1
|
Rey-Keim S, Schito L. Origins and molecular effects of hypoxia in cancer. Semin Cancer Biol 2024; 106-107:166-178. [PMID: 39427969 DOI: 10.1016/j.semcancer.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Hypoxia (insufficient O2) is a pivotal factor in cancer progression, triggering genetic, transcriptional, translational and epigenetic adaptations associated to therapy resistance, metastasis and patient mortality. In this review, we outline the microenvironmental origins and molecular mechanisms responsible for hypoxic cancer cell adaptations in situ and in vitro, whilst outlining current approaches to stratify, quantify and therapeutically target hypoxia in the context of precision oncology.
Collapse
Affiliation(s)
- Sergio Rey-Keim
- UCD School of Medicine, University College Dublin, Belfield, Dublin D04 C7X2, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 C7X2, Ireland.
| | - Luana Schito
- UCD School of Medicine, University College Dublin, Belfield, Dublin D04 C7X2, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 C7X2, Ireland.
| |
Collapse
|
2
|
Guo J, Hu Z, Yan F, Lei S, Li T, Li X, Xu C, Sun B, Pan C, Chen L. Angelica dahurica promoted angiogenesis and accelerated wound healing in db/db mice via the HIF-1α/PDGF-β signaling pathway. Free Radic Biol Med 2020; 160:447-457. [PMID: 32853721 DOI: 10.1016/j.freeradbiomed.2020.08.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
Impaired angiogenesis is crucial for impeding the wound healing process in diabetic foot ulcers (DFUs). In this study, we found that Angelica dahurica (A. dahurica) stimulated angiogenesis and benefited wound healing in genetic mouse models of diabetes. In HUVECs, A. dahurica promoted cell proliferation and tube formation, which was accompanied by increased nuclear translocation of HIF-1α under hypoxic conditions and led to elevated PDGF-β protein expression. A. dahurica activated the PI3K/AKT signaling pathway in human umbilical vein endothelial cells (HUVECs), which was abrogated by the PI3K inhibitor LY294002. Furthermore, the cellular expression of PDGF-β decreased significantly after treatment with a HIF-1α-siRNA, and PDGF-β expression was increased in HIF-1α-overexpressing cells. In a full-thickness cutaneous wound healing db/db mouse model, A. dahurica accelerated wound closure, which was reflected by a significantly reduced wound area and an increase in neovascularization, as well as by elevated PDGF-β expression and increased capillary formation. In addition, A. dahurica activated the PI3K/AKT signaling pathway and enhanced HIF-1α synthesis in wounds. In summary, A. dahurica promoted angiogenesis of HUVECs in vitro by promoting signaling via the HIF-1α/PDGF-β pathway, efficiently enhancing vascularization in regenerated tissue and facilitating wound healing in vivo. The results revealed that A. dahurica has potential as a therapy for vessel injury-related wounds.
Collapse
Affiliation(s)
- Jun Guo
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Zhibo Hu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Fengjuan Yan
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Sisi Lei
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Ting Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaoyu Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Chaofei Xu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Congqing Pan
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
3
|
Microtubule Stabilization Promotes Microcirculation Reconstruction After Spinal Cord Injury. J Mol Neurosci 2020; 71:583-595. [PMID: 32901373 PMCID: PMC7851021 DOI: 10.1007/s12031-020-01679-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022]
Abstract
Spinal cord microcirculation plays an important role in maintaining the function of spinal cord neurons and other cells. Previous studies have largely focused on the ability of microtubule stabilization to inhibit the fibroblast migration and promote axon regeneration after spinal cord injury (SCI). However, the effect of microtubule stabilization treatment on microcirculation reconstruction after SCI remains unclear. By using immunofluorescence, we found that microtubule stabilization treatment improved microcirculation reconstruction via increasing the number of microvessels, pericytes, and the perfused microvessels after SCI. To clarify the underlying mechanisms, rat brain microvascular endothelial cells and pericytes were subjected to glucose oxygen deprivation. By using flow cytometry and western blotting, we found that microtubule stabilization treatment inhibited apoptosis and migration of endothelial cells and pericytes but promoted proliferation and survival of endothelial cells and pericytes through upregulated expression of vascular endothelial growth factor A (VEGFA), VEGF receptor 2, platelet-derived growth factor-B (PDGFB), PDGF receptor β, and angiopoietin-1 after SCI. Taken together, this study provides evidence for the mechanisms underlying the promotion of microcirculation reconstruction after SCI by microtubule stabilization treatment. Importantly, this study suggests the potential of microtubule stabilization as a therapeutic target to reduce microcirculation dysfunction after SCI in the clinic.
