1
|
Nissen PH, Pedersen OB. Unlocking the Potential of MicroRNA Expression: Biomarkers for Platelet Reactivity and Coronary Artery Disease. Semin Thromb Hemost 2025. [PMID: 40074010 DOI: 10.1055/s-0045-1805041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide, with platelet reactivity playing a central role in its pathogenesis. Recent research has identified microRNAs (miRNAs; miRs) as potential biomarkers for CAD, due to their ability to regulate platelet function and reactivity. This review focuses on four key miRNAs-miR-223, miR-126, miR-21, and miR-150-known to influence platelet reactivity and their implications in CAD. miR-223, which is highly expressed in platelets, has shown associations with CAD and myocardial infarction, while miR-126 has been linked to thrombus formation and vascular health. Additionally, miR-21 and miR-150 have also emerged as important players, with roles in platelet reactivity and cardiovascular outcomes. However, despite their potential, the use of miRNAs as clinical biomarkers faces several challenges, including variability in reported results across studies. These inconsistencies often arise from differences in sample material, preanalytical conditions, and normalization strategies. Furthermore, the influence of antiplatelet therapy on miRNA expression adds another layer of complexity, making it difficult to determine whether observed changes in miRNA levels are due to disease states or therapeutic interventions. This review therefore highlights the need for standardization in miRNA research to enhance the reliability of findings. By addressing these methodological challenges, miRNAs could become powerful tools in personalized medicine, aiding in the development of tailored therapeutic strategies for CAD patients and ultimately improving clinical outcomes.
Collapse
Affiliation(s)
- Peter H Nissen
- Department of Clinical Biochemistry, Thrombosis and Haemostasis Research Group, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
2
|
Askari S, Goldfinger LE. Roles of miR-223 in Platelet Function and High On-Treatment Platelet Reactivity: A Brief Report and Review. Genes (Basel) 2025; 16:312. [PMID: 40149463 PMCID: PMC11942081 DOI: 10.3390/genes16030312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Platelets are highly enriched in microRNAs (miRNAs), which are genomically encoded 19-25 nucleotide non-coding RNAs that target complementary mRNAs through total or near-total base pairing. MiR-223 is among the most abundant miRNAs in human and murine platelets, but despite ongoing investigations in recent years, miR-223 roles in platelet physiology and its putative roles in high on-treatment platelet reactivity (HTPR) remain controversial, as studies showed varying findings. OBJECTIVES In the current hybrid review/report, we aim to compare studies that investigated miR-223 in platelet function and HTPR. Additionally, we briefly report our own findings on murine miR-223-deficient platelets. METHODS We have thoroughly searched the literature and found three studies that investigated the roles of miR-223 in platelet function by utilizing miR-223 global knockout mice, and three studies that explored the association between miR-223 and residual platelet reactivity by measuring miR-223 levels in platelets of patients treated with clopidogrel for cardiac artery disease. We assessed platelet function in response to different agonists and evaluated P2y12 levels in male and female miR-223-deficient platelets. RESULTS Integrin activation and α granule secretion were similar between WT and KO platelets in response to all agonists in platelets from both female and male mice, although both genotypes showed elevated thrombin response in females compared to males. CONCLUSIONS In all studies, including ours, taken together, miR-233 appears to play a modest role in platelet function and development of HTPR.
Collapse
Affiliation(s)
| | - Lawrence E. Goldfinger
- Cardeza Foundation for Hematologic Research, Department of Medicine, Division of Hematology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
3
|
Shi J, Xu A, Ai J, Chen J, Luo Y. Expression of microRNAs during apheresis platelet storage up to day 14 in a blood bank in China. Transfus Clin Biol 2024; 31:95-101. [PMID: 38331021 DOI: 10.1016/j.tracli.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Storage affects platelet microRNAs (miRNAs); discussing miRNA expression differences in apheresis platelets after varied storage periods is important for developing platelet quality measurement tools and identifying platelet storage lesion biomarkers. To our knowledge, the difference of MicroRNA expression profile in up to 14-day storage apheresis platelets has less relevant reports. STUDY DESIGN AND METHODS Apheresis platelet bags from three donors were collected, divided into six groups, and stored for 1, 3, 5, 7, 9, and 14 days. miRNA expression was determined using quantitative reverse transcription polymerase chain reaction. Differentially expressed miRNAs were screened using RNA sequencing. RESULTS MiRNA expression profiles showed that the six treatment groups generally highly expressed hsa-let-7 family, hsa-miR-26a-5p, hsa-miR-92a-3p, hsa-miR-199, and hsa-miR-103a-3p. A total of 15 miRNAs in the top 10 known miRNAs of the six groups were highly expressed. Time series analyses for the trend classification of 944 differentially expressed miRNAs indicated 43 genes with 14 trend changes. Hsa-miR-223-3p, hsa-miR-181a-5p, hsa-miR-4433b-5p, hsa-miR-22-3p, and hsa-miR-30c-5p were selected, and the qRT-PCR results also showed that they were significantly reduced under standard blood bank condition. DISCUSSION Expression of microRNAs lays the foundation for further research on apheresis platelet storage lesions. Based on our results from information analysis and miRNA target gene prediction, we suggest hsa-miR-30c-5p as a biomarker of the quality and viability of apheresis platelets during storage in blood banks.
Collapse
Affiliation(s)
- Jie Shi
- Nanjing Red Cross Blood Center, No. 3 Zizhulin, Nanjing, Jiangsu 210003, China
| | - Anqi Xu
- Nanjing Red Cross Blood Center, No. 3 Zizhulin, Nanjing, Jiangsu 210003, China
| | - Jun Ai
- Nanjing Red Cross Blood Center, No. 3 Zizhulin, Nanjing, Jiangsu 210003, China
| | - Jin Chen
- Nanjing Red Cross Blood Center, No. 3 Zizhulin, Nanjing, Jiangsu 210003, China
| | - Ying Luo
- Department of Clinical Laboratory, Changning Maternity and Infant Health Hospital, East China Normal University, 786 Yuyuan Rd., Shanghai 200050, China.
| |
Collapse
|
4
|
Huang W, Yao W, Weng Y, Xie X, Jiang J, Zhang S, Shi Z, Fan Q. Hydroxysafflor yellow A inhibits the hyperactivation of rat platelets by regulating the miR-9a-5p/SRC axis. Arch Biochem Biophys 2023; 747:109767. [PMID: 37748625 DOI: 10.1016/j.abb.2023.109767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Pathological platelet activation plays a vital role in the prevalence of cardiovascular diseases. Hydroxysafflor yellow A (HSYA) has been shown to have significant anti-platelet aggregation and anti-activation effects, but its mechanism of action is unclear. Our study showed that HSYA inhibited the expression of platelet surface glycoproteins IIβ/III α (GPIIβ/III α) and thromboxane A2 (TXA2) during platelet activation and reduced platelet Ca2+ accumulation. HSYA significantly reduced the number of platelets and inhibited adrenaline-induced platelet hyperaggregation in rats. Transcriptomic analysis of platelets suggested that HSYA significantly suppressed SRC and MAPK3 (ERK1/2) gene expression. YEEI peptide, an SRC activator, could significantly reverse the inhibition of HSYA on the phosphorylation of SRC/PLCγ2/PKCδ/MEK/ERK1/2 pathway proteins and reverse the effect of HSYA on platelet activation-related markers GPIIβ/IIIα protein, TXA2 and cAMP. The SRC genes were further predicted by transcriptome analysis of HSYA-regulated miRNAs combined with bioinformatics techniques. The results suggested that HSYA could significantly upregulate the expression level of the miR-9a-5p gene and further confirmed that miR-9a-5p had a targeted regulatory relationship with SRC by dual-luciferase activity reporter and cell transfection experiments. The inhibitory effect of HSYA on the SRC/PLCγ2/PKCδ/MEK/ERK1/2 pathway was significantly reversed after platelets were transfected with the miR-9a inhibitor, while SRC siRNA attenuated the effect of the miR-9a inhibitor. SRC siRNA was able to attenuate the effect of the miR-9a inhibitor. In conclusion, this study suggests that HSYA can inhibit the activation of the SRC/PLCγ2/PKC δ/MEK/ERK1/2 axis by upregulating platelet miR-9a-5p, thereby reducing the activation of platelets and inhibiting platelet aggregation.
Collapse
Affiliation(s)
- Wei Huang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Wendong Yao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Yayun Weng
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Xianze Xie
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Jiali Jiang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Shuo Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Zheng Shi
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China.
| | - Qiaomei Fan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China.
| |
Collapse
|
5
|
Al Qaryoute A, Fallatah W, Dhinoja S, Raman R, Jagadeeswaran P. Role of microRNAs and their downstream target transcription factors in zebrafish thrombopoiesis. Sci Rep 2023; 13:16066. [PMID: 37752184 PMCID: PMC10522587 DOI: 10.1038/s41598-023-42868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Previous studies have shown that human platelets and megakaryocytes carry microRNAs suggesting their role in platelet function and megakaryocyte development, respectively. However, a comprehensive study on the microRNAs and their targets has not been undertaken. Zebrafish thrombocytes could be used as a model to study their role in megakaryocyte maturation and platelet function because thrombocytes have both megakaryocyte features and platelet properties. In our laboratory, we identified 15 microRNAs in thrombocytes using single-cell RNA sequencing. We knocked down each of these 15 microRNAs by the piggyback method and found knockdown of three microRNAs, mir-7148, let-7b, and mir-223 in adult zebrafish led to an increase in the percentage of thrombocytes. Functional thrombocyte analysis using plate tilt assay showed no modulatory effect of the three microRNAs on thrombocyte aggregation/agglutination. We also found enhanced thrombosis using arterial laser thrombosis assay in a group of zebrafish larvae after mir-7148, let-7b, and mir-223 knockdowns. These results suggested mir-7148, let-7b, and mir-223 are repressors for thrombocyte production. We then explored miRWalk database for let-7b downstream targets and then selected those that are expressed in thrombocytes, and from this list based on their role in differentiation selected 14 genes, rorca, tgif1, rfx1a, deaf1, zbtb18, mafba, cebpa, spi1a, spi1b, fhl3b, ikzf1, irf5, irf8, and lbx1b that encode transcriptional regulators. The qRT-PCR analysis of expression levels of the above genes following let-7b knockdown showed changes in the expression of 13 targets. We then studied the effect of the 13 targets on thrombocyte production and identified 5 genes, irf5, tgif1, irf8, cebpa, and rorca that showed thrombocytosis and one gene, ikzf1 that showed thrombocytopenia. Furthermore, we tested whether mir-223 regulates any of the above 13 transcription factors after mir-223 knockdown using qRT-PCR. Six of the 13 genes showed similar gene expression as observed with let-7b knockdown and 7 genes showed opposing results. Thus, our results suggested a possible regulatory network in common with both let-7b and mir-223. We also identified that tgif1, cebpa, ikzf1, irf5, irf8, and ikzf1 play a role in thrombopoiesis. Since the ikzf1 gene showed a differential expression profile in let-7b and mir-223 knockdowns but resulted in thrombocytopenia in ikzf1 knockdown in both adults and larvae we also studied an ikzf1 mutant and showed the mutant had thrombocytopenia. Taken together, these studies showed that thrombopoiesis is controlled by a network of transcription regulators that are regulated by multiple microRNAs in both positive and negative manner resulting in overall inhibition of thrombopoiesis.
