1
|
Łyko L, Olech M, Gawlik U, Krajewska A, Kalemba D, Tyśkiewicz K, Piórecki N, Prokopiv A, Nowak R. Rhododendron luteum Sweet Flower Supercritical CO 2 Extracts: Terpenes Composition, Pro-Inflammatory Enzymes Inhibition and Antioxidant Activity. Int J Mol Sci 2024; 25:9952. [PMID: 39337440 PMCID: PMC11432528 DOI: 10.3390/ijms25189952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Terpenes are plant secondary metabolites known for their anti-inflammatory and antioxidant activities. According to ethnobotanical knowledge, Rhododendron luteum Sweet was used in traditional medicine against inflammation. The present study was conducted to determine the triterpene profile and antioxidant and anti-inflammatory activity of supercritical CO2 (SC-CO2) extracts of Rhododendron luteum Sweet flower (RLF). An LC-APCI-MS/MS analysis showed the presence of eight pentacyclic triterpenes and one phytosterol in the extracts obtained with pure CO2 as well as CO2 with the addition of aqueous ethanol as a co-solvent. Among the compounds detected, oleanolic/ursolic acid, β-sitosterol and 3β-taraxerol were the most abundant. The extract obtained with pure SC-CO2 was additionally subjected to HS-SPME-GC-FID-MS, which revealed more than 100 volatiles, mainly eugenol, β-phenylethanol, dodecane, β-caryophyllene, estragole and (Z)- and (E)-cinnamyl alcohol, followed by δ-cadinene. The extracts demonstrated significant hyaluronidase inhibition and exhibited varying modes of lipoxygenase and xanthine oxidase inhibitory activities. The studies of RLF have shown that their SC-CO2 extracts can be a rich source of triterpenes with anti-inflammatory potential.
Collapse
Affiliation(s)
- Lena Łyko
- Department of Pharmaceutical Botany, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland
| | - Marta Olech
- Department of Pharmaceutical Botany, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland
| | - Urszula Gawlik
- Department of Biochemistry and Food Chemistry, University of Life Sciences, ul. Skromna 8, 20-704 Lublin, Poland
| | - Agnieszka Krajewska
- Institute of Natural Products and Cosmetics, Lodz University of Technology, ul. Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Danuta Kalemba
- Institute of Natural Products and Cosmetics, Lodz University of Technology, ul. Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Katarzyna Tyśkiewicz
- Supercritical Extraction Department, Łukasiewicz Research Network-New Chemical Syntheses Institute, ul. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Narcyz Piórecki
- Bolestraszyce Arboretum and Institute of Physiography, Bolestraszyce 130, 37-722 Wyszatyce, Poland
- Institute of Physical Culture Sciences, Medical College, University of Rzeszow, ul. Cicha 2A, 35-326 Rzeszow, Poland
| | - Andriy Prokopiv
- Department of Botany, Botanical Garden, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Renata Nowak
- Department of Pharmaceutical Botany, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland
| |
Collapse
|
2
|
Qi J, Wu J, Kang S, Gao J, Hirokazu K, Liu H, Liu C. The chemical structures, biosynthesis, and biological activities of secondary metabolites from the culinary-medicinal mushrooms of the genus Hericium: a review. Chin J Nat Med 2024; 22:676-698. [PMID: 39197960 DOI: 10.1016/s1875-5364(24)60590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Indexed: 09/01/2024]
Abstract
Fungal phytochemicals derived from higher fungi, particularly those from the culinary-medicinal genus Hericium, have gained significant attention in drug discovery and healthcare. This review aims to provide a comprehensive analysis of the chemical structures, biosynthetic pathways, biological activities, and pharmacological properties of monomeric compounds isolated from Hericium species. Over the past 34 years, 253 metabolites have been identified from various Hericium species, including cyathane diterpenes, alkaloids, benzofurans, chromenes, phenols, pyrones, steroids, and other miscellaneous compounds. Detailed investigations into the biosynthesis of erinacines, a type of cyathane diterpene, have led to the discovery of novel cyathane diterpenes. Extensive research has highlighted the biological activities and pharmacological properties of Hericium-derived compounds, with particular emphasis on their neuroprotective and neurotrophic effects, immunomodulatory capabilities, anti-cancer activity, antioxidant properties, and antimicrobial actions. Erinacine A, in particular, has been extensively studied. Genomic, transcriptomic, and proteomic analyses of Hericium species have facilitated the discovery of new compounds and provided insights into enzymatic reactions through genome mining. The diverse chemical structures and biological activities of Hericium compounds underpin their potential applications in medicine and as dietary supplements. This review not only advances our understanding of Hericium compounds but also encourages further research into Hericium species within the realms of medicine, health, functional foods, and agricultural microbiology. The broad spectrum of compound types and their diverse biological activities present promising opportunities for the development of new pharmaceuticals and edible products.
