1
|
Togami K, Kanehira Y, Nakamura Y, Ishii H, Abe R, Yamamoto A, Takehara K, Yasuda M, Tada H, Chono S. Pirfenidone encapsulated in succinylated gelatin-coated liposomes exhibits sustained antifibrotic effects in vitro models of renal, pulmonary, and hepatic fibrosis. J Pharm Sci 2025; 114:103819. [PMID: 40345528 DOI: 10.1016/j.xphs.2025.103819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/11/2025]
Abstract
Fibrosis is characterized by excessive extracellular matrix accumulation, leading to organ dysfunction and irreversible damage in advanced stages. Challenges in sustaining drug levels within fibrotic lesions with the currently used antifibrotic therapies, including pirfenidone, often necessitate high drug doses that can cause systemic side effects. Here, we introduce a succinylated gelatin (SG)-coated liposome (SG-lip) system, which enhances pirfenidone retention and enables enzyme-responsive release at sites of fibrosis in an in vitro model. The SG coating, which ensures high collagen-binding affinity, is degraded by matrix metalloproteinases, which are overexpressed in fibrotic tissues, allowing targeted drug release. In vitro experiments using NRK-49F (kidney fibroblasts), WI-38 (lung fibroblasts), and RI-T (hepatic stellate cells) cultured on collagen I gel, SG-lip prolongs drug retention and sustains localized release at sites of fibrosis. In experiments simulating transient drug exposure by washing away the residual pirfenidone after treatment, pirfenidone-loaded SG-lip significantly inhibit fibroblast proliferation, invasion, and myofibroblast differentiation. Our enzyme-triggered drug delivery system enhances the antifibrotic efficacy of pirfenidone, with the potential to reduce systemic exposure and associated side effects. These findings highlight SG-lip as a promising platform for targeted antifibrotic therapy, offering a novel strategy to improve treatment of fibrosis.
Collapse
Affiliation(s)
- Kohei Togami
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan; Creation Research Institute of Life Science in KITA-no-DAICHI, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan; Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Hokkaido Pharmaceutical University, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8590, Japan.
| | - Yukimune Kanehira
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Hokkaido Pharmaceutical University, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8590, Japan
| | - Yuki Nakamura
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Hirotsugu Ishii
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Ryota Abe
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Akiyoshi Yamamoto
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Kanako Takehara
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Mio Yasuda
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Hitoshi Tada
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan; Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Hokkaido Pharmaceutical University, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8590, Japan
| | - Sumio Chono
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan; Creation Research Institute of Life Science in KITA-no-DAICHI, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan; Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Hokkaido Pharmaceutical University, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8590, Japan
| |
Collapse
|
2
|
Hasegawa T, Vroomen LG, Sivaraman A, Fujimori M, John NT, Coleman J, Mian BM, Srimathveeravalli G. Effect of Transforming Growth Factor-β Inhibition on Ureteral and Renal Scarring in a Rat Model of Upper Urinary Tract Ablation with Irreversible Electroporation. Bioelectricity 2024; 6:272-279. [PMID: 39712219 PMCID: PMC11656016 DOI: 10.1089/bioe.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Objective To determine whether adjuvant transforming growth factor-β (TGF-β) inhibition with pirfenidone (PFD) can mitigate ureteral wall scarring and related complications in a rat model of upper urinary tract ablation with irreversible electroporation (IRE). Methods Transmural ablation of the ureter was performed with IRE in 24 rats. Post-IRE, animals were randomly assigned to receive PFD or no drug, followed by euthanasia at 2-, 5-, or 10-days. The complete urinary tract was extracted, and the dimensions of kidney and ureter were measured. Immunohistochemistry was performed to quantify collagen deposition, α-smooth muscle actin (α-SMA) (myofibroblasts in ureter and kidney) and TGF-β (ureter only). Results Enlargement of the kidney and ureteral dilatation were apparent during gross necropsy of rats from both cohorts. The changes in anatomical measurements were significantly reduced in rats receiving PFD at Day 5 and 10 (p = 0.02 and 0.04, respectively). Collagen levels in the ureters gradually increased in rats from both cohorts at Day 2 and 5, but started to reduce by Day 10 in rats receiving PFD when compared with no treatment (p = 0.04). Myofibroblast levels and TGF-β staining in the ureters was lower in rats receiving PFD on Day 5 and 10, respectively (p < 0.01). Collagen levels and myofibroblast staining of the kidneys from rats receiving PFD was significantly lower than control on Days 5 and 10. Conclusion Adjuvant PFD can reduce myofibroblast activity and ureteral fibrosis at the site of IRE ablation, enabling safe soft tissue ablation adjacent or involving the upper urinary tract.