Collapse
|
4
|
Hypoxia: Turning vessels into vassals of cancer immunotolerance. Cancer Lett 2020; 487:74-84. [PMID: 32470491 DOI: 10.1016/j.canlet.2020.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
Hypoxia is a universal feature of solid cancers caused by a mismatch between cellular oxygen supply and consumption. To meet the increased demand for oxygen, hypoxic cancer cells (CCs) induce a multifaceted process known as angiogenesis, wherein new vessels are formed by the sprouting of pre-existing ones. In addition to providing oxygen for growth and an exit route for dissemination, angiogenic vessels and factors are co-opted by CCs to enable the generation of an immunotolerant, hypoxic tumor microenvironment, leading to therapeutic failure and mortality. In this review, we discuss how hypoxia-inducible factors (HIFs), the mechanistic target of rapamycin (mTOR), and the unfolded protein response (UPR) control angiogenic factors serving both vascular and immunomodulatory functions in the tumor microenvironment. Possible therapeutic strategies, wherein targeting oxygen sensing might enhance anti-angiogenic and immunologically-mediated anti-cancer responses, are suggested.
Collapse
|
5
|
Sookoian S, Pirola CJ. Review article: shared disease mechanisms between non-alcoholic fatty liver disease and metabolic syndrome - translating knowledge from systems biology to the bedside. Aliment Pharmacol Ther 2019; 49:516-527. [PMID: 30714632 DOI: 10.1111/apt.15163] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/20/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. Characterised by abnormal fat accumulation in the liver, NAFLD presents high degree of comorbidity with disorders of the metabolic syndrome, including type 2 diabetes, obesity and cardiovascular disease. These comorbidities have strong negative impact on the natural course of NAFLD and vice versa, whereby the presence of NAFLD substantially modifies the course and prognosis of metabolic syndrome-associated diseases. AIM To use systems biology strategies to interrogate disease mechanisms that are common to NAFLD and metabolic syndrome. METHODS We mapped shared gene/protein-disease interaction networks, we performed gene-disease enrichment analysis to assess pleiotropy, and we created a gene-drug connectivity network. RESULTS We found that a shared network of genes/proteins is overrepresented by immune response-related pathways, post-translational modifications of nuclear receptors, and platelet-related processes, including activation and platelet signalling. Likewise, gene-based disease-enrichment analysis suggested underlying molecular effectors that are shared with major systemic disorders, including diverse autoimmune diseases, kidney, respiratory and nervous system disorders, cancer and infectious diseases. The shared list of genes/proteins was enriched in drug targets for anti-inflammatory therapy, drugs used to treat cardiovascular diseases, antimicrobial agents and phytochemicals, among many other approved pharmaceutical compounds. By leveraging on publicly available OMICs data, we were able to show that shared loci are not necessarily affected by reverse causality. CONCLUSION We provide evidence indicating that NAFLD treatment, including severe histological traits, cannot be limited to the use of a single drug, as it rather requires a multi-target therapeutic approach.
