteau juice protects against renal injury of diet-induced hypercholesterolemia in rats. Phytother Res 2010; 24:514-9. [PMID: 19655295 DOI: 10.1002/ptr.2971] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present study was designed to evaluate the protective effect of treatment with Citrus bergamia juice (1 mL/day, for 30 days) against hypercholesterolemic diet-induced renal injury in rat.C. bergamia juice provoked a significant reduction in the plasma levels of cholesterol, triglycerides and LDL, and an increase in HDL levels, versus hyperlipidemic controls (p < 0.05). Plasma creatinine levels, measured to assess renal glomerular function, did not change compared with hyperlipidemic controls (0.37 +/- 0.11 mg/dL and 0.32 +/- 0.10 mg/dL, respectively). Moreover, in vivo lipid peroxidation was measured in kidney homogenate; C. bergamia juice administration significantly decreased MDA levels elevations compared with hyperlipidemic controls (4.10 +/- 0.10 nmol/mg protein and 4.78 +/- 0.15 nmol/mg protein, respectively).Histological observations of the kidney supported the biochemical data and indicated a protective effect of C. bergamia juice on the development of renal damage in hypercholesterolemic rats.The antioxidant potential of C. bergamia juice was examined in two in vitro systems: in the DPPH test the juice showed a noticeable effect on scavenging free radicals (IC(50) = 25.01 +/- 0.70 +/-L); in the reducing power assay it showed a strong activity, too (1.44 +/- 0.01 ASE/mL).These findings suggest that C. bergamia juice has a protective role in hypercholesterolemic diet-induced renal damage, which may be attributed to its antioxidant properties.
Collapse
Affiliation(s)
- Ada Trovato
- Pharmaco-Biological Department, University of Messina, Vill SS Annunziata, 98168 Messina, Italy
| | | | | | | | | | | |
Collapse
|
5
|
Siefker K, DiSilvestro RA. Safety and antioxidant effects of a modest soy protein intervention in hemodialysis patients. J Med Food 2006; 9:368-72. [PMID: 17004900 DOI: 10.1089/jmf.2006.9.368] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Antioxidant/anti-inflammatory effects of isoflavone-containing soy protein could partly explain why hemodialysis patients in Japan tend to outlive U.S. hemodialysis patients. However, a safety concern is that dialysis patients do not clear isoflavones well. A low-dose intervention with high isoflavone soy protein (25 g protein, four times a week for 4 weeks) was tested in 17 U.S. hemodialysis patients (eight given soy protein, nine given whey protein as a control). Soy protein intake produced no harmful effects based on a typical battery of blood safety tests. Post-treatment isoflavone levels, though high, were similar to those reported after a single 20-g soy protein intake by dialysis patients. In addition, intake of soy, but not whey, reduced plasma values for oxidized low-density lipoprotein, a risk factor for cardiovascular disease, which is a common mortality cause in hemodialysis patients. Three other measures of oxidant stress and/or inflammation were unchanged by the modest high isoflavone soy protein intervention. In conclusion, in hemodialysis patients, a fairly short, low intake level intervention with high isoflavone soy protein produced no obvious harm, and produced one potentially beneficial effect. This justifies tests of higher-dose, longer interventions with soy protein in hemodialysis patients.
Collapse
Affiliation(s)
- Kristina Siefker
- Human Nutrition, The Ohio State University, Columbus, Ohio 43210-1295, USA
| | | |
Collapse
|
6
|
Saxena AK. Emerging global epidemic of obesity: the renal perspective. Ann Saudi Med 2006; 26:288-95. [PMID: 16883080 PMCID: PMC6074512 DOI: 10.5144/0256-4947.2006.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Obesity, as a core component of the metabolic syndrome, is among the top ten global health risks classified by the World Health Organization (WHO) as being strongly associated with the development and progression of chronic renal disease--a widely prevalent but often silent condition. Obesity carries elevated risks of cardiovascular morbidity and mortality besides having an array of metabolic complications. Maladaptive glomerular hemodynamics with increased intraglomerular pressure in association with vasoactive, fibrogenic substances released from adipocytes, in addition to cytokines and hormones, are the key factors in the causation of renal injury and the progression of nephron loss among obese subjects.