Collapse
Affiliation(s)
- Takaaki Hasegawa
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | | | - Arjun Sivaraman
- Department of Urology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | - Jonathan Coleman
- Department of Surgery, Urology Service, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Badar M. Mian
- Department of Urology, Albany Medical Center, Albany, New York, USA
| | - Govindarajan Srimathveeravalli
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
3
|
Im CY, Kim SH, Song KH, Ryu MO, Youn HY, Seo KW. Pirfenidone inhibits TGF-β1-induced fibrosis via downregulation of Smad and ERK pathway in MDCK cells. Vet Res Commun 2024; 48:3167-3176. [PMID: 39133399 PMCID: PMC11442594 DOI: 10.1007/s11259-024-10493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
The prevalence of chronic kidney disease (CKD) in dogs increases with age, and renal fibrosis is an important pathophysiological mechanism in this process. However, only a few drugs that can effectively inhibit fibrosis in the kidneys of dogs are currently available. In this study, we aimed to determine whether pirfenidone, a drug that has shown antifibrotic effects in various clinical studies, also exerts antifibrotic effects on canine renal tubular epithelial cells, Madin-Darby canine kidney cells (MDCK). To this end, we treated MDCK cells with various concentrations of pirfenidone, followed by transforming growth factor-beta1 (TGF-β1) to stimulate fibrotic conditions. A cell viability assay was performed to determine the effect of pirfenidone on cell survival. Fibrosis-related markers and TGF-β1 fibrotic pathway-related markers were assessed using qPCR, Western blot analysis and immunocytochemistry. A one-way analysis of variance (ANOVA) was performed, followed by Tukey's post-hoc test for multiple comparisons. Pirfenidone treatment significantly reduced the expression of profibrotic markers such as α-smooth muscle actin, fibronectin, and collagen. Additionally, it upregulated the expression of E-cadherin, an epithelial marker. Furthermore, pirfenidone effectively inhibited the phosphorylation of key factors involved in the TGF-β1 signaling pathway, including Smad2/3 and ERK1/2. These results demonstrate that pirfenidone suppresses TGF-β1-induced fibrosis in MDCK cells by attenuating epithelial-mesenchymal transition and the relevant signaling pathways.
Collapse
Affiliation(s)
- Chae-Yoon Im
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Se-Hoon Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ki-Hoon Song
- Research Institute, ViroCure Inc., Seoul, Republic of Korea
| | - Min-Ok Ryu
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hwa-Young Youn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyoung-Won Seo
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Lahane GP, Dhar A, Bhat A. Therapeutic approaches and novel antifibrotic agents in renal fibrosis: A comprehensive review. J Biochem Mol Toxicol 2024; 38:e23795. [PMID: 39132761 DOI: 10.1002/jbt.23795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Renal fibrosis (RF) is one of the underlying pathological conditions leading to progressive loss of renal function and end-stage renal disease (ESRD). Over the years, various therapeutic approaches have been explored to combat RF and prevent ESRD. Despite significant advances in understanding the underlying molecular mechanism(s), effective therapeutic interventions for RF are limited. Current therapeutic strategies primarily target these underlying mechanisms to halt or reverse fibrotic progression. Inhibition of transforming growth factor-β (TGF-β) signaling, a pivotal mediator of RF has emerged as a central strategy to manage RF. Small molecules, peptides, and monoclonal antibodies that target TGF-β receptors or downstream effectors have demonstrated potential in preclinical models. Modulating the renin-angiotensin system and targeting the endothelin system also provide established approaches for controlling fibrosis-related hemodynamic changes. Complementary to pharmacological strategies, lifestyle modifications, and dietary interventions contribute to holistic management. This comprehensive review aims to summarize the underlying mechanisms of RF and provide an overview of the therapeutic strategies and novel antifibrotic agents that hold promise in its treatment.