Collapse
Affiliation(s)
- Ayah Al Qaryoute
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA
| | - Weam Fallatah
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA
| | - Sanchi Dhinoja
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA
| | - Revathi Raman
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA
| | - Pudur Jagadeeswaran
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA.
| |
Collapse
|
6
|
Qaryoute AA, Fallatah W, Dhinoja S, Raman R, Jagadeeswaran P. Role of MicroRNAs and their Downstream Target Transcription Factors in Zebrafish Thrombopoiesis. RESEARCH SQUARE 2023:rs.3.rs-2807790. [PMID: 37162944 PMCID: PMC10168436 DOI: 10.21203/rs.3.rs-2807790/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Previous studies have shown that human platelets and megakaryocytes carry microRNAs suggesting their role in platelet function and megakaryocyte development, respectively. However, a comprehensive study on the microRNAs and their targets has not been undertaken. Zebrafish thrombocytes could be used as a model to study their role in megakaryocyte maturation and platelet function because thrombocytes have both megakaryocyte features and platelet properties. In our laboratory, we identified 15 microRNAs in thrombocytes using single-cell RNA sequencing. We knocked down each of these 15 microRNAs by the piggyback method and found knockdown of three microRNAs, mir-7148, let-7b , and mir-223 in adult zebrafish led to an increase in the percentage of thrombocytes. Functional thrombocyte analysis using plate tilt assay showed no modulatory effect of the three microRNAs on thrombocyte aggregation/agglutination. We also found enhanced thrombosis using arterial laser thrombosis assay in a group of zebrafish larvae after mir-7148, let-7b , and mir-223 knockdowns. These results suggested mir-7148, let-7b , and mir-223 are repressors for thrombocyte production. We then explored miRWalk database for let-7b downstream targets and then selected those that are expressed in thrombocytes, and from this list based on their role in differentiation selected 14 genes, rorca, tgif1, rfx1a, deaf1, zbtb18, mafba, cebpa, spi1a, spi1b, fhl3b, ikzf1, irf5, irf8 , and lbx1b that encode transcriptional regulators. The qRT-PCR analysis of expression levels of the above genes following let-7b knockdown showed changes in the expression of 13 targets. We then studied the effect of the 13 targets on thrombocyte production and identified 5 genes, irf5, tgif1, irf8, cebpa , and rorca that showed thrombocytosis and one gene, ikzf1 that showed thrombocytopenia. Furthermore, we tested whether mir-223 regulates any of the above 13 transcription factors after mir-223 knockdown using qRT-PCR. Six of the 13 genes showed similar gene expression as observed with let-7b knockdown and 7 genes showed opposing results. Thus, our results suggested a possible regulatory network in common with both let-7b and mir-223 . We also identified that tgif1, cebpa, ikzf1, irf5 , irf8 , and ikzf1 play a role in thrombopoiesis. Since the ikzf1 gene showed a differential expression profile in let-7b and mir-223 knockdowns but resulted in thrombocytopenia in ikzf1 knockdown in both adults and larvae we also studied an ikzf1 mutant and showed the mutant had thrombocytopenia. Taken together, these studies showed that thrombopoiesis is controlled by a network of transcription regulators that are regulated by multiple microRNAs in both positive and negative manner resulting in overall inhibition of thrombopoiesis.
Collapse
|
7
|
Cimmino G, Conte S, Palumbo D, Sperlongano S, Torella M, Della Corte A, Golino P. The Novel Role of Noncoding RNAs in Modulating Platelet Function: Implications in Activation and Aggregation. Int J Mol Sci 2023; 24:7650. [PMID: 37108819 PMCID: PMC10144470 DOI: 10.3390/ijms24087650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
It is currently believed that plaque complication, with the consequent superimposed thrombosis, is a key factor in the clinical occurrence of acute coronary syndromes (ACSs). Platelets are major players in this process. Despite the considerable progress made by the new antithrombotic strategies (P2Y12 receptor inhibitors, new oral anticoagulants, thrombin direct inhibitors, etc.) in terms of a reduction in major cardiovascular events, a significant number of patients with previous ACSs treated with these drugs continue to experience events, indicating that the mechanisms of platelet remain largely unknown. In the last decade, our knowledge of platelet pathophysiology has improved. It has been reported that, in response to physiological and pathological stimuli, platelet activation is accompanied by de novo protein synthesis, through a rapid and particularly well-regulated translation of resident mRNAs of megakaryocytic derivation. Although the platelets are anucleate, they indeed contain an important fraction of mRNAs that can be quickly used for protein synthesis following their activation. A better understanding of the pathophysiology of platelet activation and the interaction with the main cellular components of the vascular wall will open up new perspectives in the treatment of the majority of thrombotic disorders, such as ACSs, stroke, and peripheral artery diseases before and after the acute event. In the present review, we will discuss the novel role of noncoding RNAs in modulating platelet function, highlighting the possible implications in activation and aggregation.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia, 80138 Naples, Italy
| | - Stefano Conte
- Department of Translational Medical Sciences, Section of Lung Diseases, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy
| | - Domenico Palumbo
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| | - Simona Sperlongano
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia, 80138 Naples, Italy
| | - Michele Torella
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| | - Paolo Golino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| |
Collapse
|
8
|
Ticagrelor Resistance in Cardiovascular Disease and Ischemic Stroke. J Clin Med 2023; 12:jcm12031149. [PMID: 36769796 PMCID: PMC9918175 DOI: 10.3390/jcm12031149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Ticagrelor, acting as a reversible platelet aggregation inhibitor of P2Y12 receptors (P2Y12R), is regarded as one of the first-line antiplatelet drugs for acute cardiovascular diseases. Though the probability of ticagrelor resistance is much lower than that of clopidogrel, there have been recent reports of ticagrelor resistance. In this review, we summarized the clinical application of ticagrelor and then presented the criteria and current status of ticagrelor resistance. We further discussed the potential mechanisms for ticagrelor resistance in terms of drug absorption, metabolism, and receptor action. In conclusion, the incidences of ticagrelor resistance fluctuated between 0 and 20%, and possible mechanisms mainly arose from its absorption and receptor action. Specifically, a variety of factors, such as the drug form of ticagrelor, gut microecology, and the expression and function of P-glycoprotein (P-gp) and P2Y12R, have been shown to be associated with ticagrelor resistance. The exact mechanisms of ticagrelor resistance warrant further exploration, which may contribute to the diagnosis and treatment of ticagrelor resistance.
Collapse
|
9
|
Qin S, Shen C, Tang W, Wang M, Lin Y, Wang Z, Li Y, Zhang Z, Liu X. Impact of miR-200b and miR-495 variants on the risk of large-artery atherosclerosis stroke. Metab Brain Dis 2023; 38:631-639. [PMID: 36374407 DOI: 10.1007/s11011-022-01119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) of microRNAs (miRNAs) may alter miRNA transcription, maturation and target specificity, thus affecting stroke susceptibility. We aimed to investigate whether miR-200b and miR-495 SNPs may be associated with ischemic stroke (IS) risk and further explore underlying mechanisms including related genes and pathways. MiR-200b rs7549819 and miR-495 rs2281611 polymorphisms were genotyped among 712 large-artery atherosclerosis (LAA) stroke patients and 1,076 controls in a case-control study. Bioinformatic analyses were performed to explore potential association of miR-200b/495 with IS and to examine the effects of these two SNPs on miR-200b/495. Furthermore, we evaluated the association between these two SNPs and stroke using the public GWAS datasets. In our case-control study, rs7549819 was significantly associated with a decreased risk of LAA stroke (OR = 0.73, 95% CI = 0.58-0.92; p = 0.007), while rs2281611 had no significant association with LAA stroke risk. These results were consistent with the findings in East Asians from the GIGASTROKE study. Combined effects analysis revealed that individuals with 2-4 protective alleles (miR-200bC and miR-495 T) exhibited lower risk of LAA stroke than those with 0-1 variants (OR = 0.76, 95% CI = 0.61-0.96; p = 0.021). Bioinformatic analyses showed that miR-200b and miR-495 were significantly associated with genes and pathways related to IS pathogenesis, and rs7549819 and rs2281611 markedly influenced miRNA expression and structure. MiR-200b rs7549819 polymorphism and the combined genotypes of miR-200b rs7549819 and miR-495 rs2281611 polymorphisms were associated with decreased risk of LAA stroke in Chinese population.
Collapse
Affiliation(s)
- Shanmei Qin
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wuzhuang Tang
- Department of Neurology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
| | - Mengmeng Wang
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ying Lin
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Zhaojun Wang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Yunzi Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Zhizhong Zhang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China.
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
10
|
He Y, Wu Q. The Effect of Extracellular Vesicles on Thrombosis. J Cardiovasc Transl Res 2022:10.1007/s12265-022-10342-w. [DOI: 10.1007/s12265-022-10342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
Abstract
The risk of cardiovascular events caused by acute thrombosis is high, including acute myocardial infarction, acute stroke, acute pulmonary embolism, and deep vein thrombosis. In this review, we summarize the roles of extracellular vesicles of different cellular origins in various cardiovascular events associated with acute thrombosis, as described in the current literature, to facilitate the future development of a precise therapy for thrombosis caused by such vesicles. We hope that our review will indicate a new horizon in the field of cardiovascular research with regard to the treatment of acute thrombosis, especially targeting thrombosis caused by extracellular vesicles secreted by individual cells. As more emerging technologies are being developed, new diagnostic and therapeutic strategies related to EVs are expected to be identified for related diseases in the future.
Collapse
|
11
|
Gardin C, Ferroni L, Leo S, Tremoli E, Zavan B. Platelet-Derived Exosomes in Atherosclerosis. Int J Mol Sci 2022; 23:ijms232012546. [PMID: 36293399 PMCID: PMC9604238 DOI: 10.3390/ijms232012546] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
Atherosclerosis (AS), the main cause of many cardiovascular diseases (CVDs), is a progressive inflammatory disease characterized by the accumulation of lipids, fibrous elements, and calcification in the innermost layers of arteries. The result is the thickening and clogging of these vessel walls. Several cell types are directly involved in the pathological progression of AS. Among them, platelets represent the link between AS, inflammation, and thrombosis. Indeed, besides their pivotal role in hemostasis and thrombosis, platelets are key mediators of inflammation at injury sites, where they act by regulating the function of other blood and vascular cell types, including endothelial cells (ECs), leukocytes, and vascular smooth muscle cells (VSMCs). In recent years, increasing evidence has pointed to a central role of platelet-derived extracellular vesicles (P-EVs) in the modulation of AS pathogenesis. However, while the role of platelet-derived microparticles (P-MPs) has been significantly investigated in recent years, the same cannot be said for platelet-derived exosomes (P-EXOs). For this reason, this reviews aims at summarizing the isolation methods and biological characteristics of P-EXOs, and at discussing their involvement in intercellular communication in the pathogenesis of AS. Evidence showing how P-EXOs and their cargo can be used as biomarkers for AS is also presented in this review.
Collapse
Affiliation(s)
- Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Sara Leo
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Ferrara, Italy
- Correspondence:
| |
Collapse
|
12
|
Pancreatic Cancer Cells Induce MicroRNA Deregulation in Platelets. Int J Mol Sci 2022; 23:ijms231911438. [PMID: 36232741 PMCID: PMC9569638 DOI: 10.3390/ijms231911438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is a pathology with a high mortality rate since it is detected at advanced stages, so the search for early-stage diagnostic biomarkers is essential. Liquid biopsies are currently being explored for this purpose and educated platelets are a good candidate, since they are known to present a bidirectional interaction with tumor cells. In this work, we analyzed the effects of platelets on cancer cells’ viability, as determined by MTT, migration using transwell assays, clonogenicity in soft agar and stemness by dilution assays and stem markers’ expression. We found that the co-culture of platelets and pancreatic cancer cells increased the proliferation and migration capacity of BXCP3 cells, augmented clonogenicity and induced higher levels of Nanog, Sox2 and Oct4 expression. As platelets can provide horizontal transfer of microRNAs, we also determined the differential expression of miRNAs in platelets obtained from a small cohort of pancreatic cancer patients and healthy subjects. We found clear differences in the expression of several miRNAs between platelets of patients with cancer healthy subjects. Moreover, when we analyzed microRNAs from the platelets of the pancreatic juice and blood derived from each of the cancer patients, interestingly we find differences between the blood- and pancreatic juice-derived platelets suggesting the presence of different subpopulations of platelets in cancer patients, which warrant further analysis.