Collapse
Affiliation(s)
- Anil Kumar Saxena
- Postgraduate Department of Medicine, Division of Nephrology, King Fahad Hospital and Tertiary Care Center, Al- Hasa, Saudi Arabia.
| |
Collapse
|
7
|
McCarty MF. Adjuvant strategies for prevention of glomerulosclerosis. Med Hypotheses 2006; 67:1277-96. [PMID: 16828231 DOI: 10.1016/j.mehy.2004.11.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 11/29/2004] [Indexed: 12/23/2022]
Abstract
The glomerulosclerosis which frequently complicates diabetes and severe hypertension is mediated primarily by increased mesangial production and activation of transforming growth factor-beta (TGF-beta), which acts on mesangial cells to boost their production of matrix proteins while suppressing extracellular proteolytic activity. Hyperglycemia and glomerular hypertension work in various complementary ways to stimulate superoxide production via NADPH oxidase in mesangial cells; the resulting oxidant stress results in the induction and activation of TFG-beta. Nitric oxide, generated by glomerular capillaries and by mesangial cells themselves, functions physiologically to oppose mesangial TGF-beta overproduction; however, NO bioactivity is compromised by oxidant stress. In addition to low-protein diets and drugs that suppress angiotensin II activity, a variety of other agents and measures may have potential for impeding the process of glomerulosclerosis. These include vitamin E, which blunts the rise in mesangial diacylglycerol levels induced by hyperglycemia; statins and (possibly) policosanol, which down-regulate NADPH oxidase activity by diminishing isoprenylation of Rac1; lipoic acid, whose potent antioxidant activity antagonizes the impact of oxidant stress on TGF-beta expression; pyridoxamine, which inhibits production of advanced glycation endproducts; arginine, high-dose folate, vitamin C, and salt restriction, which may support glomerular production of nitric oxide; and estrogen and soy isoflavones, which may induce nitric oxide synthase in glomerular capillaries while also interfering with TGF-beta signaling. Further research along these lines may enable the development of complex nutraceuticals which have important clinical utility for controlling and preventing glomerulosclerosis and renal failure. Most of these measures may likewise reduce risk for left ventricular hypertrophy in hypertensives, inasmuch as the signaling mechanisms which mediate this disorder appear similar to those involved in glomerulosclerosis.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, USA.
| |
Collapse
|
8
|
Abstract
Renal failure involves a significant impairment of the essential functions of the kidney, which can be either acute with sudden and rapid onset (acute renal failure [ARF]) or chronic with gradual onset (chronic renal failure [CRF]). ARF, if detected early, may be halted or reversed, whereas CRF is generally irreversible. Without treatment or intervention, both forms of renal failure lead to end stage renal failure (ESRF) or end stage renal disease (ESRD), requiring renal replacement therapy (RRT) in the form of dialysis or renal transplantation for survival. However, provision of RRT requires expert teams working in specialised units, making therapy of patients with renal failure expensive; furthermore, RRT is complex, with its own complications. Although pharmacological interventions have shown promise in experimental models, these have not been as successful in the clinical setting (e.g., administration of atrial natriuretic peptide, low-dose dopamine). At present, drugs are administered during CRF to either reduce one of the many risk factors of CRF (e.g., angiotensin-converting enzyme inhibitors, statins) or to deal with the consequences of CRF (e.g., erythropoietin, calcitriol). Recent evidence suggests that some of these interventions may provide further direct beneficial effects via reduction of renal inflammation. Although these interventions have greatly improved the prospects for patients suffering ESRF, the development of novel drugs and therapies with which to reduce the consequences of renal failure and ESRD remain topics of great interest. This article reviews the therapies available for the prevention and management of renal failure in adults and describes, in detail, emerging drugs and novel interventions that may soon become available for the treatment or prevention of ESRF.
