1
|
Guan X, Truong L, M. Lomnicki S, L. Tanguay R, A. Cormier S. Developmental Hazard of Environmentally Persistent Free Radicals and Protective Effect of TEMPOL in Zebrafish Model. TOXICS 2021; 9:toxics9010012. [PMID: 33467068 PMCID: PMC7829864 DOI: 10.3390/toxics9010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/29/2022]
Abstract
Environmentally persistent free radicals (EPFRs) can be detected in ambient PM2.5, cigarette smoke, and soils and are formed through combustion and thermal processing of organic materials. The hazards of EPFRs are largely unknown. In this study, we assess the developmental toxicity of EPFRs and the ability of TEMPOL (4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl) to protect against such hazards using zebrafish embryos. Particles containing EPFRs were acquired by dosing dichlorobenzene (DCB) vapor on the Cab-o-sil/5% CuO particles at 230 °C in vacuo (referred to as DCB-230). The particles were suspended in ultrapure water to make 1 mg/mL of stock solution from which series dilution was undertaken to obtain 10, 20, 30, 40, 50, 60, 80, and 100 µg/mL final test solutions, which were then placed in individual wells with a 4 h postfertilization (hpf) zebrafish embryo. Plates were run in duplicate to obtain a sample size of 24 animals per concentration; 12 embryos were exposed per concentration per plate. Statistical analysis of the morphology endpoints was performed. We investigated overt toxicity responses to DCB-230 in a 22-endpoint battery that included developing zebrafish from 24–120 hpf. Exposure to concentrations greater than 60 µg/mL of DCB-230 induced high mortality in the developmental zebrafish model. Exposure to EPFRs induced developmental hazards that were closely related to the concentrations of free radicals and EPFRs. The potential protective effects of TEMPOL against EPFRs’ toxicity in zebrafish were investigated. Exposure to EPFRs plus TEMPOL shifted the concentration to an induced 50% adverse effect (EC50), from 23.6 to 30.8 µg/mL, which verifies TEMPOL’s protective effect against EPFRs in the early phase of zebrafish development.
Collapse
Affiliation(s)
- Xia Guan
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (X.G.); (S.M.L.)
| | - Lisa Truong
- Sinnhuber Aquatic Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97333, USA; (L.T.); (R.L.T.)
| | - Slawomir M. Lomnicki
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (X.G.); (S.M.L.)
| | - Robyn L. Tanguay
- Sinnhuber Aquatic Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97333, USA; (L.T.); (R.L.T.)
| | - Stephania A. Cormier
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Pennington Biomedical Research Center, Baton Rouge, LA 70803, USA
- Correspondence:
| |
Collapse
|
2
|
WANG Y, AI L, HAI B, CAO Y, LI R, LI H, LI Y. Tempol Alleviates Chronic Intermittent Hypoxia-Induced Pancreatic
Injury Through Repressing Inflammation and Apoptosis. Physiol Res 2019; 68:445-455. [PMID: 31301730 DOI: 10.33549/physiolres.934010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Obstructive sleep apnea (OSA) has been demonstrated to be implicated in disorder of insulin secretion and diabetes mellitus. In this study, we aimed to evaluate the protective role of tempol, a powerful antioxidant, in chronic intermittent hypoxia
(IH)-induced pancreatic injury. The rat model of OSA was established by IH exposure. The pathological changes, increased blood-glucose level, and raised proinsulin/insulin ratio in pancreatic tissues of rats received IH were effectively relieved by tempol delivery. In addition, the enhanced levels of pro-inflammatory cytokines, TNF-α, IL-1β, IL-6, and inflammatory mediators, PGE2, cyclooxygenase-2 (COX-2), NO, and inducible nitric oxide synthase (iNOS) in pancreatic tissue were suppressed by tempol. Moreover, tempol inhibited IH-induced apoptosis in pancreatic tissue as evidenced by upregulated Bcl-2 level, and downregulated Bax and cleaved caspase-3 levels. Finally, the abnormal activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways induced by IH was restrained by tempol administration. In summary, our study demonstrates that tempol relieves IH-induced pancreatic injury by inhibiting inflammatory response and apoptosis, which provides theoretical basis for tempol as an effective treatment for OSA-induced pancreatic injury.
Collapse
Affiliation(s)
- Y. WANG
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China,
| | - L. AI
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China,
| | - B. HAI
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China,
| | - Y. CAO
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China,
| | - R. LI
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China,
| | - H. LI
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China,
| | - Y. LI
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China,
| |
Collapse
|
3
|
Afjal MA, Abdi SH, Sharma S, Ahmad S, Fatima M, Dabeer S, Akhter J, Raisuddin S. Anti-inflammatory role of tempol (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl) in nephroprotection. Hum Exp Toxicol 2019; 38:713-723. [PMID: 30924375 DOI: 10.1177/0960327119836203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammation is one of the mechanisms involved in the acute kidney injury (AKI) caused by cisplatin (CP)-induced nephrotoxicity. Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl) has powerful antioxidant activity. We investigated its potential nephroprotective effects and the underlying mechanisms that may add further benefits to its clinical usefulness in a CP-induced AKI model. Male Swiss albino mice were divided randomly into four groups: control, CP (20 mg/kg intraperitoneally), tempol (100 mg/kg/day, per os) + CP, and tempol only treatments. Blood samples were collected to analyze renal function parameters. Immunoblotting and immunohistochemical analysis were used to assess the level and localization of inflammatory markers. Tempol afforded protection to animals from CP-induced elevation of inflammatory markers as indicated by reduced expression of nuclear factor-kappa B, cyclooxygenase-2, and tumor necrosis factor-α in kidney tissue. Histological findings and analysis of kidney function markers corroborated with these findings confirming a nephroprotective role for tempol. In conclusion, this study provides important evidence for the promising anti-inflammatory effects of tempol which appears to contribute significantly to its nephroprotective action.