Collapse
|
13
|
Leng Q, Ding J, Dai M, Liu L, Fang Q, Wang DW, Wu L, Wang Y. Insights Into Platelet-Derived MicroRNAs in Cardiovascular and Oncologic Diseases: Potential Predictor and Therapeutic Target. Front Cardiovasc Med 2022; 9:879351. [PMID: 35757325 PMCID: PMC9218259 DOI: 10.3389/fcvm.2022.879351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
Non-communicable diseases (NCDs), represented by cardiovascular diseases and cancer, have been the leading cause of death globally. Improvements in mortality from cardiovascular (CV) diseases (decrease of 14%/100,000, United States) or cancers (increase 7.5%/100,000, United States) seem unsatisfactory during the past two decades, and so the search for innovative and accurate biomarkers of early diagnosis and prevention, and novel treatment strategies is a valuable clinical and economic endeavor. Both tumors and cardiovascular system are rich in angiological systems that maintain material exchange, signal transduction and distant regulation. This pattern determines that they are strongly influenced by circulating substances, such as glycolipid metabolism, inflammatory homeostasis and cyclic non-coding RNA and so forth. Platelets, a group of small anucleated cells, inherit many mature proteins, mRNAs, and non-coding RNAs from their parent megakaryocytes during gradual formation and manifest important roles in inflammation, angiogenesis, atherosclerosis, stroke, myocardial infarction, diabetes, cancer, and many other diseases apart from its classical function in hemostasis. MicroRNAs (miRNAs) are a class of non-coding RNAs containing ∼22 nucleotides that participate in many key cellular processes by pairing with mRNAs at partially complementary binding sites for post-transcriptional regulation of gene expression. Platelets contain fully functional miRNA processors in their microvesicles and are able to transport their miRNAs to neighboring cells and regulate their gene expression. Therefore, the importance of platelet-derived miRNAs for the human health is of increasing interest. Here, we will elaborate systematically the roles of platelet-derived miRNAs in cardiovascular disease and cancer in the hope of providing clinicians with new ideas for early diagnosis and therapeutic strategies.
Collapse
|
14
|
Abstract
Platelets are essential mediators of physiological hemostasis and pathological thrombosis. Currently available tests and markers of platelet activation did not prove successful in guiding treatment decisions for patients with cardiovascular disease, justifying further research into novel markers of platelet reactivity. Platelets contain a variety of microRNAs (miRNAs) and are a major contributor to the extracellular circulating miRNA pool. Levels of platelet-derived miRNAs in the circulation have been associated with different measures of platelet activation as well as antiplatelet therapy and have therefore been implied as potential new markers of platelet reactivity. In contrast to the ex vivo assessment of platelet reactivity by current platelet function tests, miRNA measurements may enable assessment of platelet reactivity in vivo. It remains to be seen however, whether miRNAs may aid clinical diagnostics. Major limitations in the platelet miRNA research field remain the susceptibility to preanalytical variation, non-standardized sample preparation and data normalization that hampers inter-study comparisons. In this review, we provide an overview of the literature on circulating miRNAs as biomarkers of platelet activation, highlighting the underlying biology, the application in patients with cardiovascular disease and antiplatelet therapy and elaborating on technical limitations regarding their quantification in the circulation.
Collapse
Affiliation(s)
- Clemens Gutmann
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Manuel Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| |
Collapse
|
15
|
Circulating hsa-let-7e-5p and hsa-miR-125a-5p as Possible Biomarkers in the Diagnosis of Major Depression and Bipolar Disorders. DISEASE MARKERS 2022; 2022:3004338. [PMID: 35178127 PMCID: PMC8844308 DOI: 10.1155/2022/3004338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
Abstract
Background. Evidence shows that microRNAs (miRNAs) could play a key role in the homeostasis and development of major depressive disorder and bipolar disorder. The present study is aimed at investigating the changes in circulating miRNA expression profiles in a plasma of patients suffering from major depressive disorder (MDD) and bipolar disorder (BD) to distinguish and evaluate these molecules as biomarkers for mood disorders. Methods. A study enrolled a total of 184 subjects: 74 controls, 84 MDD patients, and 26 BD patients. Small RNA sequencing revealed 11 deregulated circulating miRNAs in MDD and BD plasma, of which expression of 5, hsa-miR-139-3p, miRNAs hsa-let-7e-5p, hsa-let-7f-5p, hsa-miR-125a-5p, and hsa-miR-483-5p, were further verified using qPCR. miRNA gene expression data was evaluated alongside the data from clinical assessment questionnaires. Results. hsa-let-7e-5p and hsa-miR-125a-5p were both confirmed upregulated: 0.75-fold and 0.25-fold, respectively, in the MDD group as well as 1.36-fold and 0.68-fold in the BD group. Receiver operating curve (ROC) analysis showed mediocre diagnostic sensitivity and specificity of both hsa-let-7e-5p and hsa-miR-125a-5p with approximate area under the curve (AOC) of 0.66. ROC analysis of combined miRNA and clinical assessment data showed that hsa-let-7e-5p and hsa-miR-125a-5p testing could improve MDD and BD diagnostic accuracy by approximately 10%. Conclusions. Circulating hsa-let-7e-5 and hsa-miR-125a-5p could serve as additional peripheral biomarkers for mood disorders; however, suicidal ideation remains the major diagnostic factor for MDD and BD.
Collapse
|
16
|
Inzulza-Tapia A, Alarcón M. Role of Non-Coding RNA of Human Platelet in Cardiovascular Disease. Curr Med Chem 2021; 29:3420-3444. [PMID: 34967288 DOI: 10.2174/0929867329666211230104955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/12/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases (CVD) are the major cause of death in the world. Numerous genetic studies involving transcriptomic approaches aimed at the detailed understanding of the disease and the development of new therapeutic strategies have been conducted over recent years. There has been an increase in research on platelets, which are implicated in CVD due to their capacity to release regulatory molecules that affect various pathways. Platelets secrete over 500 various kinds of molecules to plasma including large amounts of non-coding (nc) RNA (miRNA, lncRNA or circRNA). These ncRNA correspond to 98% of transcripts that are not translated into proteins as they are important regulators in physiology and disease. Thus, miRNAs can direct protein complexes to mRNAs through base-pairing interactions, thus causing translation blockage or/and transcript degradation. The lncRNAs act via different mechanisms by binding to transcription factors. Finally, circRNAs act as regulators of miRNAs, interfering with their action. Alteration in the repertoire and/or the amount of the platelet-secreted ncRNA can trigger CVD as well as other diseases. NcRNAs can serve as effective biomarkers for the disease or as therapeutic targets due to their disease involvement. In this review, we will focus on the most important ncRNAs that are secreted by platelets (9 miRNA, 9 lncRNA and 5 circRNA), their association with CVD, and the contribution of these ncRNA to CVD risk to better understand the relation between ncRNA of human platelet and CVD.
Collapse
Affiliation(s)
- Inzulza-Tapia A
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, University of Talca, 2 Norte 685, Talca, Chile
| | - Alarcón M
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, University of Talca, 2 Norte 685, Talca, Chile
| |
Collapse
|
17
|
Screening Analysis of Platelet miRNA Profile Revealed miR-142-3p as a Potential Biomarker in Modeling the Risk of Acute Coronary Syndrome. Cells 2021; 10:cells10123526. [PMID: 34944034 PMCID: PMC8700136 DOI: 10.3390/cells10123526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 12/18/2022] Open
Abstract
Transcriptome analysis constitutes one of the major methods of elucidation of the genetic basis underlying the pathogenesis of various diseases. The post-transcriptional regulation of gene expression is mainly provided by microRNAs. Their remarkable stability in biological fluids and their high sensitivity to disease alteration indicates their potential role as biomarkers. Given the high mortality and morbidity of cardiovascular diseases, novel predictive biomarkers are sorely needed. Our study focuses for the first time on assessing potential biomarkers of acute coronary syndrome (ACS) based on the microRNA profiles of platelets. The study showed the overexpression of eight platelet microRNAs in ACS (miR-142-3p; miR-107; miR-338-3p, miR-223-3p, miR-21-5p, miR-130b-3p, miR-301a-3p, miR-221-3p) associated with platelet reactivity and functionality. Our results show that the combined model based on miR-142-3p and aspartate transaminase reached 82% sensitivity and 88% specificity in the differentiation of the studied groups. Furthermore, the analyzed miRNAs were shown to cluster into two orthogonal groups, regulated by two different biological factors. Bioinformatic analysis demonstrated that one group of microRNAs may be associated with the physiological processes of platelets, whereas the other group may be linked to platelet-vascular environment interactions. This analysis paves the way towards a better understanding of the role of platelet microRNAs in ACS pathophysiology and better modeling of the risk of ACS.
Collapse
|
18
|
Platelet miRNA Biosignature Discriminates between Dementia with Lewy Bodies and Alzheimer's Disease. Biomedicines 2021; 9:biomedicines9091272. [PMID: 34572457 PMCID: PMC8466211 DOI: 10.3390/biomedicines9091272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is one of the most common causes of degenerative dementia, after Alzheimer's disease (AD), and presents pathological and clinical overlap with both AD and Parkinson's disease (PD). Consequently, only one in three DLB cases is diagnosed correctly. Platelets, previously related to neurodegeneration, contain microRNAs (miRNAs) whose analysis may provide disease biomarkers. Here, we profiled the whole platelet miRNA transcriptome from DLB patients and healthy controls. Differentially expressed miRNAs were further validated in three consecutive studies from 2017 to 2019 enrolling 162 individuals, including DLB, AD, and PD patients, and healthy controls. Results comprised a seven-miRNA biosignature, showing the highest diagnostic potential for the differentiation between DLB and AD. Additionally, compared to controls, two miRNAs were down-regulated in DLB, four miRNAs were up-regulated in AD, and two miRNAs were down-regulated in PD. Predictive target analysis identified three disease-specific clusters of pathways as a result of platelet-miRNA deregulation. Our cross-sectional study assesses the identification of a novel, highly specific and sensitive platelet-associated miRNA-based biosignature, which distinguishes DLB from AD.
Collapse
|
19
|
Garcia A, Dunoyer-Geindre S, Fontana P. Do miRNAs Have a Role in Platelet Function Regulation? Hamostaseologie 2021; 41:217-224. [PMID: 34192780 DOI: 10.1055/a-1478-2105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs known to repress mRNA translation and subsequent protein production. miRNAs are predicted to modulate many targets and are involved in regulating various cellular processes. Identifying their role in cell function regulation may allow circulating miRNAs to be used as diagnostic or prognostic markers of various diseases. Increasing numbers of clinical studies have shown associations between circulating miRNA levels and platelet reactivity or the recurrence of cardiovascular events. However, these studies differed regarding population selection, sample types used, miRNA quantification procedures, and platelet function assays. Furthermore, they often lacked functional validation of the miRNA identified in such studies. The latter step is essential to identifying causal relationships and understanding if and how miRNAs regulate platelet function. This review describes recent advances in translational research dedicated to identifying miRNAs' roles in platelet function regulation.