Collapse
Affiliation(s)
- Ganesh Panditrao Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir, India
| |
Collapse
|
5
|
dos Santos Bronel BA, Anauate AC, Maquigussa E, Boim MA, da Silva Novaes A. Determination of reference genes as a quantitative standard for gene expression analysis in mouse mesangial cells stimulated with TGF-β. Sci Rep 2022; 12:15626. [PMID: 36115882 PMCID: PMC9482652 DOI: 10.1038/s41598-022-19548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Reverse transcription-quantitative polymerase chain reaction (RT-PCR) is the gold standard technique for gene expression analysis, but the choice of quantitative reference genes (housekeeping genes, HKG) remains challenging. Identify the best HKG is essential for estimating the expression level of target genes. Therefore, the aim of this study was to determine the best HKG for an in vitro model with mouse mesangial cells (MMCs) stimulated with 5 ng/mL of TGF-β. Five candidates HKG were selected: Actb, Hprt, Gapdh, 18S and Ppia. After quantitative expression, the best combination of these genes was analyzed in silico using six software programs. To validate the results, the best genes were used to normalize the expression levels of fibronectin, vimentin and α-SMA. In silico analysis revealed that Ppia, Gapdh and 18S were the most stable genes between the groups. GenEX software and Spearman's correlation determined Ppia and Gapdh as the best HKG pair, and validation of the HKG by normalizing fibronectin, vimentin and α-SMA were consistent with results from the literature. Our results established the combination of Ppia and Gapdh as the best HKG pair for gene expression analysis by RT-PCR in this in vitro model using MMCs treated with TGF-β.
Collapse
|
6
|
Zhang Y, Jin D, Kang X, Zhou R, Sun Y, Lian F, Tong X. Signaling Pathways Involved in Diabetic Renal Fibrosis. Front Cell Dev Biol 2021; 9:696542. [PMID: 34327204 PMCID: PMC8314387 DOI: 10.3389/fcell.2021.696542] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetic kidney disease (DKD), as the most common complication of diabetes mellitus (DM), is the major cause of end-stage renal disease (ESRD). Renal interstitial fibrosis is a crucial metabolic change in the late stage of DKD, which is always considered to be complex and irreversible. In this review, we discuss the pathological mechanisms of diabetic renal fibrosis and discussed some signaling pathways that are closely related to it, such as the TGF-β, MAPK, Wnt/β-catenin, PI3K/Akt, JAK/STAT, and Notch pathways. The cross-talks among these pathways were then discussed to elucidate the complicated cascade behind the tubulointerstitial fibrosis. Finally, we summarized the new drugs with potential therapeutic effects on renal fibrosis and listed related clinical trials. The purpose of this review is to elucidate the mechanisms and related pathways of renal fibrosis in DKD and to provide novel therapeutic intervention insights for clinical research to delay the progression of renal fibrosis.
Collapse
Affiliation(s)
- Yuqing Zhang
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Endocrinology Department, Guang'anmen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rongrong Zhou
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuting Sun
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Endocrinology Department, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
7
|
Predictive Value of Precision-Cut Kidney Slices as an Ex Vivo Screening Platform for Therapeutics in Human Renal Fibrosis. Pharmaceutics 2020; 12:pharmaceutics12050459. [PMID: 32443499 PMCID: PMC7285118 DOI: 10.3390/pharmaceutics12050459] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Animal models are a valuable tool in preclinical research. However, limited predictivity of human biological responses in the conventional models has stimulated the search for reliable preclinical tools that show translational robustness. Here, we used precision-cut kidney slices (PCKS) as a model of renal fibrosis and investigated its predictive capacity for screening the effects of anti-fibrotics. Murine and human PCKS were exposed to TGFβ or PDGF pathway inhibitors with established anti-fibrotic efficacy. For each treatment modality, we evaluated whether it affected: (1) culture-induced collagen type I gene expression and interstitial accumulation; (2) expression of markers of TGFβ and PDGF signaling; and (3) expression of inflammatory markers. We summarized the outcomes of published in vivo animal and human studies testing the three inhibitors in renal fibrosis, and drew a parallel to the PCKS data. We showed that the responses of murine PCKS to anti-fibrotics highly corresponded with the known in vivo responses observed in various animal models of renal fibrosis. Moreover, our results suggested that human PCKS can be used to predict drug efficacy in clinical trials. In conclusion, our study demonstrated that the PCKS model is a powerful predictive tool for ex vivo screening of putative drugs for renal fibrosis.