Collapse
Affiliation(s)
- Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jing Wu
- Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| | - Shijie Kang
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jingming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | | | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
3
|
Lin JY, Chen YP, Lin TW, Li TJ, Chen YW, Li IC, Chen CC. Discovery of a New Compound, Erinacerin W, from the Mycelia of Hericium erinaceus, with Immunomodulatory and Neuroprotective Effects. Molecules 2024; 29:812. [PMID: 38398564 PMCID: PMC10891892 DOI: 10.3390/molecules29040812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
One new compound with an isoindolinone skeleton, along with erinacines A, C, and S, was isolated from the mycelia of Hericium erinaceus, an edible fungus with a long history of use in traditional Chinese medicine. Based on analysis of MS and NMR spectral data, the structure of the compound was identified as (2E,6E)-8-(2-(1-carboxy-3-methylbutyl)-4,6-dihydroxy-1-oxoisoindolin-5-yl)-2,6-dimethylocta-2,6-dienoic acid. In light of this discovery, we have given this compound the name erinacerin W. Using a co-culture in vitro LPS-activated BV2 microglia-induced SH-SY5Y neuroinflammation model, the results showed that erinacerin W demonstrated protection against the LPS-activated BV-2 cell-induced overexpression of IL-6, IL-1β, and TNF-α on SH-SY5Y cells. This finding may provide potential therapeutic approaches for central nervous disorders.
Collapse
Affiliation(s)
- Jing-Yi Lin
- Biotech Research Institute, Grape King Bio Ltd., Long Tan Dist., Taoyuan City 325, Taiwan; (J.-Y.L.); (Y.-P.C.); (T.-W.L.); (T.-J.L.); (Y.-W.C.)
| | - Yen-Po Chen
- Biotech Research Institute, Grape King Bio Ltd., Long Tan Dist., Taoyuan City 325, Taiwan; (J.-Y.L.); (Y.-P.C.); (T.-W.L.); (T.-J.L.); (Y.-W.C.)
| | - Ting-Wei Lin
- Biotech Research Institute, Grape King Bio Ltd., Long Tan Dist., Taoyuan City 325, Taiwan; (J.-Y.L.); (Y.-P.C.); (T.-W.L.); (T.-J.L.); (Y.-W.C.)
| | - Tsung-Ju Li
- Biotech Research Institute, Grape King Bio Ltd., Long Tan Dist., Taoyuan City 325, Taiwan; (J.-Y.L.); (Y.-P.C.); (T.-W.L.); (T.-J.L.); (Y.-W.C.)
| | - Yu-Wen Chen
- Biotech Research Institute, Grape King Bio Ltd., Long Tan Dist., Taoyuan City 325, Taiwan; (J.-Y.L.); (Y.-P.C.); (T.-W.L.); (T.-J.L.); (Y.-W.C.)
| | - I-Chen Li
- Biotech Research Institute, Grape King Bio Ltd., Long Tan Dist., Taoyuan City 325, Taiwan; (J.-Y.L.); (Y.-P.C.); (T.-W.L.); (T.-J.L.); (Y.-W.C.)
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Long Tan Dist., Taoyuan City 325, Taiwan; (J.-Y.L.); (Y.-P.C.); (T.-W.L.); (T.-J.L.); (Y.-W.C.)