Collapse
Affiliation(s)
- Silvia Sookoian
- School of Medicine, Institute of Medical Research A. Lanari, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Department of Clinical and Molecular Hepatology, National Scientific and Technical Research Council (CONICET), Institute of Medical Research (IDIM), University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlos J Pirola
- School of Medicine, Institute of Medical Research A. Lanari, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Department of Molecular Genetics and Biology of Complex Diseases, National Scientific and Technical Research Council (CONICET), Institute of Medical Research (IDIM), University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
6
|
Schito L. Hypoxia-Dependent Angiogenesis and Lymphangiogenesis in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1136:71-85. [PMID: 31201717 DOI: 10.1007/978-3-030-12734-3_5] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypoxia (low O2) is a ubiquitous feature of solid cancers, arising as a mismatch between cellular O2 supply and consumption. Hypoxia is associated to metastatic disease and mortality owing to its ability to stimulate the formation of blood (angiogenesis) and lymphatic vessels (lymphangiogenesis), thereby allowing cancer cells to escape the unfavorable tumor microenvironment and disseminate into secondary sites. This review outlines molecular mechanisms by which intratumoral hypoxia regulates the expression of motogenic and mitogenic factors that induce angiogenesis and lymphangiogenesis, whilst discussing their implications for metastatic cancers.
Collapse
Affiliation(s)
- Luana Schito
- Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Ortega SB, Kong X, Venkataraman R, Savedra AM, Kernie SG, Stowe AM, Raman L. Perinatal chronic hypoxia induces cortical inflammation, hypomyelination, and peripheral myelin-specific T cell autoreactivity. J Leukoc Biol 2015; 99:21-9. [PMID: 26038434 DOI: 10.1189/jlb.5hi0914-447r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/28/2015] [Indexed: 11/24/2022] Open
Abstract
pCH is an important risk factor for brain injury and long-term morbidity in children, occurring during the developmental stages of neurogenesis, neuronal migration, and myelination. We show that a rodent model of pCH results in an early decrease in mature myelin. Although pCH does increase progenitor oligodendrocytes in the developing brain, BrdU labeling revealed a loss in dividing progenitor oligodendrocytes, indicating a defect in mature cell replacement and myelinogenesis. Mice continued to exhibited hypomyelination, concomitant with long-term impairment of motor function, weeks after cessation of pCH. The implication of a novel neuroimmunologic interplay, pCH also induced a significant egress of infiltrating CD4 T cells into the developing brain. This pCH-mediated neuroinflammation included oligodendrocyte-directed autoimmunity, with an increase in peripheral myelin-specific CD4 T cells. Thus, both the loss of available, mature, myelin-producing glial cells and an active increase in autoreactive, myelin-specific CD4 T cell infiltration into pCH brains may contribute to early pCH-induced hypomyelination in the developing CNS. The elucidation of potential mechanisms of hypoxia-driven autoimmunity will expand our understanding of the neuroimmune axis during perinatal CNS disease states that may contribute to long-term functional disability.