Collapse
Affiliation(s)
- A Garcia
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - P Fontana
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Angiology and Haemostasis, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
20
|
Miao S, Zhang Q, Chang W, Wang J. New Insights Into Platelet-enriched miRNAs: Production, Functions, Roles in Tumors, and Potential Targets for Tumor Diagnosis and Treatment. Mol Cancer Ther 2021; 20:1359-1366. [PMID: 34045229 DOI: 10.1158/1535-7163.mct-21-0050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/12/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022]
Abstract
In view of the increasing number of malignant tumors worldwide and their high mortality, efforts are being made to find effective biomarkers for early detection and effective treatment measures of cancer. In recent years, the roles of platelets in tumors have attracted considerable attention. Although platelets do not have nuclei, they are rich in miRNAs, which are important molecules in platelet regulation of tumors. Platelet miRNA expression in tumor patients is abnormal and tumor-specific. Platelet miRNAs have higher accuracy and specificity than conventional tumor detection markers and circulating miRNAs in tumor diagnosis. Platelets enriched miRNAs are involved in the regulation of tumor proliferation, metastasis, tumor-related immunity, tumor-related thrombosis, and antitumor therapy. To understand the role of platelet miRNAs in tumors, this article reviews the biological functions of miRNAs in platelets and summarizes the regulatory roles of platelet miRNAs in tumors and the potential roles of platelet miRNAs in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Shuo Miao
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
21
|
Dahiya N, Atreya CD. MiR-181a Reduces Platelet Activation via the Inhibition of Endogenous RAP1B. Microrna 2021; 9:240-246. [PMID: 31738148 PMCID: PMC7366005 DOI: 10.2174/2211536608666191026120515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/21/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022]
Abstract
Aim Since RAP1B is critical for platelet functions, including hemostasis, this study was conducted to identify RAP1B regulating microRNAs (miRNAs) in ex vivo stored platelets. Background Previous studies with platelets identified factors affecting RAP1B activity but regulatory miRNAs that affect RAP1B protein expression have not been reported. Objective To understand the functional significance of miRNA mediated regulation of RAP1B in stored platelets, using microRNA, miR-181a as an example. Methods A Tagged RNA Affinity approach (MS2-TRAP) was employed to identify miRNAs that bound to the 3` untranslated region (3`UTR) of the RAP1B mRNA in HeLa cells as an assay system. And subsequently, the mRNA 3’UTR:miRNA interactions were verified in platelets through the ectopic expression of miR-181a mimic and appropriate controls. The interaction of such miRNAs with RAP1B mRNA was also validated by qRT-PCR and Western analysis. Results Sixty-two miRNAs from MS2 assay were then compared with already known 171 platelet abundant miRNAs to identify a common set of miRNAs. This analysis yielded six miRNAs (miR-30e, miR-155, miR-181a, miR-206, miR-208a and miR-454), which are also predicted to target RAP1B mRNA. From this pool, miR-181a was selected for further study since RAP1B harbors two binding sites for miR-181a in its 3′UTR. Ectopic expression of miR-181a mimic in platelets resulted in lowering the endogenous RAP1B at both mRNA and protein levels. Further, miR-181a ectopic expression reduced the surface expression of the platelet activation marker, P-selectin. Conclusion MicroRNA-181a can target RAP1B and this interaction has the potential to regulate platelet activation during storage.
Collapse
Affiliation(s)
- Neetu Dahiya
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Chintamani D Atreya
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, United States
| |
Collapse
|
22
|
Czajka P, Fitas A, Jakubik D, Eyileten C, Gasecka A, Wicik Z, Siller-Matula JM, Filipiak KJ, Postula M. MicroRNA as Potential Biomarkers of Platelet Function on Antiplatelet Therapy: A Review. Front Physiol 2021; 12:652579. [PMID: 33935804 PMCID: PMC8081881 DOI: 10.3389/fphys.2021.652579] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs, able to regulate cellular functions by specific gene modifications. Platelets are the major source for circulating miRNAs, with significant regulatory potential on cardiovascular pathophysiology. MiRNAs have been shown to modify the expression of platelet proteins influencing platelet reactivity. Circulating miRNAs can be determined from plasma, serum, or whole blood, and they can be used as diagnostic and prognostic biomarkers of platelet reactivity during antiplatelet therapy as well as novel therapeutic targets in cardiovascular diseases (CVDs). Herein, we review diagnostic and prognostic value of miRNAs levels related to platelet reactivity based on human studies, presenting its interindividual variability as well as the substantial role of genetics. Furthermore, we discuss antiplatelet treatment in the context of miRNAs alterations related to pathways associated with drug response.
Collapse
Affiliation(s)
- Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Aleksandra Gasecka
- First Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland.,Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, Brazil
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland.,Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Krzysztof J Filipiak
- First Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| |
Collapse
|
23
|
El-Kadiry AEH, Merhi Y. The Role of the Proteasome in Platelet Function. Int J Mol Sci 2021; 22:3999. [PMID: 33924425 PMCID: PMC8069084 DOI: 10.3390/ijms22083999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Platelets are megakaryocyte-derived acellular fragments prepped to maintain primary hemostasis and thrombosis by preserving vascular integrity. Although they lack nuclei, platelets harbor functional genomic mediators that bolster platelet activity in a signal-specific manner by performing limited de novo protein synthesis. Furthermore, despite their limited protein synthesis, platelets are equipped with multiple protein degradation mechanisms, such as the proteasome. In nucleated cells, the functions of the proteasome are well established and primarily include proteostasis among a myriad of other signaling processes. However, the role of proteasome-mediated protein degradation in platelets remains elusive. In this review article, we recapitulate the developing literature on the functions of the proteasome in platelets, discussing its emerging regulatory role in platelet viability and function and highlighting how its functional coupling with the transcription factor NF-κB constitutes a novel potential therapeutic target in atherothrombotic diseases.
Collapse
Affiliation(s)
- Abed El-Hakim El-Kadiry
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, Montreal, QC H1T 1C8, Canada;
- Biomedical Sciences Program, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Yahye Merhi
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, Montreal, QC H1T 1C8, Canada;
- Biomedical Sciences Program, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
24
|
Ye H, Xu H, Qiao M, Guo R, Ji Y, Yu Y, Chen Y, Gai X, Li H, Liu Q, Zhuang Y. MicroRNA expression profiles analysis of apheresis platelets treated with vitamin B 2 and ultraviolet-B during storage. Transfus Apher Sci 2021; 60:103079. [PMID: 33602623 DOI: 10.1016/j.transci.2021.103079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 11/18/2022]
Abstract
Whether platelet (PLT) microRNA (miRNA) profiles are affected by pathogen reduction technology (PRT) using vitamin B2 and ultraviolet-B (VB2-PRT) remains unclear. Samples from VB2-PRT-treated (experimental group, E_) and untreated (control group, C_) apheresis PLTs were taken on days 1, 3 and 5 of storage, designated as E_1, E_3, E_5, C_1, C_3 and C_5, respectively. The miRNA expression profiles were assessed by DNA Nano Ball (DNB) sequencing technology, and verified by quantitive real-time fluorescence quantitative PCR (qRT-PCR). Compared with the expression profiles of PLT miRNAs, 3895 miRNAs were identified in the E_ groups while 4106 were in the C_ groups. There were 487 significant differentially expressed miRNAs in E_1 vs C_1 group, including 220 upregulated and 287 downregulated, such as miR-146a-5p and let-7b-5p. There were 908 significant differentially expressed miRNAs in E_3 vs C_3 group, including 297 upregulated and 611 downregulated, such as miR-142-5p and miR-7-5p. There were 229 significant differentially expressed miRNAs in E_5 vs C_5 group, including 80 upregulated and 149 downregulated, such as miR-3529-3p and miR-451a. These differentially expressed miRNAs had been suggested to have functional roles in energy homeostasis, cell communication, proliferation, migration and apoptosis. GO analysis showed a significant enrichmen in relevant biological process categories as receptor activity, signal transduction, cell transport, motility and chemotaxis. The significantly enriched KEGG pathway of predicted target genes was Glycosaminoglycan biosynthesis in E_ vs C_ groups. These new observation could provide insights on the understanding of change of miRNA profiles of PLT treated with VB2-PRT.
Collapse
Affiliation(s)
- Hui Ye
- Institute of Hematology, Blood Center of Shandong Province, Jinan 250014, Shandong Province, China; School of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Huicong Xu
- Domestic Marketing System of Shenzhen Mindray Biomedical Electronics Co, Ltd, Jinan 250012, Shandong Province, China
| | - Mingming Qiao
- Institute of Hematology, Blood Center of Shandong Province, Jinan 250014, Shandong Province, China
| | - Rui Guo
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated With Shandong First Medical University, Jinan 250014, Shandong Province, China
| | - Yanbo Ji
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated With Shandong First Medical University, Jinan 250014, Shandong Province, China
| | - Yuan Yu
- Institute of Hematology, Blood Center of Shandong Province, Jinan 250014, Shandong Province, China
| | - Yuanfeng Chen
- Institute of Hematology, Blood Center of Shandong Province, Jinan 250014, Shandong Province, China
| | - Xia Gai
- Institute of Hematology, Blood Center of Shandong Province, Jinan 250014, Shandong Province, China
| | - Honglei Li
- School of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Qun Liu
- Institute of Hematology, Blood Center of Shandong Province, Jinan 250014, Shandong Province, China
| | - Yunlong Zhuang
- Institute of Hematology, Blood Center of Shandong Province, Jinan 250014, Shandong Province, China.
| |
Collapse
|
25
|
Tian J, Adams MJ, Tay JWT, James I, Powell S, Hughes QW, Gilmore G, Baker RI, Tiao JYH. Estradiol-Responsive miR-365a-3p Interacts with Tissue Factor 3'UTR to Modulate Tissue Factor-Initiated Thrombin Generation. Thromb Haemost 2021; 121:1483-1496. [PMID: 33540457 DOI: 10.1055/a-1382-9983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND High estradiol (E2) levels are linked to an increased risk of venous thromboembolism; however, the underlying molecular mechanism(s) remain poorly understood. We previously identified an E2-responsive microRNA (miR), miR-494-3p, that downregulates protein S expression, and posited additional coagulation factors, such as tissue factor, may be regulated in a similar manner via miRs. OBJECTIVES To evaluate the coagulation capacity of cohorts with high physiological E2, and to further characterize novel E2-responsive miR and miR regulation on tissue factor in E2-related hypercoagulability. METHODS Ceveron Alpha thrombin generation assay (TGA) was used to assess plasma coagulation profile of three cohorts. The effect of physiological levels of E2, 10 nM, on miR expression in HuH-7 cells was compared using NanoString nCounter and validated with independent assays. The effect of tissue factor-interacting miR was confirmed by dual-luciferase reporter assays, immunoblotting, flow cytometry, biochemistry assays, and TGA. RESULTS Plasma samples from pregnant women and women on the contraceptive pill were confirmed to be hypercoagulable (compared with sex-matched controls). At equivalent and high physiological levels of E2, miR-365a-3p displayed concordant E2 downregulation in two independent miR quantification platforms, and tissue factor protein was upregulated by E2 treatment. Direct interaction between miR-365a-3p and F3-3'UTR was confirmed and overexpression of miR-365a-3p led to a decrease of (1) tissue factor mRNA transcripts, (2) protein levels, (3) activity, and (4) tissue factor-initiated thrombin generation. CONCLUSION miR-365a-3p is a novel tissue factor regulator. High E2 concentrations induce a hypercoagulable state via a miR network specific for coagulation factors.