Collapse
Affiliation(s)
- Prabal K Chatterjee
- Department of Pharmacology, School of Pharmacy & Biomolecular Sciences, University of Brighton, Cockcroft Building, Moulsecoomb, Brighton, BN2 4GJ, UK.
| | | |
Collapse
|
9
|
Park WH, Lee SK, Kim CH. A Korean herbal medicine, Panax notoginseng, prevents liver fibrosis and hepatic microvascular dysfunction in rats. Life Sci 2005; 76:1675-90. [PMID: 15698847 DOI: 10.1016/j.lfs.2004.07.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 07/21/2004] [Indexed: 11/25/2022]
Abstract
We assessed the prevention of hepatic fibrogenesis by water-extract of Panax notoginseng Buck F.H. Chen. (Arialiaceae) root (PNS) in Long-Evans rats with cinnamon coat color (LEC rats). LEC rats were divided into three groups A, fed on a basal diet (BD); B, fed on BD plus 1% PNS; and C), fed on BD plus 0.005% lycopene as a control. All rats were sacrificed at 26 weeks of age. The percentage of the total area involved by fibrosis was 1.46 +/- 0.47 in group A, 0.83 +/- 0.10 in B (P=0.0030, B vs A) and 0.91 +/- 0.45 in C (P=0.0035, C vs. A). The percentage of the total area that was stained for alpha-SMA was 0.56 +/- 0.34 in group A, 0.15 +/- 0.02 in B (P=0.0016, B vs. A and 0.11 +/- 0.01 in C (P=0.0025, C vs. A. In group B, malondialdehyde (MDA) in the liver was lower than in group C (P=0.007). In group C, the concentration of iron in the liver was lower than in group A (P=0.0053). Thus, PNS suppressed fibrogenesis through reduced generation of lipid peroxides. The mechanisms of this preventive effect of fibrogenesis with PNS were suggested to inhibit the stellate cell activity. Second objective of this study was to determine whether PNS affects hepatic microvascular dysfunction elicited by gut ischemia and reperfusion (I/R), since gut I/R causes hepatic microvascular dysfunction, and to investigate the role of nitric oxide (NO). Male Wistar rats were exposed to 30 min of gut ischemia followed by 60 min of reperfusion. Intravital microscopy was used to monitor the number of non-perfused sinusoids (NPS). In another set of experiments, PNS (1 g/kg per day intragastrically) was administered to rats for 7 days. In some experiments, dexamethasone (ST) (2 mg/kg per day intravenously) was administered. In control rats, gut I/R elicited increases in the number of NPS, and plasma TNF-alpha and ALT activities, and these changes were mitigated by the pretreatment with PNS. Pretreatment with an NO synthase inhibitor diminished the protective effects of PNS on the increase in NPS and plasma TNF-alpha levels, but not its effect on the increase in plasma ALT activities. Pretreatment with PNS increased plasma nitrite/nitrate levels. The responses caused by gut I/R were attenuated by the pretreatment with ST. Pretreatment with an NO synthase inhibitor did not affect the effect of ST. These results suggest that PNS attenuates the gut I/R-induced hepatic microvascular dysfunction and inflammatory responses such as TNF-alpha production in the early phase via enhancement of NO production, and sequential hepatocellular damage via its anti-inflammatory effect.