Collapse
Affiliation(s)
- Sterling B Ortega
- Departments of *Neurology and Neurotherapeutics and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Departments of Pediatrics and Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA; and Department of Accounting, School of Business, University of Texas at Arlington, Arlington, Texas, USA
| | - Xiagmei Kong
- Departments of *Neurology and Neurotherapeutics and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Departments of Pediatrics and Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA; and Department of Accounting, School of Business, University of Texas at Arlington, Arlington, Texas, USA
| | - Ramgopal Venkataraman
- Departments of *Neurology and Neurotherapeutics and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Departments of Pediatrics and Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA; and Department of Accounting, School of Business, University of Texas at Arlington, Arlington, Texas, USA
| | - Allen Michael Savedra
- Departments of *Neurology and Neurotherapeutics and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Departments of Pediatrics and Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA; and Department of Accounting, School of Business, University of Texas at Arlington, Arlington, Texas, USA
| | - Steven G Kernie
- Departments of *Neurology and Neurotherapeutics and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Departments of Pediatrics and Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA; and Department of Accounting, School of Business, University of Texas at Arlington, Arlington, Texas, USA
| | - Ann M Stowe
- Departments of *Neurology and Neurotherapeutics and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Departments of Pediatrics and Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA; and Department of Accounting, School of Business, University of Texas at Arlington, Arlington, Texas, USA
| | - Lakshmi Raman
- Departments of *Neurology and Neurotherapeutics and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Departments of Pediatrics and Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA; and Department of Accounting, School of Business, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
8
|
Hypoxia-inducible factor 1-dependent expression of platelet-derived growth factor B promotes lymphatic metastasis of hypoxic breast cancer cells. Proc Natl Acad Sci U S A 2012; 109:E2707-16. [PMID: 23012449 DOI: 10.1073/pnas.1214019109] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lymphatic dissemination from the primary tumor is a major mechanism by which breast cancer cells access the systemic circulation, resulting in distant metastasis and mortality. Numerous studies link activation of hypoxia-inducible factor 1 (HIF-1) with tumor angiogenesis, metastasis, and patient mortality. However, the role of HIF-1 in lymphatic dissemination is poorly understood. In this study, we show that HIF-1 promotes lymphatic metastasis of breast cancer by direct transactivation of the gene encoding platelet-derived growth factor B (PDGF-B), which has proliferative and chemotactic effects on lymphatic endothelial cells. Lymphangiogenesis and lymphatic metastasis in mice bearing human breast cancer orthografts were blocked by administration of the HIF-1 inhibitor digoxin or the tyrosine kinase inhibitor imatinib. Immunohistochemical analysis of human breast cancer biopsies demonstrated colocalization of HIF-1α and PDGF-B, which were correlated with lymphatic vessel area and histological grade. Taken together, these data provide experimental support for breast cancer clinical trials targeting HIF-1 and PDGF-B.
Collapse
|
9
|
Mermis J, Gu H, Xue B, Li F, Tawfik O, Buch S, Bartolome S, O'Brien-Ladner A, Dhillon NK. Hypoxia-inducible factor-1 α/platelet derived growth factor axis in HIV-associated pulmonary vascular remodeling. Respir Res 2011; 12:103. [PMID: 21819559 PMCID: PMC3163194 DOI: 10.1186/1465-9921-12-103] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/05/2011] [Indexed: 12/29/2022] Open
Abstract
Background Human immunodeficiency virus (HIV) infected patients are at increased risk for the development of pulmonary arterial hypertension (PAH). Recent reports have demonstrated that HIV associated viral proteins induce reactive oxygen species (ROS) with resultant endothelial cell dysfunction and related vascular injury. In this study, we explored the impact of HIV protein induced oxidative stress on production of hypoxia inducible factor (HIF)-1α and platelet-derived growth factor (PDGF), critical mediators implicated in the pathogenesis of HIV-PAH. Methods The lungs from 4-5 months old HIV-1 transgenic (Tg) rats were assessed for the presence of pulmonary vascular remodeling and HIF-1α/PDGF-BB expression in comparison with wild type controls. Human primary pulmonary arterial endothelial cells (HPAEC) were treated with HIV-associated proteins in the presence or absence of pretreatment with antioxidants, for 24 hrs followed by estimation of ROS levels and western blot analysis of HIF-1α or PDGF-BB. Results HIV-Tg rats, a model with marked viral protein induced vascular oxidative stress in the absence of active HIV-1 replication demonstrated significant medial thickening of pulmonary vessels and increased right ventricular mass compared to wild-type controls, with increased expression of HIF-1α and PDGF-BB in HIV-Tg rats. The up-regulation of both HIF-1α and PDGF-B chain mRNA in each HIV-Tg rat was directly correlated with an increase in right ventricular/left ventricular+septum ratio. Supporting our in-vivo findings, HPAECs treated with HIV-proteins: Tat and gp120, demonstrated increased ROS and parallel increase of PDGF-BB expression with the maximum induction observed on treatment with R5 type gp-120CM. Pre-treatment of endothelial cells with antioxidants or transfection of cells with HIF-1α small interfering RNA resulted in abrogation of gp-120CM mediated induction of PDGF-BB, therefore, confirming that ROS generation and activation of HIF-1α plays critical role in gp120 mediated up-regulation of PDGF-BB. Conclusion In summary, these findings indicate that viral protein induced oxidative stress results in HIF-1α dependent up-regulation of PDGF-BB and suggests the possible involvement of this pathway in the development of HIV-PAH.