Collapse
|
8
|
Li W, Lu Y, Lou Y, Zhao S, Cui W, Wang Y, Luo M, Sun J, Miao L. FFNT25 ameliorates unilateral ureteral obstruction-induced renal fibrosis. Ren Fail 2019; 41:419-426. [PMID: 31140898 PMCID: PMC6566665 DOI: 10.1080/0886022x.2019.1612430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 01/06/2023] Open
Abstract
Renal fibrosis is a common pathological feature of chronic kidney disease (CKD) patients who progress to end-stage renal disease (ESRD). With the increasing incidence of CKD, it is of importance to develop effective therapies that blunt development of renal fibrosis. FFNT25 is a newly developed molecular compound that could be used to prevent fibrosis. In this study, we administered FFNT25 to rats following unilateral ureteral obstruction (UUO) to investigate its anti-fibrosis mechanism. Thirty-two Sprague-Dawley rats were randomly divided into four groups: (1) control (normal rats), (2) sham-operated, (3) UUO-operated + vehicle, and (4) UUO-operated + FFNT25. Two weeks after UUO, the rats were gavaged with either FFNT25 (20.6 mg/kg/day) or vehicle for two weeks. Serum, urine, and kidney samples were collected at the end of the study. FFNT25 reduced levels of renal fibrosis and decreased mRNA and protein levels of extracellular matrix (ECM) markers α-smooth muscle actin (α-SMA) and plasminogen activator inhibitor-1 (PAI-1) following UUO compared to vehicle treatment (n = 8, p<.05). The current results indicate that FFNT25 can affect both the production and degradation of collagen fibers to reduce fibrosis.
Collapse
Affiliation(s)
- Wen Li
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, China
| | - Yue Lu
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, China
| | - Yan Lou
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, China
| | - Shiyue Zhao
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, China
| | - Wenpeng Cui
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, China
| | - Yangwei Wang
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, China
| | - Manyu Luo
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, China
| | - Jing Sun
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, China
| | - Lining Miao
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Li C, Rezov V, Joensuu E, Vartiainen V, Rönty M, Yin M, Myllärniemi M, Koli K. Pirfenidone decreases mesothelioma cell proliferation and migration via inhibition of ERK and AKT and regulates mesothelioma tumor microenvironment in vivo. Sci Rep 2018; 8:10070. [PMID: 29968778 PMCID: PMC6030186 DOI: 10.1038/s41598-018-28297-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/13/2018] [Indexed: 12/29/2022] Open
Abstract
Malignant mesothelioma is an aggressive cancer with poor prognosis. It is characterized by prominent extracellular matrix, mesenchymal tumor cell phenotypes and chemoresistance. In this study, the ability of pirfenidone to alter mesothelioma cell proliferation and migration as well as mesothelioma tumor microenvironment was evaluated. Pirfenidone is an anti-fibrotic drug used in the treatment of idiopathic pulmonary fibrosis and has also anti-proliferative activities. Mesothelioma cell proliferation was decreased by pirfenidone alone or in combination with cisplatin. Pirfenidone also decreased significantly Transwell migration/invasion and 3D collagen invasion. This was associated with increased BMP pathway activity, decreased GREM1 expression and downregulation of MAPK/ERK and AKT/mTOR signaling. The canonical Smad-mediated TGF-β signaling was not affected by pirfenidone. However, pirfenidone blocked TGF-β induced upregulation of ERK and AKT pathways. Treatment of mice harboring mesothelioma xenografts with pirfenidone alone did not reduce tumor proliferation in vivo. However, pirfenidone modified the tumor microenvironment by reducing the expression of extracellular matrix associated genes. In addition, GREM1 expression was downregulated by pirfenidone in vivo. By reducing two major upregulated pathways in mesothelioma and by targeting tumor cells and the microenvironment pirfenidone may present a novel anti-fibrotic and anti-cancer adjuvant therapy for mesothelioma.