Collapse
Affiliation(s)
- Won-Hwan Park
- Department of Diagnosis, Biochemistry and Molecular Biology, Dongguk University College of Oriental Medicine and National Research Laboratory for Glycobiology, Sukjang-Dong 707, Kyungju City, Kyungbuk 780-714, Korea
| | | | | |
Collapse
|
10
|
Chade AR, Krier JD, Rodriguez-Porcel M, Breen JF, McKusick MA, Lerman A, Lerman LO. Comparison of acute and chronic antioxidant interventions in experimental renovascular disease. Am J Physiol Renal Physiol 2004; 286:F1079-86. [PMID: 14722019 DOI: 10.1152/ajprenal.00385.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) can modulate renal hemodynamics and function both directly, by leading to vasoconstriction, and indirectly, by inducing renal inflammation and tissue growth. The involvement of oxidative stress in the pathogenesis of renovascular disease (RVD) is increasingly recognized, but the relative contribution of long-term tissue injury to renal dysfunction remains unclear. We hypothesized that functional and structural alterations elicited by oxidative stress in RVD would be more effectively modulated by chronic than by acute antioxidant intervention. Renal hemodynamics and function were quantified in vivo in pigs using electron-beam computed tomography at baseline and after vasoactive challenge (ACh and sodium nitroprusside); after 12 wk of RVD (simulated by concurrent hypercholesterolemia and renal artery stenosis, n = 7); RVD acutely infused with the SOD-mimetic tempol (RVD+tempol, n = 7); RVD chronically supplemented with antioxidant vitamins C (1 g) and E (100 IU/kg; RVD+vitamins, n = 7); or control (normal, n = 7). Renal tissue was studied ex vivo using immunoblotting and immunohistochemistry. Basal renal blood flow (RBF) and glomerular filtration rate were similarly decreased in all RVD groups. ACh-stimulated RBF remained unchanged in RVD, increased in RVD+tempol, but further increased (similarly to normal) in RVD+vitamins ( P < 0.05 vs. RVD). Furthermore, RVD+vitamins also showed a decreased presence of superoxide anion, decreased NAD(P)H-oxidase and nitrotyrosine expression, increased endothelial nitric oxide synthase expression, and attenuated renal fibrosis. Chronic antioxidant intervention in early RVD improved renal hemodynamic responses more effectively than acute intervention, likely due to increased nitric oxide bioavailability and decreased structural injury. These suggest that chronic tissue changes play an important role in renal compromise mediated by oxidative stress in RVD.
Collapse
Affiliation(s)
- Alejandro R Chade
- Div. of Hypertension, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Chade AR, Rodriguez-Porcel M, Herrmann J, Krier JD, Zhu X, Lerman A, Lerman LO. Beneficial effects of antioxidant vitamins on the stenotic kidney. Hypertension 2003; 42:605-12. [PMID: 12925565 DOI: 10.1161/01.hyp.0000089880.32275.7c] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Renal artery stenosis (RAS) may lead to renal injury, partly mediated through increased oxidative stress. However, the potential effects of chronic oral antioxidant intervention on the stenotic kidney remain unknown. This study was designed to test the hypothesis that chronic antioxidant vitamin supplementation in RAS would preserve renal function and structure. Single-kidney hemodynamics and function were quantified in vivo in pigs using electron-beam CT after 12 weeks of unilateral RAS (n=7), a similar degree of RAS orally supplemented with vitamins C (1 g) and E (100 IU/kg) (RAS+Vitamins, n=7), or controls (normal, n=7). Renal tissue was studied ex vivo using Western blotting and immunohistochemistry. Mean arterial pressure was similarly elevated in both RAS groups, while ischemic renal volume and glomerular filtration rate were similarly reduced. Renal blood flow was decreased in RAS compared with normal (326.5+/-99.9 versus 553.4+/-48.7 mL/min, respectively, P=0.01), but preserved in RAS+Vitamins (485.2+/-104.1 mL/min, P=0.3 versus normal). The marked increase in the expression of the NADPH-oxidase subunits p47phox and p67phox, nitrotyrosine, endothelial and inducible nitric oxide synthase, and nuclear factor-kappaB observed in RAS (P<0.05 versus normal) was normalized in RAS+Vitamins (P>0.1). Furthermore, trichrome staining and the expression of transforming growth factor-beta and tissue inhibitor of matrix-metalloproteinase-1 were also decreased in RAS+Vitamins. In conclusion, chronic blockade of the oxidative stress pathway in RAS using antioxidant vitamins improved renal hemodynamics and decreased oxidative stress, inflammation, and fibrosis in the ischemic kidney. These observations underscore the involvement of oxidative stress in renal injury in RAS and support a role for antioxidant vitamins in preserving the ischemic kidney.