Collapse
Affiliation(s)
- Joel Mermis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Metcalfe PD, Wang J, Jiao H, Huang Y, Hori K, Moore RB, Tredget EE. Bladder outlet obstruction: progression from inflammation to fibrosis. BJU Int 2010; 106:1686-1694. [DOI: 10.1111/j.1464-410x.2010.09445.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Study Type – Aetiology (case control)
Level of Evidence 3bOBJECTIVETo investigate the progression of urodynamic changes, as well as histological and biochemical outcomes over a prolonged period of partial bladder outlet obstruction (pBOO) in an animal model with physiologically relevant pBOO.MATERIALS AND METHODSHealthy, adult, female Fischer rats underwent surgical creation of a pBOO for either 2, 4, 8, or 13 weeks and were compared with sham‐operated rats. Urodynamic measurements were used to compare bladder volumes and pressure. Tissue was grossly analysed with light microscopy and bladder weights and thicknesses were compared. Reverse transcription‐polymerase chain reaction for collagen, transforming growth factor β (TGF‐β), connective tissue growth factor (CTGF), hypoxia inducible factor 1α (HIF‐1α), and platelet‐derived growth factor (PDGF‐A) was performed on all samples, as well as immunohistochemistry (IHC) for α‐smooth muscle actin (α‐SMA). Finally, mass spectrometry was used to quantify the collagen content of the bladders as a measure of fibrosis.RESULTSAfter induction of pBOO, all rats remained healthy. Initial urodynamics showed an increase in capacity while maintaining normal pressures, but then deteriorated into small capacity, high‐pressure bladders. Haematoxylin and eosin (H&E) staining showed an initial inflammatory response, and this was confirmed with significantly increased mRNA levels of TGF‐β, CTGF, HIF‐1α, and PDGF. The progression to smooth muscle hypertrophy was evident on H&E and confirmed with increased bladder mass and thickness. IHC for α‐SMA showed a progressive increase associated with the elevated bladder pressures. Masson’s trichrome and mass spectrometry showed a progressive increase in collagen to 13 weeks.CONCLUSIONWith this model, we have effectively replicated the clinical scenario, with significant pathophysiological changes occurring insidiously in otherwise healthy rats. We believe that our observed changes represent distinct phases of bladder decompensation; with an initial inflammatory response to the stress of the pBOO, smooth muscle hypertrophy to overcome the increased urethral resistance, and eventual decompensation to fibrosis. The time course of the inflammatory markers implies the need for early intervention to prevent this cascade. Novel strategies targeting these observed physiological responses could lead to improved preventative strategies, with respect to biochemical pathways and the time course of their initiation.
Collapse
|
11
|
Abrahamson DR. Development of kidney glomerular endothelial cells and their role in basement membrane assembly. Organogenesis 2009; 5:275-87. [PMID: 19568349 PMCID: PMC2659369 DOI: 10.4161/org.7577] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 12/03/2008] [Indexed: 01/07/2023] Open
Abstract
Data showing that the embryonic day 12 (E12) mouse kidney contains its own pool of endothelial progenitor cells is presented. Mechanisms that regulate metanephric endothelial recruitment and differentiation, including the hypoxia-inducible transcription factors and vascular endothelial growth factor/vascular endothelial growth factor receptor signaling system, are also discussed. Finally, evidence that glomerular endothelial cells contribute importantly to assembly of the glomerular basement membrane (GBM), especially the laminin component, is reviewed. Together, this forum offers insights on blood vessel development in general, and formation of the glomerular capillary in particular, which inarguably is among the most unique vascular structures in the body.