Collapse
Affiliation(s)
- Jiayin Tian
- Western Australian Centre for Thrombosis and Haemostasis, Murdoch University, Murdoch, Perth, Australia.,Perth Blood Institute, West Perth, Perth, Australia.,College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Perth, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Perth, Australia
| | - Murray J Adams
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Perth, Australia
| | - Jasmine Wee Ting Tay
- Western Australian Centre for Thrombosis and Haemostasis, Murdoch University, Murdoch, Perth, Australia.,Perth Blood Institute, West Perth, Perth, Australia
| | - Ian James
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Perth, Australia
| | - Suzanne Powell
- Western Australian Centre for Thrombosis and Haemostasis, Murdoch University, Murdoch, Perth, Australia
| | - Quintin W Hughes
- Western Australian Centre for Thrombosis and Haemostasis, Murdoch University, Murdoch, Perth, Australia.,Perth Blood Institute, West Perth, Perth, Australia
| | - Grace Gilmore
- Western Australian Centre for Thrombosis and Haemostasis, Murdoch University, Murdoch, Perth, Australia.,Perth Blood Institute, West Perth, Perth, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Perth, Australia
| | - Ross I Baker
- Western Australian Centre for Thrombosis and Haemostasis, Murdoch University, Murdoch, Perth, Australia.,Perth Blood Institute, West Perth, Perth, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Perth, Australia
| | - Jim Yu-Hsiang Tiao
- Western Australian Centre for Thrombosis and Haemostasis, Murdoch University, Murdoch, Perth, Australia.,Perth Blood Institute, West Perth, Perth, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Perth, Australia
| |
Collapse
|
26
|
Zhang MW, Shen YJ, Shi J, Yu JG. MiR-223-3p in Cardiovascular Diseases: A Biomarker and Potential Therapeutic Target. Front Cardiovasc Med 2021; 7:610561. [PMID: 33553260 PMCID: PMC7854547 DOI: 10.3389/fcvm.2020.610561] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases, involving vasculopathy, cardiac dysfunction, or circulatory disturbance, have become the major cause of death globally and brought heavy social burdens. The complexity and diversity of the pathogenic factors add difficulties to diagnosis and treatment, as well as lead to poor prognosis of these diseases. MicroRNAs are short non-coding RNAs to modulate gene expression through directly binding to the 3′-untranslated regions of mRNAs of target genes and thereby to downregulate the protein levels post-transcriptionally. The multiple regulatory effects of microRNAs have been investigated extensively in cardiovascular diseases. MiR-223-3p, expressed in multiple cells such as macrophages, platelets, hepatocytes, and cardiomyocytes to modulate their cellular activities through targeting a variety of genes, is involved in the pathological progression of many cardiovascular diseases. It participates in regulation of several crucial signaling pathways such as phosphatidylinositol 3-kinase/protein kinase B, insulin-like growth factor 1, nuclear factor kappa B, mitogen-activated protein kinase, NOD-like receptor family pyrin domain containing 3 inflammasome, and ribosomal protein S6 kinase B1/hypoxia inducible factor 1 α pathways to affect cell proliferation, migration, apoptosis, hypertrophy, and polarization, as well as electrophysiology, resulting in dysfunction of cardiovascular system. Here, in this review, we will discuss the role of miR-223-3p in cardiovascular diseases, involving its verified targets, influenced signaling pathways, and regulation of cell function. In addition, the potential of miR-223-3p as therapeutic target and biomarker for diagnosis and prediction of cardiovascular diseases will be further discussed, providing clues for clinicians.
Collapse
Affiliation(s)
- Meng-Wan Zhang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Jie Shen
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Shi
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Guang Yu
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Berillo O, Huo KG, Fraulob-Aquino JC, Richer C, Briet M, Boutouyrie P, Lipman ML, Sinnett D, Paradis P, Schiffrin EL. Circulating let-7g-5p and miR-191-5p Are Independent Predictors of Chronic Kidney Disease in Hypertensive Patients. Am J Hypertens 2020; 33:505-513. [PMID: 32115655 DOI: 10.1093/ajh/hpaa031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/15/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hypertension (HTN) is associated with target organ damage such as cardiac, vascular, and kidney injury. Several studies have investigated circulating microRNAs (miRNAs) as biomarkers of cardiovascular disease, but few have examined them as biomarker of target organ damage in HTN. We aimed to identify circulating miRNAs that could serve as biomarkers of HTN-induced target organ damage using an unbiased approach. METHODS AND RESULTS Fifteen normotensive subjects, 16 patients with HTN, 15 with HTN associated with other features of the metabolic syndrome (MetS), and 16 with HTN or chronic kidney disease (CKD) were studied. Circulating RNA extracted from platelet-poor plasma was used for small RNA sequencing. Differentially expressed (DE) genes were identified with a threshold of false discovery rate <0.1. DE miRNAs were identified uniquely associated with HTN, MetS, or CKD. However, only 2 downregulated DE miRNAs (let-7g-5p and miR-191-5p) could be validated by reverse transcription-quantitative PCR. Let-7g-5p was associated with large vessel stiffening, miR-191-5p with MetS, and both miRNAs with estimated glomerular filtration rate (eGFR) and neutrophil and lymphocyte fraction or number and neutrophil-to-lymphocyte ratio. Using the whole population, stepwise multiple linear regression generated a model showing that let-7g-5p, miR-191-5p, and urinary albumin/creatinine ratio predicted eGFR with an adjusted R2 of 0.46 (P = 8.5e-7). CONCLUSIONS We identified decreased circulating let-7g-5p and miR-191-5p as independent biomarkers of CKD among patients with HTN, which could have pathophysiological and therapeutic implications.
Collapse
Affiliation(s)
- Olga Berillo
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Montréal, Canada
| | - Ku-Geng Huo
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Montréal, Canada
| | - Júlio C Fraulob-Aquino
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Montréal, Canada
| | - Chantal Richer
- Division of Hematology-Oncology, Research Center, CHU Sainte-Justine, Montréal, Canada
| | - Marie Briet
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Montréal, Canada
- INSERM U1083, CNRS UMR 6214, Service de Pharmacologie-Toxicologie et Pharmacovigilance, Centre Hospitalo-Universitaire d’Angers, Université d’Angers, Angers, France
| | - Pierre Boutouyrie
- Department of Pharmacology, Université Paris-Descartes, INSERM U970 and Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Mark L Lipman
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Montréal, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Canada
| | - Daniel Sinnett
- Division of Hematology-Oncology, Research Center, CHU Sainte-Justine, Montréal, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Pierre Paradis
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Montréal, Canada
| | - Ernesto L Schiffrin
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Montréal, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Canada
| |
Collapse
|
28
|
microRNAs as promising biomarkers of platelet activity in antiplatelet therapy monitoring. Int J Mol Sci 2020; 21:ijms21103477. [PMID: 32423125 PMCID: PMC7278969 DOI: 10.3390/ijms21103477] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Given the high morbidity and mortality of cardiovascular diseases (CVDs), novel biomarkers for platelet reactivity are urgently needed. Ischemic events in CVDs are causally linked to platelets, small anucleate cells important for hemostasis. The major side-effect of antiplatelet therapy are life-threatening bleeding events. Current platelet function tests are not sufficient in guiding treatment decisions. Platelets host a broad spectrum of microRNAs (miRNAs) and are a major source of cell-free miRNAs in the blood stream. Platelet-related miRNAs have been suggested as biomarkers of platelet activation and assessment of antiplatelet therapy responsiveness. Platelets release miRNAs upon activation, possibly leading to alterations of plasma miRNA levels in conjunction with CVD or inadequate platelet inhibition. Unlike current platelet function tests, which measure platelet activation ex vivo, signatures of platelet-related miRNAs potentially enable the assessment of in vivo platelet reactivity. Evidence suggests that some miRNAs are responsive to platelet inhibition, making them promising biomarker candidates. In this review, we explain the secretion of miRNAs upon platelet activation and discuss the potential use of platelet-related miRNAs as biomarkers for CVD and antiplatelet therapy monitoring, but also highlight remaining gaps in our knowledge and uncertainties regarding clinical utility. We also elaborate on technical issues and limitations concerning plasma miRNA quantification.
Collapse
|
29
|
Ou M, Zhang Y, Cui S, Zhao S, Tu J. Upregulated MiR-9-5p Protects Against Inflammatory Response in Rats with Deep Vein Thrombosis via Inhibition of NF-κB p50. Inflammation 2020; 42:1925-1938. [PMID: 31463646 DOI: 10.1007/s10753-019-01031-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recently, microRNAs (miRNAs) have been demonstrated to play important roles in the cardiovascular system, including heart, blood vessels, plasma, and vascular diseases. Deep vein thrombosis (DVT) refers to the formation of blood clot in the deep veins of the human body and is a common peripheral vascular disease. Herein, we explored the mechanism of miR-9-5p in DVT through nuclear factor-κB (NF-κB). The expression of miR-9-5p in DVT rats was measured through the establishment of DVT rat models, followed by the alteration of miR-9-5p and NF-κB p50 in rats through the injection of constructed lentiviral vectors so as to explore the role of miR-9-5p and NF-κB p50 expression in rats. Next, the expression of NF-κB p50 and levels of inflammation-related factors plasminogen activator inhibitor-1 (PAI-1), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and interleukin-8 (IL-8) were measured after the injection with lentiviral vectors, followed by the assessment of platelet aggregation and TXB2 content. MiR-9-5p was found to be downregulated in DVT rats. Through dual luciferase reporter gene assay, NF-κB p50 was verified as the target gene of miR-9-5p and miR-9-5p could negatively regulate NF-κB p50. MiR-9-5p over-expression decreased the levels of PAI-1, TNF-α, IL-6, and IL-8 and platelet aggregation as well as TXB2 content, thus inhibiting thrombosis. Meanwhile, over-expressed NF-κB p50 could reverse the anti-inflammatory or anti-thrombotic effect of miR-9-5p. In summary, miR-9-5p over-expression can suppress the NF-κB signaling pathway through p50 downregulation, thus alleviating inflammation and thrombosis in DVT rats. MiR-9-5p could serve as a potential therapeutic target for DVT.
Collapse
Affiliation(s)
- Minghui Ou
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao, 266011, People's Republic of China
| | - Yunfeng Zhang
- Department of Orthopedics, Qingdao Municipal Hospital, Qingdao, 266011, People's Republic of China
| | - Shichao Cui
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao, 266011, People's Republic of China
| | - Shibo Zhao
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao, 266011, People's Republic of China
| | - Jie Tu
- Science and Education Department, Qingdao Municipal Hospital, No. 1, Jiaozhou Road Shandong Province, Qingdao, 266011, People's Republic of China.
| |
Collapse
|
30
|
Platelet MicroRNA 365-3p Expression Correlates with High On-treatment Platelet Reactivity in Coronary Artery Disease Patients. Cardiovasc Drugs Ther 2020; 33:129-137. [PMID: 30783954 DOI: 10.1007/s10557-019-06855-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE The expression level of platelet microRNAs (miRNAs) correlates with heart disease and may be altered by antiplatelet therapy. This study aims to assess whether certain miRNAs are associated with treatment response by platelets in patients who received percutaneous coronary intervention and antiplatelet therapy. The dynamic expression of certain miRNAs in patients receiving different antiplatelet regimens was also investigated. METHODS Healthy subjects (N = 20) received no-stent or antiplatelet therapy (as control), and patients (N = 155) who underwent stent implant and received treatment regimens that included aspirin plus clopidogrel, ticagrelor, or cilostazol were included. The association of miR-96-5p, miR-495-3p, miR-107, miR-223-3p, miR-15a-5, miR-365-3p, and miR-339-3p levels with treatment response, SYNTAX score, and HTPR was determined. RESULTS Of the different treatment regimens, ticagrelor was the most efficacious. At 24 h following drug administration, ROC analysis revealed that miR-339-3p and miR-365-3p had the highest sensitivity (74.3% and 90.0%, respectively) and specificity (71.4% and 93.3%) for detecting HTPR compared with the five other miRNAs. The SYNTAX score positively correlated with miR-223-3p and miR-365-3p levels at 24 h (P ≤ 0.006) and with miR-365-3p levels 7 days following drug administration (P = 0.014). The expression of all three miRNAs reached the highest levels in hyperresponsive (P2Y12 reaction unit < 85) followed by hyporesponsive (P2Y12 reaction unit ≥ 208) and then normoreactive. The normoreactive value was very close to that of controls. CONCLUSIONS Our data suggest that miR-365-3p expression level correlates with the antiplatelet treatment response. CLINICAL TRIAL REGISTRATION NCT02101437.