Collapse
Affiliation(s)
- Chang Li
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland.,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Soochow, China
| | - Veronika Rezov
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Emmi Joensuu
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Ville Vartiainen
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland.,University of Helsinki and Helsinki University Hospital, Heart and Lung Center and HUH diagnostics, Pulmonary Medicine, Helsinki, Finland
| | - Mikko Rönty
- Department of Pathology, University of Helsinki and Fimlab laboratories, Pathology, Tampere, Finland
| | - Miao Yin
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Marjukka Myllärniemi
- University of Helsinki and Helsinki University Hospital, Heart and Lung Center and HUH diagnostics, Pulmonary Medicine, Helsinki, Finland
| | - Katri Koli
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
10
|
Li Z, Liu X, Wang B, Nie Y, Wen J, Wang Q, Gu C. Pirfenidone suppresses MAPK signalling pathway to reverse epithelial-mesenchymal transition and renal fibrosis. Nephrology (Carlton) 2018; 22:589-597. [PMID: 27245114 DOI: 10.1111/nep.12831] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/25/2016] [Accepted: 05/27/2016] [Indexed: 12/01/2022]
Abstract
AIM Recent studies indicate that pirfenidone (PFD) may have anti-fibrotic effects in many tissues, but the potential molecular mechanism remains unknown. The purpose of this study is to investigate the potential effects of PFD on epithelial-to-mesenchymal transition (EMT) and renal fibrosis in a unilateral ureteral obstruction (UUO) rat model and the involved molecular mechanism related to cultured human renal proximal tubular epithelial cells (HK-2). METHODS Sixty rats were randomly divided into three groups: sham-operated, vehicle-treated UUO, and PFD-treated UUO. Kidney specimens were collected at day 7 or 14 after UUO. PFD treatment was also performed for human HK-2. The tubulointerstitial injury, interstitial collagen deposition, and expression of type I and III collagen, α-SMA, S100A4, fibronection and E-cadherin were assessed. In addition, extracellular signal regulated kinase (ERK1/2), p38 MAPK (p38), and c-Jun N-terminal kinase/stress-activated protein kinase (JNK) were also detected. RESULTS In vitro, PFD significantly attenuated TGF-β1-induced EMT and extracellular matrix (ECM) synthesis, as determined by reducing expression of α-SMA, type I and III collagen, S100A4, fibronection, and increased expression of E-cadherin. PFD treatment attenuated TGF-β1-induced up-regulation of phosphorylation of ERK1/2, p38 and JNK. In vivo, PFD reduced the degree of tubulointerstitial injury and renal fibrosis, which was associated with reduced expression of TGF-β1, type III collagen, α-SMA, S100A4, fibronection, and increased expression of E-cadherin. CONCLUSION These results suggest that pirfenidone is able to attenuate EMT and fibrosis in vivo and in vitro through antagonizing the MAPK pathway, providing a potential treatment to alleviate renal tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Zhenzhen Li
- The Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianghua Liu
- Pathological Experiment Center, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Baoying Wang
- Pharmacology and Toxicology Experiment Center, Pharmacology Department, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yali Nie
- Pharmacology Department, School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Jianguo Wen
- Urology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingwei Wang
- Urology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaohui Gu
- Urology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Saito Y, Azuma A, Matsuda K, Kamio K, Abe S, Gemma A. Pirfenidone exerts a suppressive effect on CCL18 expression in U937-derived macrophages partly by inhibiting STAT6 phosphorylation. Immunopharmacol Immunotoxicol 2016; 38:464-471. [PMID: 27788604 DOI: 10.1080/08923973.2016.1247852] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONTEXT CC chemokine ligand 18 (CCL18) is suggested to play a role in the development of pulmonary fibrosis. Macrophages are thought to be the main source of CCL18, and the effect of pirfenidone, an anti-fibrotic agent for idiopathic pulmonary fibrosis, on the expression of CCL18 in macrophages warrants investigation. OBJECTIVE The purpose of this study was to investigate the effect of pirfenidone on the expression of CCL18 in macrophages. MATERIALS AND METHODS U937 cells were differentiated into macrophages by phorbol myristate acetate and then stimulated with recombinant IL-4 to induce the production of CCL18. The cells were treated with pirfenidone, and the mRNA and protein levels for CCL18 were measured by a reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The effects of pirfenidone on the IL-4 receptor (IL-4R) expression and STAT6 activation were investigated and on the JAK kinase activity were measured using the Z'-LYTE™ kinase assay. RESULTS Pirfenidone significantly suppressed the expression of CCL18 when the cells were treated with concentrations of 50-250 μg/mL. Pirfenidone did not affect the expression of the IL-4R components. The selective STAT6 inhibitor AS1517499 suppressed CCL18 expression. Both AS1517499 and pirfenidone suppressed STAT6 phosphorylation (p < .05), although the effect of pirfenidone was less marked than that of AS1517499. The Z'-LYTE™ kinase assay showed a reduction in the activities of JAK1, JAK3 and TYK2 by pirfenidone. CONCLUSION Pirfenidone suppresses CCL18 expression in macrophages and this effect is thought to be attributed partly to the inhibition of STAT6 phosphorylation.