- Institute of Food Science and Technology, National Taiwan University, Taipei City 106, Taiwan
- Department of Food Science, Nutrition and Nutraceutical Biotechnology, Shih Chien University, Taipei City 104, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Zhong-Li Dist., Taoyuan City 320, Taiwan
| |
Collapse
|
4
|
Tan YF, Mo JS, Wang YK, Zhang W, Jiang YP, Xu KP, Tan GS, Liu S, Li J, Wang WX. The ethnopharmacology, phytochemistry and pharmacology of the genus Hericium. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117353. [PMID: 37907145 DOI: 10.1016/j.jep.2023.117353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mushrooms in the genus Hericium are used as functional food and traditional medicines for a long history in East Asian countries such as China, India, Japan, and Korea. Some species of Hericium are called as monkey head mushroom (Houtougu) in China and Yamabushitake in Japan, which are traditionally considered as rare and precious health promoting food and medicinal materials for the treatment of dyspepsia, insomnia, chronic gastritis, and digestive tract tumors. THE AIM OF THE REVIEW This review aims to summarize the ethnopharmacology and structural diversity of secondary metabolites from Hericium species, as well as the pharmacological activities of the crude extracts and pure compounds from Hericium species in recent years. MATERIALS AND METHODS All the information was gathered by searching Scifinder, PubMed, Web of Science, ScienceDirect, Springer, Wiley, ACS, CNKI, Baidu Scholar, Google Scholar databases and other published materials (books and Ph.D. and M. Sc. Dissertations) using the keywords "Hericium", "Traditional uses", "Chemical composition", "Quality control" and "Pharmacological activity" (1971-May 2023). The species name was checked with https://www.mycobank.org/. RESULTS The traditional uses of Hericium species were summarized, and 230 secondary metabolites from Hericium species were summarized and classified into six classes, mainly focusing on their chemical diversity, biosynthesis, biological activities. The modern pharmacological experiments in vivo or in vitro on their crude and fractionated extracts showed that the chemical components from Hericium species have a broad range of bioactivities, including neuroprotective, antimicrobial, anticancer, α-glucosidase inhibitory, antioxidant, and anti-inflammatory activities. CONCLUSIONS The secondary metabolites discovered from Hericium species are highly structurally diverse, and they have the potential to be rich resources of bioactive fungal natural products. Moreover, the unveiled bioactivities of their crude extracts and pure compounds are closely related to critical human health concerns, and in-depth studies on the potential lead compounds, mechanism of pharmacological effects and pharmaceutical properties are clearly warranted.
Collapse
Affiliation(s)
- Yu-Fen Tan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Ji-Song Mo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan, 410013, PR China
| | - Yi-Kun Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan, 410013, PR China
| | - Wei Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Yue-Ping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Kang-Ping Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan, 410013, PR China
| | - Gui-Shan Tan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Jing Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Wen-Xuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, PR China.
| |
Collapse
|
5
|
Anyamele T, Onwuegbuchu PN, Ugbogu EA, Ibe C. Phytochemical composition, bioactive properties, and toxicological profile of Tetrapleura tetraptera. Bioorg Chem 2023; 131:106288. [PMID: 36470194 DOI: 10.1016/j.bioorg.2022.106288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
The use of medicinal plants has gained renewed wide popularity in Africa, Asia, and most parts of the world because of the decreasing efficacy of synthetic drugs. Thus, natural products serve as a potent source of alternative remedy. Tetrapleura tetraptera is a medicinal plant with cultural and traditional significance in West Africa. In addition to the plant being commonly used as a spice in the preparation of traditional spicy food for postpartum care it is also widely used to constitute herbal concoctions and decoctions for treatment of diseases. This review aimed to provide an up-to-date information on the ethnomedicinal uses, pharmacological activities and phytoconstituents of T. tetraptera. Preclinical studies regarding the plant's toxicity profile were also reviewed. For this updated review, literature search was done on PubMed, Science Direct, Wiley, and Google Scholar databases using the relevant keywords. The review used a total of 106 papers that met the inclusion criteria from January 1989 - February 2022 and summarised the bioactivities that have been reported for the rich phytoconstituents of T. tetraptera studied using various chemical methods. Considering the huge report, the review focused on the antimicrobial and antiinflammatory activities of the plant extracts and isolated compounds. Aridan, aridanin and several bioactive compounds of T. tetraptera have shown pharmacological activities though their mechanisms of action are yet to be fully understood. This study also highlighted the influence of plant parts and extraction solvents on its biological activities. It also presented data on the toxicological profile of the plant extracts using different models. From cultural uses to modern pharmacological research the bioactive compounds of T. tetraptera have proved effective in infectious disease management. We hope that this paper provided a robust summary of the biological activities and toxicological profile of T. tetraptera, thus calling for more research into the pharmacological and pharmacokinetic activities of natural products to help combat the growing threat of drug resistance and provide guidelines for their ethnomedicinal uses.
