1
|
Yin J, Ye Y, Gao Y, Xu Q, Su M, Sun S, Xu W, Fu Q, Wang A, Hu S. Low-Dose Ionizing Radiation and Male Reproductive Immunity: Elucidating Subtle Modulations and Long-Term Health Implications. Int J Mol Sci 2025; 26:2269. [PMID: 40076897 PMCID: PMC11900348 DOI: 10.3390/ijms26052269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Low-dose ionizing radiation (LDIR) is a prevalent environmental factor with profound impacts on male reproductive health, particularly on the testicular immune microenvironment. This review examines the multifaceted effects of LDIR, emphasizing its ability to induce genotoxic stress, oxidative damage, and epigenetic modifications in reproductive cells. These alterations compromise DNA repair, disrupt chromatin structure, and induce immune dysregulation. Immune cells such as macrophages, T cells, natural killer cells, and dendritic cells exhibit significant functional changes under LDIR exposure, destabilizing the immune privilege critical for normal spermatogenesis. The long-term health implications of LDIR include impaired sperm quality, reduced fertility, and transgenerational risks through heritable genomic instability. This review underscores the importance of exploring the mechanisms underlying immune dysregulation and developing effective protective strategies. While LDIR's full impact on male reproductive health remains to be elucidated, addressing the gaps in our understanding of immune microenvironmental changes is crucial for mitigating its adverse effects and improving reproductive health outcomes.
Collapse
Affiliation(s)
- Jiacheng Yin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (Y.Y.); (Y.G.); (Q.X.); (M.S.); (S.S.); (Q.F.)
| | - Yifan Ye
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (Y.Y.); (Y.G.); (Q.X.); (M.S.); (S.S.); (Q.F.)
| | - Yuankai Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (Y.Y.); (Y.G.); (Q.X.); (M.S.); (S.S.); (Q.F.)
| | - Qing Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (Y.Y.); (Y.G.); (Q.X.); (M.S.); (S.S.); (Q.F.)
| | - Muzhe Su
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (Y.Y.); (Y.G.); (Q.X.); (M.S.); (S.S.); (Q.F.)
| | - Shengkui Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (Y.Y.); (Y.G.); (Q.X.); (M.S.); (S.S.); (Q.F.)
| | - Wenhui Xu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
| | - Qian Fu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (Y.Y.); (Y.G.); (Q.X.); (M.S.); (S.S.); (Q.F.)
| | - An Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (Y.Y.); (Y.G.); (Q.X.); (M.S.); (S.S.); (Q.F.)
| | - Sumin Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (Y.Y.); (Y.G.); (Q.X.); (M.S.); (S.S.); (Q.F.)
| |
Collapse
|
2
|
Induction and assessment of persistent radioresistance in murine leukocytes in vivo. Biochem Biophys Rep 2022; 31:101296. [PMID: 35707716 PMCID: PMC9189778 DOI: 10.1016/j.bbrep.2022.101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
The aim of the present study was to investigate whether weekly exposure to gamma rays causes a persistent increase in the number of radioresistant leukocytes in mice in vivo. Using the comet assay, 1 Gy radiation exposure decreased the percentage of leukocytes with less than 5% DNA in the tail (<5% DNAT), and we propose that radioresistance induction might increase the number of cells with <5% DNAT after radiation exposure. We exposed mice to 1 Gy gamma rays weekly for four weeks or 2 Gy per week for nine weeks. We observed a significant increase in cells with <5% DNAT after the third week and up to nine weeks of exposure. We exposed animals to gradually increasing radiation doses and finally challenged the lymphocytes with 1 Gy radiation both in vivo and in vitro. We observed increased radioresistance in vitro, providing evidence that a cellular process is involved. However, more radioresistance was observed in vivo than in vitro, suggesting a physiological effect. Cells challenged in vitro were maintained on ice during and after exposure, which likely caused a reduction in DNA repair. Radioresistance induction likely arose from mutation selection in stem cells because leukocytes are unable to proliferate in peripheral blood. First evidence of cell radioresistance induced in vivo in mice. Leukocyte precursor cells in vivo a model for study radioresistance induction. Irradiation-division cycles in vivo cause long-lasting cellular radioresistance. Increase of <5% DNA at tail after irradiation an index of cell radioresistance. Course of radioresistance caused by mutation-selection differ from adaptive response.