Collapse
Affiliation(s)
- M A Afjal
- Department of Medical Elementology and Toxicology, School of Chemical & Life Sciences, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Sa Hasan Abdi
- Department of Medical Elementology and Toxicology, School of Chemical & Life Sciences, Jamia Hamdard (Hamdard University), New Delhi, India
| | - S Sharma
- Department of Medical Elementology and Toxicology, School of Chemical & Life Sciences, Jamia Hamdard (Hamdard University), New Delhi, India
| | - S Ahmad
- Department of Medical Elementology and Toxicology, School of Chemical & Life Sciences, Jamia Hamdard (Hamdard University), New Delhi, India
| | - M Fatima
- Department of Medical Elementology and Toxicology, School of Chemical & Life Sciences, Jamia Hamdard (Hamdard University), New Delhi, India
| | - S Dabeer
- Department of Medical Elementology and Toxicology, School of Chemical & Life Sciences, Jamia Hamdard (Hamdard University), New Delhi, India
| | - J Akhter
- Department of Medical Elementology and Toxicology, School of Chemical & Life Sciences, Jamia Hamdard (Hamdard University), New Delhi, India
| | - S Raisuddin
- Department of Medical Elementology and Toxicology, School of Chemical & Life Sciences, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
4
|
Ewees MG, Messiha BAS, Abdel-Bakky MS, Bayoumi AMA, Abo-Saif AA. Tempol, a superoxide dismutase mimetic agent, reduces cisplatin-induced nephrotoxicity in rats. Drug Chem Toxicol 2018; 42:657-664. [PMID: 30067109 DOI: 10.1080/01480545.2018.1485688] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cisplatin (CP) is one of the most potent anti-cancer drugs used against different types of cancer. Its use is limited due to its nephrotoxicity. This study is aimed to evaluate the role of a super oxide dismutase (SOD) mimetic agent, tempol, in protection against CP nephrotoxicity in rats. Animals were divided into four groups: Group-1: Normal control group, Group-2: CP group (single dose of CP 6 mg/kg, i.p.), Group-3 and Group-4: Tempol-treated groups (50 mg/kg p.o. and 100 mg/kg p.o. respectively) daily for a week before CP injection and continued for an additional four days after CP injection. Urine and blood samples were collected for the evaluation of kidney function including serum creatinine, BUN, cystatin-c, and creatinine clearance. In addition, western blotting was used to determine urine lipocalin-2 content. Furthermore, kidney tissue was collected for the determination of oxidative stress markers, caspase-3 expression, and histopathological examination. We noticed that both doses of tempol significantly improved kidney function, which was deteriorated by CP injection. Tempol significantly elevated kidney glutathione (GSH) content and SOD activity, and decreased kidney lipid peroxidation and NOx production. Tempol also significantly decreased kidney caspase-3 expression which was elevated by CP toxicity. Thus, we conclude that tempol can protect against CP nephrotoxicity. We noticed that both doses of tempol are effective in ameliorating CP-nephrotoxicity.
Collapse
Affiliation(s)
- Mohamed G Ewees
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Basim A S Messiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed S Abdel-Bakky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alazhar University, Cairo, Egypt
| | - Asmaa M A Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Ali A Abo-Saif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.,Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
5
|
Pınar N, Soylu Karapınar O, Özcan O, Atik Doğan E, Bayraktar S. Protective effects of tempol in an experimental ovarian ischemia-reperfusion injury model in female Wistar albino rats. Can J Physiol Pharmacol 2017; 95:861-865. [PMID: 28423286 DOI: 10.1139/cjpp-2016-0309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the antioxidant effects of tempol on ovarian ischemia-reperfusion (I/R) injury in rats. Forty female Wistar albino rats were randomly divided into 5 groups: Group I, sham; Group II, ischemia (I); Group III, I/R; Group IV, I/R + tempol 30 mg/kg i.p; Group V, I/R + tempol 50 mg/kg i.p. Oxidative stress index (OSI) was significantly higher in the ischemia group and the I/R group than in the sham group. Catalase levels were significantly lower in the I/R group than in the I/R + tempol 30 mg/kg i.p. and the I/R + tempol 50 mg/kg i.p. groups. Glutathione peroxidase levels were lower in the I/R group than in the I/R + tempol 30 mg/kg i.p. and the I/R + tempol 50 mg/kg i.p. groups. MDA levels were significantly lower in the I/R + tempol 30 mg/kg i.p. group and the I/R + tempol 50 mg/kg i.p. group than in the I/R group. The levels of the histopathological parameters were significantly decreased in the I/R + tempol 50 mg/kg i.p. group compared with the I/R group. Tempol can be used for reducing ovarian I/R injury.
Collapse
Affiliation(s)
- Neslihan Pınar
- a Department of Medical Pharmacology, School of Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Oya Soylu Karapınar
- b Department of Obstetrics and Gynaecology, School of Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Oğuzhan Özcan
- c Department of Biochemistry, School of Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Esin Atik Doğan
- d Department of Pathology, School of Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Suphi Bayraktar
- e Department of Medical Microbiology, School of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
6
|
Toledo-Pereyra LH. Advances in Ischemia and Reperfusion. J INVEST SURG 2015; 28:233-5. [PMID: 26479963 DOI: 10.3109/08941939.2015.1100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|