Collapse
|
31
|
Felekkis K, Papaneophytou C. Challenges in Using Circulating Micro-RNAs as Biomarkers for Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21020561. [PMID: 31952319 PMCID: PMC7013987 DOI: 10.3390/ijms21020561] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Micro-RNAs (miRNAs) play a pivotal role in the development and physiology of the cardiovascular system while they have been associated with multiple cardiovascular diseases (CVDs). Several cardiac miRNAs are detectable in circulation (circulating miRNAs; c-miRNAs) and are emerging as diagnostic and therapeutic biomarkers for CVDs. c-miRNAs exhibit numerous essential characteristics of biomarkers while they are extremely stable in circulation, their expression is tissue-/disease-specific, and they can be easily detected using sequence-specific amplification methods. These features of c-miRNAs are helpful in the development of non-invasive assays to monitor the progress of CVDs. Despite significant progress in the detection of c-miRNAs in serum and plasma, there are many contradictory publications on the alterations of cardiac c-miRNAs concentration in circulation. The aim of this review is to examine the pre-analytical and analytical factors affecting the quantification of c-miRNAs and provide general guidelines to increase the accuracy of the diagnostic tests in order to improve future research on cardiac c-miRNAs.
Collapse
|
32
|
Maués JHDS, Aquino Moreira-Nunes CDF, Rodriguez Burbano RM. MicroRNAs as a Potential Quality Measurement Tool of Platelet Concentrate Stored in Blood Banks-A Review. Cells 2019; 8:E1256. [PMID: 31618890 PMCID: PMC6829606 DOI: 10.3390/cells8101256] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Platelet concentrate (PC) is one of the main products used in a therapeutic transfusion. This blood component requires special storage at blood banks, however, even under good storage conditions, modifications or degradations may occur and are known as platelet storage lesions. METHODS This research was performed on scientific citation databases PubMed/Medline, ScienceDirect, and Web of Science, for publications containing platelet storage lesions. The results obtained mainly reveal the clinical applicability of miRNAs as biomarkers of storage injury and as useful tools for a problem affecting public and private health, the lack of PC bags in countries with few blood donors. The major studies listed in this review identified miRNAs associated with important platelet functions that are relevant in clinical practice as quality biomarkers of PC, such as miR-223, miR-126, miR-10a, miR-150, miR-16, miR-21, miR-326, miR-495, let-7b, let-7c, let-7e, miR-107, miR-10b, miR-145, miR-155, miR-17, miR-191, miR-197, miR-200b, miR-24, miR-331, miR-376. These miRNAs can be used in blood banks to identify platelet injury in PC bags. CONCLUSION The studies described in this review relate the functions of miRNAs with molecular mechanisms that result in functional platelet differences, such as apoptosis. Thus, miRNA profiles can be used to measure the quality of storage PC for more than 5 days, identify bags with platelet injury, and distinguish those with functional platelets.
Collapse
Affiliation(s)
- Jersey Heitor da Silva Maués
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil.
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, PA 66063-240, Brazil.
| | - Caroline de Fátima Aquino Moreira-Nunes
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil.
- Christus University Center-Unichristus, Faculty of Biomedicine, Fortaleza, CE 60192-345, Brazil.
| | - Rommel Mário Rodriguez Burbano
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil.
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, PA 66063-240, Brazil.
| |
Collapse
|
33
|
Zou X, Li M, Huang Z, Zhou X, Liu Q, Xia T, Zhu W. Circulating miR-532-502 cluster derived from chromosome X as biomarkers for diagnosis of breast cancer. Gene 2019; 722:144104. [PMID: 31493506 DOI: 10.1016/j.gene.2019.144104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 08/17/2019] [Accepted: 09/02/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Xuan Zou
- First Clinical College of Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, PR China
| | - Minghui Li
- Department of Breast Surgery, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China
| | - Zebo Huang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China; Department of Oncology, the Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi 214062, Jiangsu Province, PR China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China
| | - Qingxie Liu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China
| | - Tiansong Xia
- Department of Breast Surgery, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China.
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China; Department of Oncology and Radiotherapy, Nanjing Pukou Central Hospital, 166 Shanghe Street, Pukou District, Nanjing 211800, PR China.
| |
Collapse
|
34
|
Kojok K, El-Kadiry AEH, Merhi Y. Role of NF-κB in Platelet Function. Int J Mol Sci 2019; 20:E4185. [PMID: 31461836 PMCID: PMC6747346 DOI: 10.3390/ijms20174185] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 01/04/2023] Open
Abstract
Platelets are megakaryocyte-derived fragments lacking nuclei and prepped to maintain primary hemostasis by initiating blood clots on injured vascular endothelia. Pathologically, platelets undergo the same physiological processes of activation, secretion, and aggregation yet with such pronouncedness that they orchestrate and make headway the progression of atherothrombotic diseases not only through clot formation but also via forcing a pro-inflammatory state. Indeed, nuclear factor-κB (NF-κB) is largely implicated in atherosclerosis and its pathological complication in atherothrombotic diseases due to its transcriptional role in maintaining pro-survival and pro-inflammatory states in vascular and blood cells. On the other hand, we know little on the functions of platelet NF-κB, which seems to function in other non-genomic ways to modulate atherothrombosis. Therein, this review will resemble a rich portfolio for NF-κB in platelets, specifically showing its implications at the levels of platelet survival and function. We will also share the knowledge thus far on the effects of active ingredients on NF-κB in general, as an extrapolative method to highlight the potential therapeutic targeting of NF-κB in coronary diseases. Finally, we will unzip a new horizon on a possible extra-platelet role of platelet NF-κB, which will better expand our knowledge on the etiology and pathophysiology of atherothrombosis.
Collapse
Affiliation(s)
- Kevin Kojok
- The Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, 5000 Belanger Street, Montreal, H1T 1C8, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, H3T 1J4, QC, Canada
| | - Abed El-Hakim El-Kadiry
- The Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, 5000 Belanger Street, Montreal, H1T 1C8, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, H3T 1J4, QC, Canada
| | - Yahye Merhi
- The Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, 5000 Belanger Street, Montreal, H1T 1C8, QC, Canada.
- Faculty of Medicine, Université de Montréal, Montreal, H3T 1J4, QC, Canada.
| |
Collapse
|
35
|
Viscoelastic Separation and Concentration of Fungi from Blood for Highly Sensitive Molecular Diagnostics. Sci Rep 2019; 9:3067. [PMID: 30816161 PMCID: PMC6395622 DOI: 10.1038/s41598-019-39175-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/18/2019] [Indexed: 12/30/2022] Open
Abstract
Isolation and concentration of fungi in the blood improves sensitivity of the polymerase chain reaction (PCR) method to detect fungi in blood. This study demonstrates a sheathless, continuous separation and concentration method of candida cells using a viscoelastic fluid that enables rapid detection of rare candida cells by PCR analysis. To validate device performance using a viscoelastic fluid, flow characteristics of 2 μm particles were estimated at different flow rates. Additionally, a mixture of 2 μm and 13 μm particles was successfully separated based on size difference at 100 μl/min. Candida cells were successfully separated from the white blood cells (WBCs) with a separation efficiency of 99.1% and concentrated approximately 9.9-fold at the center outlet compared to the initial concentration (~2.5 × 107 cells/ml). Sequential 1st and 2nd concentration processes were used to increase the final number of candida cells to ~2.3 × 109 cells/ml, which was concentrated ~92-fold. Finally, despite the undetectable initial concentration of 101 CFU/ml, removal of WBCs and the additional buffer solution enabled the quantitative reverse transcription (RT)-PCR detection of candida cells after the 1st concentration (Ct = 31.43) and the 2nd concentration process (Ct = 29.30).
Collapse
|
36
|
Dahiya N, Atreya CD. RAP1 Downregulation by miR-320c Reduces Platelet Activation in Ex-vivo Storage. Microrna 2019; 8:36-42. [PMID: 29779489 DOI: 10.2174/2211536607666180521094532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/20/2018] [Accepted: 05/15/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND A small GTPase Protein, the Ras-related Protein 1 (RAP1), abundant in platelets is known to be activated following agonist-induced platelet activation, suggesting that RAP1 downregulation could, in turn, reduce platelet activation in storage. Our objective of this study is to identify RAP1 regulating miRNAs and their role in platelet activation during storage. METHODS We applied MS2-TRAP (tagged RNA affinity purification) methodology to enrich miRNAs that target the 3' untranslated region (3'UTR) of RAP1 mRNA in two mammalian cell lines followed by miRNA identification by microarray of total RNA samples enriched for miRNAs. Data analyses were done using different bioinformatics approaches. The direct miR:RAP1 3'UTR interaction was confirmed by using a dual luciferase reporter gene expression system in a mammalian cell line. Subsequently, platelets were transfected with one selected miR to evaluate RAP1 downregulation by this miRNA and its effect on platelet activation. RESULTS Six miRNAs (miR-320c, miR-181a, miR-3621, miR-489, miR-4791 and miR-4744) were identified to be enriched in the two cell lines tested. We randomly selected miR-320c for further evaluation. The luciferase reporter assay system confirmed the direct interaction of miR-320c with RAP1 3'UTR. Further, in platelets treated with miR-320c, RAP1 protein expression was decreased and concomitantly, platelet activation was also decreased. CONCLUSION Overall, the results demonstrate that miRNA-based RAP1 downregulation in ex vivo stored platelets reduces platelet activation.