Collapse
Affiliation(s)
- Yoshinobu Saito
- a Department of Pulmonary Medicine and Oncology , Graduate School of Medicine, Nippon Medical School , Tokyo , Japan
| | - Arata Azuma
- a Department of Pulmonary Medicine and Oncology , Graduate School of Medicine, Nippon Medical School , Tokyo , Japan
| | - Kuniko Matsuda
- a Department of Pulmonary Medicine and Oncology , Graduate School of Medicine, Nippon Medical School , Tokyo , Japan
| | - Koichiro Kamio
- a Department of Pulmonary Medicine and Oncology , Graduate School of Medicine, Nippon Medical School , Tokyo , Japan
| | - Shinji Abe
- a Department of Pulmonary Medicine and Oncology , Graduate School of Medicine, Nippon Medical School , Tokyo , Japan
| | - Akihiko Gemma
- a Department of Pulmonary Medicine and Oncology , Graduate School of Medicine, Nippon Medical School , Tokyo , Japan
| |
Collapse
|
12
|
Antiproteinuric effect of pirfenidone in a rat model of anti-glomerular basement membrane glomerulonephritis. Eur J Pharmacol 2014; 737:106-16. [PMID: 24858365 DOI: 10.1016/j.ejphar.2014.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 05/09/2014] [Accepted: 05/14/2014] [Indexed: 01/22/2023]
Abstract
While pirfenidone has been established as an effective anti-fibrosis remedy, whether or not its antifibrotic effect contributes to a reduction of proteinuria remains unclear. We investigated the renoprotective properties of pirfenidone in an anti-glomerular basement membrane (GBM) glomerulonephritis model both prophylactically and therapeutically to determine its profile against proteinuria. In the prophylactic regimen, pirfenidone was treated immediately after anti-serum injection. We observed a significant reduction in the progression of proteinuria (P<0.05) and decline in renal function (P<0.01) and also noted histological improvement in renal injury. These effects appeared to be due to the maintained expression of nephrin and podocin on podocytes as well as the reduced expression of profibrotic factors like transforming growth factor-β (TGF-β). The expression of nephrin mRNA was strongly negatively correlated with the amount of urinary protein excretion (R=-0.84, P<0.001), implicating podocyte damage in the outcome of proteinuria (R(2)=0.70). These results suggest that preservation of podocytes with the pirfenidone treatment may have resulted in the decrease of proteinuria. In contrast, when the therapeutic regimen was initiated 2 weeks after nephritis induction, pirfenidone had little effect on the progression of proteinuria, although the decline of renal function and fibrosis were suppressed. Taken together, present findings suggested that pirfenidone prevented the progression of proteinuria only when administered prophylactically but was still able to ameliorate the decline of renal function independent of proteinuria. In conclusion, pirfenidone as a prophylactic regimen reduces proteinuria in anti-GBM nephritis via preservation of podocytes with markedly reduced efficacy when administered as a therapeutic regimen.
Collapse
|
13
|
Qi R, Li W, Yu S. FK506 inhibits the mice glomerular mesangial cells proliferation by affecting the transforming growth factor-β and Smads signal pathways. Ren Fail 2014; 36:589-592. [PMID: 24512120 DOI: 10.3109/0886022x.2014.882713] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract TGF-β1 plays an important role in the pathogenesis of chronic renal diseases. Although the specific mechanism is unknown, a major factor is the potent fibrogenic activity of TGF-β1 in the chronic progression of renal diseases. TGF-β1 closely correlates with renal fibrosis in cooperation with several fibrosis-promoting molecules. Recently it has been studied that, Smad proteins as intracellular mediators of TGF-β signaling pathways provide important insights into the mechanisms determining the specificity of TGF-β action in various renal cells. Some studies have proved that immunosuppressants can affect TGF-β expression, but the mechanisms are unclear. In this study, we investigated the effect of FK506 on mesangial cells via TGF-β and Smads signal pathways. Our results shows that FK506 effectively blocked the TGF-β/Smad signaling pathway by downregulation of TGF-β receptor, and played an important role in TGF-β1-induced Smad2 expression in mice mesangial cells. FK506 can inhibit the TGF-β1-stimulated cell proliferation via Smad-related pathways. And reduced the Smad2 protein and mRNA expression. Altogether, this study provided a theoretical proof for the protective and treating effect of FK506 on kidneys.
Collapse
Affiliation(s)
- Ren Qi
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, Guangdong Province , China
| | | | | |
Collapse
|