Collapse
Affiliation(s)
- ThankGod Anyamele
- Department of Microbiology, Faculty of Biological Sciences, Abia State University, Uturu, Nigeria
| | | | - Eziuche Amadike Ugbogu
- Department of Biochemistry, Faculty of Biological Sciences, Abia State University, Uturu, Nigeria
| | - Chibuike Ibe
- Department of Microbiology, Faculty of Biological Sciences, Abia State University, Uturu, Nigeria.
| |
Collapse
|
6
|
Lion's Mane Mushroom, Hericium erinaceus (Bull.: Fr.) Pers. Suppresses H 2O 2-Induced Oxidative Damage and LPS-Induced Inflammation in HT22 Hippocampal Neurons and BV2 Microglia. Antioxidants (Basel) 2019; 8:antiox8080261. [PMID: 31374912 PMCID: PMC6720269 DOI: 10.3390/antiox8080261] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/28/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress and inflammation in neuron-glia system are key factors in the pathogenesis of neurodegenerative diseases. As synthetic drugs may cause side effects, natural products have gained recognition for the prevention or management of diseases. In this study, hot water (HE-HWA) and ethanolic (HE-ETH) extracts of the basidiocarps of Hericium erinaceus mushroom were investigated for their neuroprotective and anti-inflammatory activities against hydrogen peroxide (H2O2)-induced neurotoxicity in HT22 mouse hippocampal neurons and lipopolysaccharide (LPS)-induced BV2 microglial activation respectively. HE-ETH showed potent neuroprotective activity by significantly (p < 0.0001) increasing the viability of H2O2-treated neurons. This was accompanied by significant reduction in reactive oxygen species (ROS) (p < 0.05) and improvement of the antioxidant enzyme catalase (CAT) (p < 0.05) and glutathione (GSH) content (p < 0.01). Besides, HE-ETH significantly improved mitochondrial membrane potential (MMP) (p < 0.05) and ATP production (p < 0.0001) while reducing mitochondrial toxicity (p < 0.001), Bcl-2-associated X (Bax) gene expression (p < 0.05) and nuclear apoptosis (p < 0.0001). However, gene expression of Nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1) were unaffected (p > 0.05). HE-ETH also significantly (p < 0.0001) reduced nitric oxide (NO) level in LPS-treated BV2 indicating an anti-inflammatory activity in the microglia. These findings demonstrated HE-ETH maybe a potential neuroprotective and anti-inflammatory agent in neuron-glia environment.
Collapse
|
7
|
Chen ZG, Bishop KS, Tanambell H, Buchanan P, Quek SY. Assessment of In Vitro Bioactivities of Polysaccharides Isolated from Hericium Novae-Zealandiae. Antioxidants (Basel) 2019; 8:antiox8070211. [PMID: 31288400 PMCID: PMC6680813 DOI: 10.3390/antiox8070211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 01/28/2023] Open
Abstract
The objective of this study was to investigate the potential effect of the polysaccharides isolated from Hericium novae-zealandiae, a native New Zealand fungus, on the in vitro proliferation of prostate cancer cell lines, gene expression, acetylcholinesterase (AChE) activity, and oxidation. One water-soluble and two alkali-soluble polysaccharide fractions were isolated from H. novae-zealandiae. The proliferation of the prostate cancer cell lines DU145, LNCaP, and PC3 was evaluated following treatment with these polysaccharide fractions. It was found that the polysaccharides possess anti-proliferative activity on LNCaP and PC3 cells, with a 50% growth inhibition (IC50) value as low as 0.61 mg/mL in LNCaP. Subsequently, it was determined through via RT-qPCR assay that apoptosis was one of the possible mechanisms responsible for the anti-proliferative activity in LNCaP. This was supported by the up-regulation of CASP3, CASP8, and CASP9. An alternative, discovered in PC3, was revealed to be anti-inflammation, which was hinted at by the down-regulation of IL6 and up-regulation of IL24. The polysaccharides also exhibited antioxidant and weak AChE inhibitory activities. This is the first report on the potential health benefits of polysaccharides prepared from the New Zealand fungus, H. novae-zealandiae.