Collapse
Affiliation(s)
- Neetu Dahiya
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring MD 20993, United States
| | - Chintamani D Atreya
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring MD 20993, United States
| |
Collapse
|
37
|
Provost P. Platelet MicroRNAs. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Zhang J, Fa X, Zhang Q. MicroRNA‑206 exerts anti‑oncogenic functions in esophageal squamous cell carcinoma by suppressing the c‑Met/AKT/mTOR pathway. Mol Med Rep 2018; 19:1491-1500. [PMID: 30569129 PMCID: PMC6390054 DOI: 10.3892/mmr.2018.9775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 10/12/2018] [Indexed: 12/27/2022] Open
Abstract
Increasing evidence suggests that the dysregulation of microRNAs (miRNAs) has an important role in the progression of human cancer, including ESCC. However, the exact functions and mechanisms of miRNAs in ESCC remain largely unclear. The aim of the present study was to investigate the expression and biological functions of miRNAs in ESCC and reveal the underlying molecular mechanisms. miRNA microarray and reverse transcription-quantitative polymerase chain reaction analyses were performed, which identified and confirmed that miR-206 was significantly downregulated in ESCC tissues and cell lines. Its low expression was associated with lymph node metastasis, advanced TNM stage and N classification, as well as poorer overall survival in patients with ESCC. CCK-8 and flow cytometry assays demonstrated that ectopic miR-206 expression inhibited ESCC cell proliferation and induced cell apoptosis. In addition, MET proto-oncogene, receptor tyrosine kinase (c-Met), a well-known oncogene, was a direct target of miR-206. An inverse correlation between the levels of miR-206 and c-Met mRNA in ESCC tissue samples was confirmed. Notably, c-Met overexpression inhibited the effects of miR-206 on the proliferation and apoptosis of ESCC cells. Additionally, it was confirmed that the tumor-suppressive functions of miR-206 may have contributed to the inactivation of the c-Met/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway. In conclusion, the findings of the present study suggested that miR-206 exerts its anti-cancer functions via the c-Met/AKT/mTOR signaling pathway, providing a novel candidate prognostic factor and a potential therapeutic target in ESCC.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Xianen Fa
- Department of Cardiac Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Qingyong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| |
Collapse
|
39
|
Platelet microRNAs in hypertensive patients with and without cardiovascular disease. J Hum Hypertens 2018; 33:149-156. [DOI: 10.1038/s41371-018-0123-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 11/08/2022]
|
40
|
Lima-Oliveira G, Monneret D, Guerber F, Guidi GC. Sample management for clinical biochemistry assays: Are serum and plasma interchangeable specimens? Crit Rev Clin Lab Sci 2018; 55:480-500. [PMID: 30309270 DOI: 10.1080/10408363.2018.1499708] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The constrained economic context leads laboratories to centralize their routine analyses on high-throughput platforms, to which blood collection tubes are sent from peripheral sampling sites that are sometimes distantly located. Providing biochemistry results as quickly as possible implies to consolidate the maximum number of tests on a minimum number of blood collection tubes, mainly serum tubes and/or tubes with anticoagulants. However, depending on the parameters and their pre-analytical conditions, the type of matrix - serum or plasma - may have a significant impact on results, which is often unknown or underestimated in clinical practice. Importantly, the matrix-related effects may be a limit to the consolidation of analyses on a single tube, and thus must be known by laboratory professionals. The purpose of the present critical review is to put forward the main differences between using serum and plasma samples on clinical biochemistry analyses, in order to sensitize laboratory managers to the need for standardization. To enrich the debate, we also provide an additional comparison of serum and plasma concentrations for approximately 30 biochemistry parameters. Properties, advantages, and disadvantages of serum and plasma are discussed from a pre-analytical standpoint - before, during, and after centrifugation - with an emphasis on the importance of temperature, delay, and transport conditions. Then, differences in results between these matrices are addressed for many classes of biochemistry markers, particularly proteins, enzymes, electrolytes, lipids, circulating nucleic acids, metabolomics markers, and therapeutic drugs. Finally, important key-points are proposed to help others choose the best sample matrix and guarantee quality of clinical biochemistry assays. Moreover, awareness of the implications of using serum and plasma samples on various parameters assayed in the laboratory is an important requirement to ensure reliable results and improve patient care.
Collapse
Affiliation(s)
- Gabriel Lima-Oliveira
- a Section of Clinical Biochemistry, Department of Neurosciences , Biomedicine and Movement Sciences, University of Verona , Verona , Italy.,b Latin American Working Group for Preanalytical Phase (WG-PRE-LATAM) of the Latin America Confederation of Clinical Biochemistry (COLABIOCLI) , Montevideo , Uruguay
| | - Denis Monneret
- c Department of Biochemistry and Molecular Biology , Lyon Sud Hospital Group, Hospices Civils de Lyon , Pierre Bénite , France
| | | | - Gian Cesare Guidi
- a Section of Clinical Biochemistry, Department of Neurosciences , Biomedicine and Movement Sciences, University of Verona , Verona , Italy.,b Latin American Working Group for Preanalytical Phase (WG-PRE-LATAM) of the Latin America Confederation of Clinical Biochemistry (COLABIOCLI) , Montevideo , Uruguay
| |
Collapse
|
41
|
Abstract
SIGNIFICANCE Platelets are anucleate blood cells that are involved in hemostasis and thrombosis. Although no longer able to generate ribonucleic acid (RNA) de novo, platelets contain messenger RNA (mRNA), YRNA fragments, and premature microRNAs (miRNAs) that they inherit from megakaryocytes. Recent Advances: Novel sequencing techniques have helped identify the unexpectedly large number of RNA species present in platelets. Throughout their life time, platelets can process the pre-existing pool of premature miRNA to give the fully functional miRNA that can regulate platelet protein expression and function. CRITICAL ISSUES Platelets make a major contribution to the circulating miRNA pool but platelet activation can have major consequences on Dicer levels and thus miRNA maturation, which has implications for studies that are focused on screening-stored platelets. FUTURE DIRECTIONS It will be important to determine the importance of platelets as donors for miRNA-containing microvesicles that can be taken up and processed by other (particularly vascular) cells, thus contributing to homeostasis as well as disease progression. Antioxid. Redox Signal. 29, 902-921.
Collapse
Affiliation(s)
- Amro Elgheznawy
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Germany .,2 German Center for Cardiovascular Research (DZHK) , Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Germany .,2 German Center for Cardiovascular Research (DZHK) , Partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
42
|
Miao X, Rahman MFU, Jiang L, Min Y, Tan S, Xie H, Lee L, Wang M, Malmström RE, Lui WO, Li N. Thrombin-reduced miR-27b attenuates platelet angiogenic activities in vitro via enhancing platelet synthesis of anti-angiogenic thrombospondin-1. J Thromb Haemost 2018; 16:791-801. [PMID: 29442415 DOI: 10.1111/jth.13978] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 12/29/2022]
Abstract
Essentials It is unclear if platelet micro-RNAs can regulate de novo protein synthesis of platelets. Platelet de novo protein synthesis of thrombospondin-1 (TSP-1) was induced by thrombin. Thrombin stimulation in vitro altered platelet microRNA profiles, including decreased miR-27b. Decreased miR-27b hampers platelet angiogenic activities via enhancing de novo TSP-1 synthesis. SUMMARY Background Platelets can synthesize proteins upon activation. Platelets contain a number of microRNAs (miRNA) and a fully functional miRNA effector machinery. It is, however, unclear if platelet miRNAs can regulate protein synthesis of platelets, and whether the regulation may produce a physiological impact. Objectives To investigate if and how platelet miRNAs regulate de novo syntheses of angiogenic regulators and subsequently modulate platelet angiogenic activities. Methods and Results Microarray-based miRNA profiling showed that thrombin stimulation in vitro down- or up-regulated a number of platelet miRNAs, both in the total platelet miRNAs and in Ago2-associated miRNAs. Among those altered miRNAs, miR-27b was down-regulated in both the total and Ago2-immunoprecipitated miRNA profiles of platelets, which was confirmed by reverse transcription-quantitative PCR (RT-qPCR). Using western blotting assays, we showed that thrombin induced platelet de novo synthesis of thrombospondin-1, and that the level of thrombospondin-1 synthesis could reach a level of 3-5-fold higher than that before thrombin stimulation. With either the platelet precursor megakaryocyte cell line MEG-01 cells or mature platelets, we demonstrated that transfection of miR-27b mimic, but not the negative control of miRNA mimic, markedly reduced thrombospondin-1 protein levels. The latter subsequently enhanced platelet-dependent endothelial tube formation on matrigel. Conclusions Thrombin stimulation in vitro reduces platelet miR-27b levels that may markedly enhance thrombin-evoked platelet de novo synthesis of thrombospondin-1. Elevation of platelet miR-27b by transfection inhibits thrombospondin-1 synthesis, and subsequently enhances platelet pro-angiogenic activities. Hence, platelet activation-dependent reduction of miR-27b levels may represent a novel negative regulatory mechanism of platelet angiogenic activities.
Collapse
Affiliation(s)
- X Miao
- Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska Institutet, Stockholm, Sweden
| | - M F-U Rahman
- Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska Institutet, Stockholm, Sweden
| | - L Jiang
- Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Y Min
- Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska Institutet, Stockholm, Sweden
| | - S Tan
- Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska Institutet, Stockholm, Sweden
| | - H Xie
- Department of Oncology-Pathology and Cancer Center Karolinska, Karolinska University Hospital-Solna, Stockholm, Sweden
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - L Lee
- Department of Oncology-Pathology and Cancer Center Karolinska, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - M Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - R E Malmström
- Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pharmacology, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - W-O Lui
- Department of Oncology-Pathology and Cancer Center Karolinska, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - N Li
- Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pharmacology, Karolinska University Hospital-Solna, Stockholm, Sweden
| |
Collapse
|
43
|
Li NX, Sun JW, Yu LM. Evaluation of the circulating MicroRNA-495 and Stat3 as prognostic and predictive biomarkers for lower extremity deep venous thrombosis. J Cell Biochem 2018; 119:5262-5273. [PMID: 29266445 DOI: 10.1002/jcb.26633] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/19/2017] [Indexed: 01/04/2023]
Abstract
This study aims to elucidate the prognostic and predictive biomarker of miR-495 and Stat3 in peripheral blood in relation to lower extremity deep venous thrombosis (DVT). Patients with lower limb fractures were assigned into case and control groups. Rats were allocated into blank (normal rats), sham (normal rats), DVT, miR-495 mimic, miR-495 inhibitor, over-Stat3, and si-Stat3 groups. ELISA was used to detect levels of prothrombin time (PT), endothelin-1 (ET-1), Human Fibrinogen (FIB), D-Dimer, blood coagulation factors V and VIII, tissue type plasminogen activator (t-PA), platelet activating factor (PAF), protein C and Stat3. qRT-PCR was employed for the evaluation of the expressions of miR-495 and Stat3, while receiver operating characteristic (ROC) curve was constructed to assess the predictive value of miR-495 and Stat3 as well as the treatment outcomes of patients with lower limb fractures. Logistic regression analyses were conducted in order to correlate indexes and lower extremity DVT. miR-495 overexpression, t-PA, PAF, and protein C were confirmed to be protective factors, while Stat3 overexpression, PT, ET-1, FIB, D-Dimer, blood coagulation factor V, and VIII were all ultimately considered to be risk factors of lower extremity DVT. Stat3 was confirmed to be the target gene of miR-495. Compared with the blank group, the length and weight of the thrombus as well as the ratio between length and weight, mRNA and protein expression of Stat3 were reduced in the miR-495 mimic and si-Stat3 groups. Our findings suggest that through the suppression of Stat3 expression, miR-495 prohibits lower extremity DVT in peripheral blood.
Collapse
Affiliation(s)
- Nai-Xuan Li
- Department of Interventional Medicine, The Affiliated Hospital of Binzhou Medical University, Binzhou, P.R. China
| | - Jing-Wu Sun
- Department of Vasculocardiology, The Affiliated Hospital of Binzhou Medical University, Binzhou, P.R. China
| | - La-Mei Yu
- Department of Physiology, Binzhou Medical University, Yantai, P.R. China
| |
Collapse
|
44
|
Pordzik J, Pisarz K, De Rosa S, Jones AD, Eyileten C, Indolfi C, Malek L, Postula M. The Potential Role of Platelet-Related microRNAs in the Development of Cardiovascular Events in High-Risk Populations, Including Diabetic Patients: A Review. Front Endocrinol (Lausanne) 2018; 9:74. [PMID: 29615970 PMCID: PMC5869202 DOI: 10.3389/fendo.2018.00074] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Platelet activation plays a pivotal role in the development and progression of atherosclerosis, which often leads to potentially fatal ischemic events at later stages of the disease. Platelets and platelet microvesicles (PMVs) contain large amounts of microRNA (miRNA), which contributes largely to the pool of circulating miRNAs. Hence, they represent a promising option for the development of innovative diagnostic biomarkers, that can be specific for the underlying etiology. Circulating miRNAs can be responsible for intracellular communication and may have a biological effect on target cells. As miRNAs associated to both cardiovascular diseases (CVD) and diabetes mellitus can be measured by means of a wide array of techniques, they can be exploited as an innovative class of smart disease biomarkers. In this manuscript, we provide an outline of miRNAs associated with platelet function and reactivity (miR-223, miR-126, miR-197, miR-191, miR-21, miR-150, miR-155, miR-140, miR-96, miR-98) that should be evaluated as novel biomarkers to improve diagnostics and treatment of CVD.