Collapse
Affiliation(s)
- Dale R Abrahamson
- Department of Anatomy and Cell Biology; University of Kansas Medical Center; Kansas City, Kansas USA
| |
Collapse
|
12
|
Olfert IM, Breen EC, Gavin TP, Wagner PD. Temporal thrombospondin-1 mRNA response in skeletal muscle exposed to acute and chronic exercise. Growth Factors 2006; 24:253-9. [PMID: 17381066 DOI: 10.1080/08977190601000111] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Thrombospondin-l (TSP-1) is believed to be an endogenous angiogenic inhibitor. In this study, we report that a single 1 h bout of treadmill running increases TSP-1 mRNA 3-4-fold (p < 0.001). Interestingly, with short-term training (up to 5 days, 1 h/day) the acute response of TSP-1 mRNA to exercise was ablated after 3 days. Following long-term training (8 weeks, 1 h/day, 5 d/wk), in either normoxia or chronic hypoxia, the TSP-1 mRNA response to an acute bout of exercise was restored and increased 3-4-fold (p < 0.01). However, chronic exposure to hypoxia (8-weeks) decreases both the basal and acute exercise-induced TSP-1 mRNA levels by 44 and 48%, respectively (p < 0.05). Based on the robust TSP-1 gene response to a single acute exercise bout, its temporal response to repetitive exercise bouts, and the putative role of TSP-1 in the angiogenic process, we speculate that TSP-1 may play a role in regulating the onset of skeletal muscle angiogenesis in response to exercise.
Collapse
Affiliation(s)
- I Mark Olfert
- Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, CA 92093-0623, USA.
| | | | | | | |
Collapse
|
13
|
Yoshida D, Kim K, Noha M, Teramoto A. Hypoxia Inducible Factor 1-α Regulates of Platelet Derived Growth Factor-B in Human Glioblastoma Cells. J Neurooncol 2005; 76:13-21. [PMID: 16136272 DOI: 10.1007/s11060-005-3279-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Accepted: 03/05/2005] [Indexed: 12/27/2022]
Abstract
Hypoxia inducible factors (HIF) are transcription factors regulating expression of several genes related to oxygen homeostasis in response to hypoxic stress. Although HIF1-alpha and platelet derived growth factor-B (PDGF-B) are expressed in glioma tissue and closely related to tumor angiogenesis mediating vascular endothelial growth factor (VEGF) activity, their direct relationship has not yet been clarified. The aim of this study is to investigate whether HIF1-alpha regulates PDGF-B expression. The human glioblastoma cell lines, U87MG, U251MG, and A172, were exposed to 1-21% oxygen for 24 h. PDGF-B mRNA expression were quantitatively analyzed by real time RT-PCR, their intracellular protein levels were determined by computerized image analysis supported by flow cytometry to detect intracellular PDGF-B, and the concentration of secreted PDGF-B protein was assayed by ELIA. We also assayed following transfection of the cells with short interference RNA (siRNA) targeting HIF1-alpha mRNA. Relative PDGF-B mRNA and secretion of PDGF-B protein were significantly elevated at 1% oxygen. Following transfection of HIF1-alpha siRNA at 1% oxygen, PDGF-B expression was significantly suppressed at mRNA level. Our findings indicated that HIF1-alpha up-regulated expression of PDGF-B in human glioblastoma cells and showed the feasibility of siRNA technology in glioblastoma cell lines.