Collapse
Affiliation(s)
- Zhixia Grace Chen
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Karen Suzanne Bishop
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1010, New Zealand
- Discipline of Nutrition and Dietetics, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Hartono Tanambell
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Peter Buchanan
- Manaaki Whenua-Landcare Research, Auckland 1072, New Zealand
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand.
- Riddet Institute, New Zealand Centre of Research Excellence for Food Research, Palmerston North 4474, New Zealand.
| |
Collapse
|
8
|
Lee S, Lee D, Lee JC, Kang KS, Ryoo R, Park HJ, Kim KH. Bioactivity-Guided Isolation of Anti-Inflammatory Constituents of the Rare Mushroom Calvatia nipponica
in LPS-Stimulated RAW264.7 Macrophages. Chem Biodivers 2018; 15:e1800203. [DOI: 10.1002/cbdv.201800203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/21/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Seulah Lee
- School of Pharmacy; Sungkyunkwan University; Suwon 16419 Korea
| | - Dahae Lee
- School of Pharmacy; Sungkyunkwan University; Suwon 16419 Korea
| | - Joo Chan Lee
- School of Pharmacy; Sungkyunkwan University; Suwon 16419 Korea
| | - Ki Sung Kang
- College of Korean Medicine; Gachon University; Seongnam 13120 Korea
| | - Rhim Ryoo
- Special Forest Products Division; Forest Bioresources Department; National Institute of Forest Science; Suwon 16631 Korea
| | - Hyun-Ju Park
- School of Pharmacy; Sungkyunkwan University; Suwon 16419 Korea
| | - Ki Hyun Kim
- School of Pharmacy; Sungkyunkwan University; Suwon 16419 Korea
| |
Collapse
|
9
|
Chiu CH, Chyau CC, Chen CC, Lee LY, Chen WP, Liu JL, Lin WH, Mong MC. Erinacine A-Enriched Hericium erinaceus Mycelium Produces Antidepressant-Like Effects through Modulating BDNF/PI3K/Akt/GSK-3β Signaling in Mice. Int J Mol Sci 2018; 19:ijms19020341. [PMID: 29364170 PMCID: PMC5855563 DOI: 10.3390/ijms19020341] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
Antidepressant-like effects of ethanolic extract of Hericium erinaceus (HE) mycelium enriched in erinacine A on depressive mice challenged by repeated restraint stress (RS) were examined. HE at 100, 200 or 400 mg/kg body weight/day was orally given to mice for four weeks. After two weeks of HE administration, all mice except the control group went through with 14 days of RS protocol. Stressed mice exhibited various behavioral alterations, such as extending immobility time in the tail suspension test (TST) and forced swimming test (FST), and increasing the number of entries in open arm (POAE) and the time spent in the open arm (PTOA). Moreover, the levels of norepinephrine (NE), dopamine (DA) and serotonin (5-HT) were decreased in the stressed mice, while the levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α were increased. These changes were significantly inverted by the administration of HE, especially at the dose of 200 or 400 mg/kg body weight/day. Additionally, HE was shown to activate the BDNF/TrkB/PI3K/Akt/GSK-3β pathways and block the NF-κB signals in mice. Taken together, erinacine A-enriched HE mycelium could reverse the depressive-like behavior caused by RS and was accompanied by the modulation of monoamine neurotransmitters as well as pro-inflammatory cytokines, and regulation of BDNF pathways. Therefore, erinacine A-enriched HE mycelium could be an attractive agent for the treatment of depressive disorders.
Collapse
Affiliation(s)
- Chun-Hung Chiu
- Research Institute of Biotechnology, HungKuang University, Taichung 43302, Taiwan.
| | - Charng-Cherng Chyau
- Research Institute of Biotechnology, HungKuang University, Taichung 43302, Taiwan.
| | - Chin-Chu Chen
- Bioengineering Center, Grape King Bio Ltd., Taoyuan City 32471, Taiwan.
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 10462, Taiwan.
- Institute of Food Science and Technology, National Taiwan University, Taipei City 10617, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City 32023, Taiwan.