Collapse
Affiliation(s)
- Justyna Pordzik
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Pisarz
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Axel Dyve Jones
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
- URT-CNR, Department of Medicine, Consiglio Nazionale delle Ricerche of IFC, Catanzaro, Italy
| | - Lukasz Malek
- Faculty of Rehabilitation, University of Physical Education, Warsaw, Poland
| | - Marek Postula
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Marek Postula,
| |
Collapse
|
45
|
Müller K, Chatterjee M, Rath D, Geisler T. Platelets, inflammation and anti-inflammatory effects of antiplatelet drugs in ACS and CAD. Thromb Haemost 2017. [DOI: 10.1160/th14-11-0947] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SummaryPlatelets play a pivotal role in chronic inflammation leading to progression of atherosclerosis and acute coronary events. Recent discoveries on novel mechanisms and platelet-dependent inflammatory targets underpin the role of platelets to maintain a chronic inflammatory condition in cardiovascular disease. There is strong and clinically relevant crosslink between chronic inflammation and platelet activation. Antiplatelet therapy is a cornerstone in the prevention and treatment of acute cardiovascular events. The benefit of antiplatelet agents has mainly been attributed to their direct anti-aggregatory impact. Some anti-inflammatory off-target effects have also been described. However, it is unclear whether these effects are secondary due to inhibition of platelet activation or are caused by direct distinct mechanisms interfering with inflammatory pathways. This article will highlight novel platelet associated targets that contribute to inflammation in cardiovascular disease and elucidate mechanisms by which currently available antiplatelet agents evolve anti-inflammatory capacities, in particular by carving out the differential mechanisms directly or indirectly affecting platelet mediated inflammation. It will further illustrate the prognostic impact of antiplatelet therapies by reducing inflammatory marker release in recent cardiovascular trials.
Collapse
|
46
|
Loyer X, Leierseder S, Petzold T, Zhang L, Massberg S, Engelhardt S. MiR-223 is dispensable for platelet production and function in mice. Thromb Haemost 2017; 110:1207-14. [DOI: 10.1160/th13-07-0623] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/14/2013] [Indexed: 12/21/2022]
Abstract
SummaryMicroRNAs (miRNAs) are key physiological regulators in multiple cell types. Here, we assessed platelet production and function in mice deficient in miR-223, one of the most abundantly expressed miRNAs in platelets and megakaryocytes. We found platelet number, size, lifespan as well as surface expression of platelet adhesion receptors to be unchanged in miR-223-deficient mice. Likewise, loss of miR-223 did not affect platelet activation, adhesion and aggregation and also had no effect on bleeding times. Moreover, miR-223 null megakaryocytes developed normally and were capable to form pro-platelets. However, we detected a transient delay in the recovery of platelet numbers following antibody-induced platelet depletion in miR-223-deficient animals. This delay was not observed after transplantation of bone marrow from miR-223-deficient animals into wild-type recipients, indicating a non-cell-autonomous role of miR-223 for thrombopoiesis. Overall, our data indicate a surprisingly modest role of miR-223 in platelet production, while the function of platelets does not seem to depend on miR-223.
Collapse
|
47
|
Stratz C, Nührenberg TG, Binder H, Valina CM, Trenk D, Hochholzer W, Neumann F, Fiebich BL. Micro-array profiling exhibits remarkable intra-individual stability of human platelet micro-RNA. Thromb Haemost 2017; 107:634-41. [DOI: 10.1160/th11-10-0742] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/19/2012] [Indexed: 01/25/2023]
Abstract
SummaryPlatelets play an important role in haemostasis and thrombus formation. Latest research identified platelets harbouring so called microRNAs (miRNA). MiRNAs are short single-stranded RNAs modulating gene expression by targeting mRNAs. Limited data exist on inter-individual variability of platelet miRNA profile while no data are available on intra-individual variability. We assessed platelet miRNA profile in five volunteers at five time points over a time course of 10 days; 24 hours prior to the last blood sampling, subjects took 500 mg acetylsali-cylic acid (ASA). Platelet miRNA was isolated from leucocyte-depleted platelet-rich plasma, and miRNA array-analysis was performed. Temporal patterns and ASA effect were explored by a linear mixed effects model for each miRNA. For the 20 most abundantly expressed platelet miRNAs, target gene search was performed and an annotation network was created. MiRNA expression profiling of 1,281 human miRNAs revealed relevant expression of 221 miRNAs consistently expressed in all samples at all time points. Correlation of platelet miRNA ranks was highly significant to other studies. Global distribution of miRNA expression was relatively similar in all subjects. No miRNA exhibited a significant effect of time at level 0.05. After 24 hours, no significant effect of ASA was found. Concerning functional implications of the 20 most abundantly expressed miRNAs, we found six functional themes. In conclusion, platelet miRNA profile is remarkably stable over the time period studied. Single-point analysis of platelet miRNA profile is reasonable when inter-individual differences are studied. The functional annotation network points toward extra-platelet effects of platelet miRNAs.
Collapse
|
48
|
Ambrose AR, Alsahli MA, Kurmani SA, Goodall AH. Comparison of the release of microRNAs and extracellular vesicles from platelets in response to different agonists. Platelets 2017; 29:446-454. [PMID: 28727490 DOI: 10.1080/09537104.2017.1332366] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
On activation platelets release microRNAs and extracellular vesicles (EV) into circulation. The release of EV from platelets has been shown to be dependent on the agonist; in this study, we investigated whether the microRNA profile or EV released from platelets was also agonist specific. Washed platelets from healthy subjects were maximally stimulated with agonists specific for the receptors for collagen (Glycoprotein VI (GPVI)), thrombin (PAR1/PAR4), or ADP (P2Y1/P2Y12) with/without inhibiting secondary mediators, using aspirin to block cyclooxygenase-1 and apyrase to remove ADP. The released microRNAs were profiled using TaqMan microRNA microarray cards. Platelet-derived EV (pdEV) were characterized by size (Nanoparticle Tracking Analysis, NTA), for procoagulant activity (Annexin-V binding and support of thrombin generation), and for the EV markers CD63 and HSP70. Platelet activation triggered the release of 57-79 different microRNAs, dependent upon agonist, with a core of 46 microRNAs observed with all agonists. There was a high level of correlation between agonists (r2 > 0.98; p < 0.0001 for all), and with the microRNA content of the parent platelets (r2 > 0.98; p < 0.0001). The 46 microRNAs seen in all samples are predicted to have significant effects on the translation of proteins involved in endocytosis, cell cycle control, and differentiation. MiR-223-3p was the most abundant in all samples and has previously been implicated in myeloid lineage development and demonstrated to have anti-inflammatory effects. Stimulation through GPVI produced a pdEV population with significantly more procoagulant activity than the other agonists. Apyrase significantly reduced microRNA and pdEV release, while aspirin had little effect. These data suggest that all tested agonists trigger the release of a similar microRNA profile while the procoagulant activity of the pdEV was agonist dependent. ADP was shown to play an important role in the release of both microRNAs and pdEV.
Collapse
Affiliation(s)
- Ashley R Ambrose
- a Department of Cardiovascular Sciences , University of Leicester and NIHR Cardiovascular Biomedical Research Unit, Glenfield Hospital , Leicester , UK
| | - Mohammed A Alsahli
- a Department of Cardiovascular Sciences , University of Leicester and NIHR Cardiovascular Biomedical Research Unit, Glenfield Hospital , Leicester , UK.,b College of Applied Medical Sciences , Qassim University , KSA
| | - Sameer A Kurmani
- a Department of Cardiovascular Sciences , University of Leicester and NIHR Cardiovascular Biomedical Research Unit, Glenfield Hospital , Leicester , UK
| | - Alison H Goodall
- a Department of Cardiovascular Sciences , University of Leicester and NIHR Cardiovascular Biomedical Research Unit, Glenfield Hospital , Leicester , UK
| |
Collapse
|
49
|
Deng G, Yu S, He Y, Sun T, Liang W, Yu L, Xu D, Li Q, Zhang R. MicroRNA profiling of platelets from immune thrombocytopenia and target gene prediction. Mol Med Rep 2017; 16:2835-2843. [PMID: 28677771 DOI: 10.3892/mmr.2017.6901] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 04/24/2017] [Indexed: 01/28/2023] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by a low platelet count and insufficient platelet production. Previous studies identified that microRNAs (miRNAs/miRs) are important for platelet function. However, the regulatory role of miRNAs in the pathogenesis of thrombocytopenia in ITP remains unclear. The aim of the present study is to isolate differentially expressed miRNAs, and identify their roles in platelets from ITP. A total of 5 ml blood from 22 patients with ITP and 8 healthy controls was isolated for platelet collection. A microarray assay was performed to analyze the differentially expressed miRNAs in the patients with ITP and healthy patients. Furthermore, the expression of differentially expressed miRNAs was verified by reverse transcription‑quantitative polymerase chain reaction. In addition, the target mRNAs of the differentially expressed miRNAs were predicted via miRWalk databases, and the target genes and miRNAs were classified by Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes analyses. In the present study, 115 miRNAs were identified to be differentially expressed in platelets from patients with ITP compared with the healthy controls (>3‑fold alteration; P<0.05). Among them, 57 miRNAs were upregulated in ITP, while 58 miRNAs were downregulated. Bioinformatic prediction demonstrated that hsa‑miR‑548a‑5p, hsa‑miR‑1185‑2‑3p, hsa‑miR‑30a‑3p, hsa‑miR‑6867‑5p, hsa‑miR‑765 and hsa‑miR‑3125 were associated with platelet apoptosis and adhesion in ITP. The present study performed miRNA profiling of platelets from patients with ITP and the results may aid in the understanding of the regulatory mechanism of ITP.
Collapse
Affiliation(s)
- Gang Deng
- Department of Hematology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu 215006, P.R. China
| | - Shifang Yu
- Department of Transfusion Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yunlei He
- The Ningbo Central Blood Station, Ningbo, Zhejiang 31501, P.R. China
| | - Tao Sun
- Department of Transfusion Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Wei Liang
- The Ningbo Central Blood Station, Ningbo, Zhejiang 31501, P.R. China
| | - Lu Yu
- The Ningbo Central Blood Station, Ningbo, Zhejiang 31501, P.R. China
| | - Deyi Xu
- The Ningbo Central Blood Station, Ningbo, Zhejiang 31501, P.R. China
| | - Qiang Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ri Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu 215006, P.R. China
| |
Collapse
|
50
|
Sunderland N, Skroblin P, Barwari T, Huntley RP, Lu R, Joshi A, Lovering RC, Mayr M. MicroRNA Biomarkers and Platelet Reactivity: The Clot Thickens. Circ Res 2017; 120:418-435. [PMID: 28104774 DOI: 10.1161/circresaha.116.309303] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 12/16/2022]
Abstract
Over the last few years, several groups have evaluated the potential of microRNAs (miRNAs) as biomarkers for cardiometabolic disease. In this review, we discuss the emerging literature on the role of miRNAs and other small noncoding RNAs in platelets and in the circulation, and the potential use of miRNAs as biomarkers for platelet activation. Platelets are a major source of miRNAs, YRNAs, and circular RNAs. By harnessing multiomics approaches, we may gain valuable insights into their potential function. Because not all miRNAs are detectable in the circulation, we also created a gene ontology annotation for circulating miRNAs using the gene ontology term extracellular space as part of blood plasma. Finally, we share key insights for measuring circulating miRNAs. We propose ways to standardize miRNA measurements, in particular by using platelet-poor plasma to avoid confounding caused by residual platelets in plasma or by adding RNase inhibitors to serum to reduce degradation. This should enhance comparability of miRNA measurements across different cohorts. We provide recommendations for future miRNA biomarker studies, emphasizing the need for accurate interpretation within a biological and methodological context.
Collapse
Affiliation(s)
- Nicholas Sunderland
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Philipp Skroblin
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Temo Barwari
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Rachael P Huntley
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Ruifang Lu
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Abhishek Joshi
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Ruth C Lovering
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Manuel Mayr
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.).
| |
Collapse
|