Collapse
Affiliation(s)
- Alejandro R Chade
- Division of Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minn 55905, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Khassaf M, McArdle A, Esanu C, Vasilaki A, McArdle F, Griffiths RD, Brodie DA, Jackson MJ. Effect of vitamin C supplements on antioxidant defence and stress proteins in human lymphocytes and skeletal muscle. J Physiol 2003; 549:645-52. [PMID: 12692182 PMCID: PMC2342961 DOI: 10.1113/jphysiol.2003.040303] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/27/2003] [Accepted: 03/03/2003] [Indexed: 01/03/2023] Open
Abstract
Oxidative stress induces adaptations in the expression of protective enzymes and heat shock proteins (HSPs) in a variety of tissues. We have examined the possibility that supplementation of subjects with the nutritional antioxidant, vitamin C, influences the ability of lymphocytes to express protective enzymes and HSPs following exposure to an exogenous oxidant and the response of skeletal muscle to the physiological oxidative stress that occurs during exercise in vivo. Our hypothesis was that an elevation of tissue vitamin C content would reduce oxidant-induced expression of protective enzymes and HSP content. Lymphocytes from non-supplemented subjects responded to hydrogen peroxide with increased activity of superoxide dismutase (SOD) and catalase, and HSP60 and HSP70 content over 48 h. Vitamin C supplementation at a dose of 500 mg day-1 for 8 weeks was found to increase the serum vitamin C concentration by ~50 %. Lymphocytes from vitamin C-supplemented subjects had increased baseline SOD and catalase activities and an elevated HSP60 content. The SOD and catalase activities and the HSP60 and HSP70 content of lymphocytes from supplemented subjects did not increase significantly in response to hydrogen peroxide. In non-supplemented subjects, a single period of cycle ergometry was found to significantly increase the HSP70 content of the vastus lateralis. Following vitamin C supplementation, the HSP70 content of the muscle was increased at baseline with no further increase following exercise. We conclude that, in vitamin C-supplemented subjects, adaptive responses to oxidants are attenuated, but that this may reflect an increased baseline expression of potential protective systems against oxidative stress (SOD, catalase and HSPs).
Collapse
Affiliation(s)
- M Khassaf
- Department of Medicine, University of Liverpool, Liverpool L69 3GA, UK
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen J, He J, Ogden LG, Batuman V, Whelton PK. Relationship of serum antioxidant vitamins to serum creatinine in the US population. Am J Kidney Dis 2002; 39:460-8. [PMID: 11877564 DOI: 10.1053/ajkd.2002.31389] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Several small clinical studies have reported that serum vitamin A levels were higher but serum vitamin C levels were lower among patients with end-stage renal disease. However, the relationship of antioxidant vitamins to renal function has not been studied in the general population. We examined the relationship of serum antioxidant vitamin levels to serum creatinine levels and risk for hypercreatininemia in a representative sample of 6,629 non-Hispanic whites, 4,411 non-Hispanic blacks, and 4,480 Mexican Americans aged 18 years or older who participated in the Third National Health and Nutrition Examination Survey. Serum antioxidant vitamins were measured by isocratic high-performance liquid chromatography, and serum creatinine levels, by the modified kinetic Jaffé method. Serum vitamin A level was positively and significantly associated with serum creatinine level, whereas serum vitamin C level was inversely and significantly associated with serum creatinine level. A one-SD higher level of serum vitamin A (16.9 microg/dL) was associated with a 2.53-fold (95% confidence interval, 1.96 to 3.27; P < 0.001), 2.07-fold (95% confidence interval, 1.84 to 2.33; P < 0.001), and 2.76-fold (95% confidence interval, 1.74 to 4.37; P < 0.001) greater risk for hypercreatininemia among non-Hispanic whites, non-Hispanic blacks, and Mexican Americans, respectively. A one-SD higher serum vitamin C level (0.45 mg/dL) was associated with a 22% (95% confidence interval, 0.06 to 0.35; P = 0.01) and 42% (95% confidence interval, 0.08 to 0.62; P = 0.02) lower risk for hypercreatininemia in non-Hispanic whites and Mexican Americans. Our study provides useful information to support the hypothesis that antioxidant vitamins may have an important role in the pathogenesis of chronic renal failure.
Collapse
Affiliation(s)
- Jing Chen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
14
|
Williamson EM. Selected bibliography. Phytother Res 2000; 14:144-8. [PMID: 10685118 DOI: 10.1002/(sici)1099-1573(200003)14:2<144::aid-ptr633>3.0.co;2-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|