- Institute of Biotechnology, National Changhua University of Education, Changhua County 50007, Taiwan.
| | - Li-Ya Lee
- Bioengineering Center, Grape King Bio Ltd., Taoyuan City 32471, Taiwan.
| | - Wan-Ping Chen
- Bioengineering Center, Grape King Bio Ltd., Taoyuan City 32471, Taiwan.
| | - Jia-Ling Liu
- Research Institute of Biotechnology, HungKuang University, Taichung 43302, Taiwan.
| | - Wen-Hsin Lin
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Mei-Chin Mong
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 41354, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
10
|
Lee SR, Lee D, Lee HJ, Noh HJ, Jung K, Kang KS, Kim KH. Renoprotective chemical constituents from an edible mushroom, Pleurotus cornucopiae in cisplatin-induced nephrotoxicity. Bioorg Chem 2017; 71:67-73. [DOI: 10.1016/j.bioorg.2017.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
|
11
|
A new cerebroside from the fruiting bodies of Hericium erinaceus and its applicability to cancer treatment. Bioorg Med Chem Lett 2015; 25:5712-5. [DOI: 10.1016/j.bmcl.2015.10.092] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 02/05/2023]
|
12
|
Yao W, Zhang JC, Dong C, Zhuang C, Hirota S, Inanaga K, Hashimoto K. Effects of amycenone on serum levels of tumor necrosis factor-α, interleukin-10, and depression-like behavior in mice after lipopolysaccharide administration. Pharmacol Biochem Behav 2015; 136:7-12. [PMID: 26150007 DOI: 10.1016/j.pbb.2015.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 01/12/2023]
Abstract
Accumulating evidence suggests that inflammation plays a role in the pathophysiology of depression and that anti-inflammatory substances have antidepressant effects. Amycenone is obtained from extracts of the Yamabushitake (Hericium erinaceum). The purpose of this study is to examine whether amycenone shows anti-inflammatory and antidepressant effects in an inflammation-induced mouse model of depression. First, we examined the effects of amycenone on the serum levels of the pro-inflammatory cytokine, tumor necrosis factor-α (TNF-α), and the anti-inflammatory cytokine, interleukin-10 (IL-10), after intraperitoneal administration of the bacterial endotoxin lipopolysaccharide (LPS). Oral administration of amycenone (50, 100, or 200mg/kg) markedly blocked an increase in the serum TNF-α levels after a single administration of LPS (0.5mg/kg). Furthermore, amycenone (200mg/kg) markedly increased the serum IL-10 levels by a single administration of LPS (0.5mg/kg). Next, we examined the effects of amycenone on depression-like behaviors in the tail-suspension test (TST) and forced swimming test (FST). Pretreatment with amycenone (200mg/kg) significantly attenuated LPS (0.5mg/kg)-induced increase of the immobility time by the TST and FST, indicating antidepressant effects of amycenone. In addition, oral administration of paroxetine (30mg/kg) showed anti-inflammatory and antidepressant effects in the same model. These findings suggest that amycenone has antidepressant effects in LPS-induced inflammation model of depression. Therefore, amycenone could represent a potential supplement to prevent inflammation-related depression.
Collapse
Affiliation(s)
- Wei Yao
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Ji-chun Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Chao Dong
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | | | | | - Kazutoyo Inanaga
- Chikusuikai Institute for Neuroinformation, Chikusuikai Hospital, Yame, Fukuoka, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| |
Collapse
|
13
|
Antiproliferative and Apoptosis-Inducing Activities of 4-Isopropyl-2,6-bis(1-phenylethyl)phenol Isolated from Butanol Fraction of Cordyceps bassiana. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:739874. [PMID: 25918546 PMCID: PMC4397031 DOI: 10.1155/2015/739874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/07/2015] [Accepted: 03/13/2015] [Indexed: 01/08/2023]
Abstract
The Cordyceps species have been widely used for treating various cancer diseases. Although the Cordyceps species have been widely known as an alternative anticancer remedy, which compounds are responsible for their anticancer activity is not fully understood. In this study, therefore, we examined the anticancer activity of 5 isolated compounds derived from the butanol fraction (Cb-BF) of Cordyceps bassiana. For this purpose, several cancer cell lines such as C6 glioma, MDA-MB-231, and A549 cells were employed and details of anticancer mechanism were further investigated. Of 5 compounds isolated by activity-guided fractionation from BF of Cb-EE, KTH-13, and 4-isopropyl-2,6-bis(1-phenylethyl)phenol, Cb-BF was found to be the most potent antiproliferative inhibitor of C6 glioma and MDA-MB-231 cell growth. KTH-13 treatment increased DNA laddering, upregulated the level of Annexin V positive cells, and altered morphological changes of C6 glioma and MDA-MB-231 cells. In addition, KTH-13 increased the levels of caspase 3, caspase 7, and caspase 9 cleaved forms as well as the protein level of Bax but not Bcl-2. It was also found that the phosphorylation of AKT and p85/PI3K was also clearly reduced by KTH-13 exposure. Therefore, our results suggest KTH-13 can act as a potent antiproliferative and apoptosis-inducing component from Cordyceps bassiana, contributing to the anticancer activity of this mushroom.