Collapse
Affiliation(s)
- Daizo Yoshida
- Department of Neurosurgery, Nippon Medical School, 1-1-5, Sendagi, 113-8603, Tokyo, Japan.
| | | | | | | |
Collapse
|
14
|
Bos R, van Diest PJ, de Jong JS, van der Groep P, van der Valk P, van der Wall E. Hypoxia-inducible factor-1alpha is associated with angiogenesis, and expression of bFGF, PDGF-BB, and EGFR in invasive breast cancer. Histopathology 2005; 46:31-6. [PMID: 15656883 DOI: 10.1111/j.1365-2559.2005.02045.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIMS Hypoxia-inducible factor-1 (HIF-1) is the key transcription factor regulating the cellular response to hypoxia, including angiogenesis. Growth factors play an important role in tumour growth and angiogenesis and some have been shown to be induced by HIF-1 in vitro. This study investigated if angiogenesis or growth factors or their receptors are associated with HIF-1alpha in invasive breast cancer. METHODS AND RESULTS High levels of HIF-1alpha, detected by immunohistochemistry in 45 breast cancers, were positively associated with increased microvessel density (as a measure of angiogenesis) (P = 0.023). Furthermore, high levels of HIF-1alpha were associated with epithelial expression (> or = 10%) of epidermal growth factor receptor (EGFR) (P = 0.011), platelet-derived growth factor (PDGF)-BB (P < 0.001), and basic fibroblast growth factor (bFGF) (P = 0.045). A positive, yet insignificant, trend for HIF-1alpha to be associated with epithelial expression of transforming growth factor (TGF)-alpha (P = 0.081) and vascular endothelial growth factor (VEGF) (P = 0.109) was noticed as well as an inverse association with stromal expression of TGF-beta-R1 (P = 0.070). CONCLUSIONS In invasive breast cancer, HIF-1alpha is associated with angiogenesis, and expression of growth factors bFGF and PDGF-BB, and the receptor EGFR. Thus, agents targeting HIF-1 may combine different pathways of inhibiting breast cancer growth, including angiogenesis and growth factors.
Collapse
MESH Headings
- Autocrine Communication
- Becaplermin
- Breast Neoplasms/blood supply
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/blood supply
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/blood supply
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Epithelial Cells/metabolism
- ErbB Receptors/metabolism
- Eukaryotic Initiation Factor-3
- Female
- Fibroblast Growth Factor 2/metabolism
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit
- Immunohistochemistry
- Lymph Nodes/pathology
- Neoplasm Invasiveness
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Platelet-Derived Growth Factor/metabolism
- Proteins/metabolism
- Proto-Oncogene Proteins c-sis
- Stromal Cells/metabolism
- Transcription Factors/metabolism
- Transforming Growth Factor alpha/metabolism
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- R Bos
- Department of Pathology, VU University Medical Centre, Amsterdam, Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Nilsson I, Shibuya M, Wennström S. Differential activation of vascular genes by hypoxia in primary endothelial cells. Exp Cell Res 2004; 299:476-85. [PMID: 15350545 DOI: 10.1016/j.yexcr.2004.06.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 06/05/2004] [Indexed: 12/19/2022]
Abstract
Changes in the local environment, such as reduced oxygen tension (hypoxia), elicit transcriptional activation of a variety of genes in mammalian cells. Here we have analyzed the effect of hypoxia in different vascular endothelial cells (ECs) with emphasis on hypoxia-regulated transcription factors and genes of importance for blood vessel dynamics. While hypoxia induced the transcription factor hypoxia-inducible factor-1alpha (HIF-1alpha) in all endothelial cells tested, the closely related HIF-2alpha protein was markedly induced in microvascular/capillary endothelial cells, but only weakly or not at all in artery and vein endothelial cells. Furthermore, microvascular/capillary endothelial cells responded to hypoxia with increased number of transcripts encoding vascular endothelial growth factor-A (VEGF-A), VEGF receptor-2, the angiopoietin receptor Tie2, platelet-derived growth factor-B (PDGF-B), and inducible nitric oxide synthase (iNOS). In vein endothelial cells, hypoxia instead increased transcripts encoding lymphatic vascular components VEGF-C, -D, and VEGF receptor-3. Finally, reduced VEGF receptor levels and phosphorylation indicated establishment of a functional autocrine VEGF-A loop in hypoxic endothelial cells. Our results show that endothelial cells, derived from different vascular beds, mount different transcriptional responses to changes in oxygen tension.