Collapse
|
14
|
Noh HJ, Yang HH, Kim GS, Lee SE, Lee DY, Choi JH, Kim SY, Lee ES, Ji SH, Kang KS, Park HJ, Kim JR, Kim KH. Chemical constituents of Hericium erinaceum associated with the inhibitory activity against cellular senescence in human umbilical vascular endothelial cells. J Enzyme Inhib Med Chem 2015; 30:934-40. [PMID: 25676326 DOI: 10.3109/14756366.2014.995181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hericium erinaceum is an edible and medicinal mushroom widely used in Korea, Japan, and China. On the search for biologically active compounds supporting the medicinal usage, the MeOH extract of the fruiting bodies of H. erinaceum was investigated for its chemical constituents. Six compounds were isolated and identified as hericenone D (1), (22E,24R)-5α,8α-epidioxyergosta-6,22-dien-3β-ol (2), erinacerin B (3), hericenone E (4), hericenone F (5) and isohericerin (6) by comparing their spectroscopic data with previously reported values. The inhibitory effects on adriamycin-induced cellular senescence in human dermal fibroblasts (HDFs) and human umbilical vein endothelial cells (HUVECs) of the isolates (1-6) were studied. Among the isolated compounds, ergosterol peroxide (2) reduced senescence associated β-galactosidase (SA-β-gal) activity increased in HUVECs treated with adriamycin. According to experimental data obtained, the active compound may inspire the development of a new pharmacologically useful substance to be used in the treatment and prevention of age-related diseases.
Collapse
Affiliation(s)
- Hyung Jun Noh
- a Department of Herbal Crop Research , National Institute of Horticultural & Herbal Science , RDA , Eumseoung , Korea
| | - Hyo Hyun Yang
- b Department of Biochemistry and Molecular Biology, College of Medicine , Yeungnam University , Daegu , Korea .,c Aging-associated Vascular Disease Research Center, Department of Biochemistry and Molecular Biology, College of Medicine , Yeungnam University , Daegu , Korea
| | - Geum Soog Kim
- a Department of Herbal Crop Research , National Institute of Horticultural & Herbal Science , RDA , Eumseoung , Korea
| | - Seung Eun Lee
- a Department of Herbal Crop Research , National Institute of Horticultural & Herbal Science , RDA , Eumseoung , Korea
| | - Dae Young Lee
- a Department of Herbal Crop Research , National Institute of Horticultural & Herbal Science , RDA , Eumseoung , Korea
| | - Je Hun Choi
- a Department of Herbal Crop Research , National Institute of Horticultural & Herbal Science , RDA , Eumseoung , Korea
| | - Seung Yu Kim
- a Department of Herbal Crop Research , National Institute of Horticultural & Herbal Science , RDA , Eumseoung , Korea
| | - Eun Suk Lee
- a Department of Herbal Crop Research , National Institute of Horticultural & Herbal Science , RDA , Eumseoung , Korea
| | - Seung Heon Ji
- a Department of Herbal Crop Research , National Institute of Horticultural & Herbal Science , RDA , Eumseoung , Korea
| | - Ki Sung Kang
- d College of Korean Medicine , Gachon University , Seongnam , Korea
| | - Hye-Jin Park
- e Department of Food Science and Biotechnology, College of BioNano Technology , Gachon University , Seongnam , Korea , and
| | - Jae-Ryong Kim
- b Department of Biochemistry and Molecular Biology, College of Medicine , Yeungnam University , Daegu , Korea .,c Aging-associated Vascular Disease Research Center, Department of Biochemistry and Molecular Biology, College of Medicine , Yeungnam University , Daegu , Korea
| | - Ki Hyun Kim
- f Natural Product Research Laboratory, School of Pharmacy , Sungkyunkwan University , Suwon , Korea
| |
Collapse
|