Collapse
Affiliation(s)
- Ingrid Nilsson
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
16
|
Simons M, Ware JA. Therapeutic angiogenesis in cardiovascular disease. Nat Rev Drug Discov 2004; 2:863-71. [PMID: 14668807 DOI: 10.1038/nrd1226] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael Simons
- Angiogenesis Research Center and Section of Cardiology, Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA.
| | | |
Collapse
|
17
|
Abstract
ABSTRACT. Among the genes strongly induced by hypoxia-inducible factors (HIF) and highly expressed during kidney microvascular development is vascular endothelial growth factor, which encodes a potent endothelial mitogen and chemoattractant critical for embryonic vasculogenesis and angiogenesis. In developing kidney, glomerular podocytes are particularly rich sources of vascular endothelial growth factor, which probably serves to attract endothelial precursors into vascular clefts of immature glomeruli, promote their mitosis and differentiation into glomerular endothelial cells, and assist with maintenance of their highly differentiated state through maturation. This article summarizes the structure, function, and expression of HIF and discusses HIF target genes expressed during kidney vascular development. Furthermore, it is speculated that different HIF heterodimers are stabilized in different cell populations, which may lead to cell-selective induction of HIF target genes important for renal vasculogenesis/angiogenesis. E-mail: dabrahamson@kumc.edu
Collapse
Affiliation(s)
- Paul B Freeburg
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | |
Collapse
|
18
|
Zhang SXL, Gozal D, Sachleben LR, Rane M, Klein JB, Gozal E. Hypoxia induces an autocrine-paracrine survival pathway via platelet-derived growth factor (PDGF)-B/PDGF-beta receptor/phosphatidylinositol 3-kinase/Akt signaling in RN46A neuronal cells. FASEB J 2003; 17:1709-11. [PMID: 12958184 DOI: 10.1096/fj.02-1111fje] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In neurons, hypoxia activates intracellular death-related pathways, yet the antiapoptotic mechanisms triggered by hypoxia remain unclear. In RN46A neuronal cells, minimum media growth conditions induced cell death as early as 12 h after the cells were placed in these conditions (i.e., after removal of B-27 supplement). However, apoptosis occurred in hypoxia (1% O2) only after 48 h, and in fact hypoxia reduced the apoptosis associated with trophic factor withdrawal. Furthermore, hypoxia induced time-dependent increases in expression of platelet-derived growth factor (PDGF) B mRNA and protein, as well as PDGF-beta receptor phosphorylation. Although exogenous PDGF-BB induced only transient Akt activation, hypoxia triggered persistent activation of Akt for up to 24 h. Inhibition of phosphatidylinositol 3-kinase (PI3K) or of PDGF-beta receptor phosphorylation abrogated both hypoxia-induced and exogenous PDGF-BB-induced Akt phosphorylation, and it completely abolished hypoxia-induced protection from media supplement deprivation, which suggests that the long-lasting activation of Akt during hypoxia and the prosurvival induction were due to endogenously generated PDGF-BB. Furthermore, these inhibitors decreased hypoxia-inducible factor 1alpha (HIF-1alpha) DNA binding, which suggests that the PDGF/PDGF-beta receptor/Akt pathway induces downstream HIF-1alpha gene transcription. We conclude that in RN46A neuronal cells, hypoxia activates an autocrine-paracrine antiapoptotic mechanism that involves up-regulation of PDGF-B and PDGF-beta receptor-dependent activation of the PI3K/Akt signaling pathway to induce downstream transcription of survival genes.
Collapse
Affiliation(s)
- Shelley X L Zhang
- Kosair Children's Hospital Research Institute, Department of Pediatrics, Louisville, Kentucky, USA
| | | | | | | | | | | |
Collapse
|