Collapse
|
3
|
Lu Y, Liu B, Liu Y, Yu X, Cheng G. Dual effects of active ERK in cancer: A potential target for enhancing radiosensitivity. Oncol Lett 2020; 20:993-1000. [PMID: 32724338 PMCID: PMC7377092 DOI: 10.3892/ol.2020.11684] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
Ionizing radiation (IR) is an important cancer treatment approach. However, radioresistance eventually occurs, resulting in poor outcomes in patients with cancer. Radioresistance is associated with multiple signaling pathways, particularly pro-survival signaling pathways. The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade is an important signaling pathway that initiates several cellular processes and is regulated by various stimuli, including IR. Although numerous studies have demonstrated the pro-survival effects of active ERK, activation of ERK has also been associated with cell death, indicating that radiosensitization may occur by ERK stimulation. In this context, the present review describes the associations between ERK signaling, cancer and IR, and discusses the association between ERK and its pro-survival function in cancer cells, including stimuli, molecular mechanisms, clinical use of inhibitors and underlying limitations. Additionally, the present review introduces the view that active ERK may induce cell death, and describes the potential factors associated with this process. This review describes the various outcomes induced by active ERK to prompt future studies to aim to enhance radiosensitivity in the treatment of cancer.
Collapse
Affiliation(s)
- Yinliang Lu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Baocai Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ying Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xinyue Yu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Guanghui Cheng
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
4
|
Xu J, Liu D, Xiao S, Meng X, Zhao D, Jiang X, Jiang X, Cai L, Jiang H. Low-Dose Radiation Prevents Chemotherapy-Induced Cardiotoxicity. CURRENT STEM CELL REPORTS 2019. [DOI: 10.1007/s40778-019-00158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Premkumar K, Nair J, Shankar BS. Differential radio-adaptive responses in BALB/c and C57BL/6 mice: pivotal role of calcium and nitric oxide signalling. Int J Radiat Biol 2019; 95:655-666. [PMID: 30676176 DOI: 10.1080/09553002.2019.1571647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: Our earlier studies demonstrated that transient radio-adaptive responses (RAR) in BALB/c mice were due to MAPK hyperactivation. The objective of this study was to determine the time duration of this low dose induced MAPK activation in BALB/c mice and to find out if similar adaptive responses are observed in C57BL/6 mice. Materials and methods: Mice were irradiated with 0.1 Gy priming dose (PD), 2 Gy challenge dose (CD) with an interval of 4 h (P + CD) and radiation induced immunosuppression in splenic lymphocytes was monitored as the endpoint for RAR. Results: Time kinetics following 0.1 Gy demonstrated persistence of MAPK hyperactivation till 48 h. Similar experiments in C57BL/6 mice indicated absence of RAR at 24 h following CD, in spite of MAPK activation which was also confirmed by time kinetics. Therefore, upstream activators of MAPK, viz., reactive oxygen and nitrogen species (ROS, RNS) and calcium levels were estimated. There was increased intracellular calcium (Ca2+) and nitric oxide (NO) in BALB/c and an increase in intracellular ROS in C57BL/6 mice 24 h after PD. Inhibition of NO and calcium chelation abrogated RAR in BALB/c mice. In vitro treatment of spleen cells with combination of NO donor and Ca2+ ionophore mimicked the effect of PD and induced adaptive response after 2 Gy not only in BALB/c but also in C57BL/6 mice confirming their crucial role in RAR. Conclusions: These results suggest that low dose induced differential induction of Ca2+ and NO signaling along with MAPK was responsible for contrasting RAR with respect to immune system of BALB/c and C57BL/6 mice. Abbreviations [3H]-TdR: 3H-methyl-thymidine; BAPTA: 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid; CD: Challenge Dose; CFSE: Carboxy Fluorescein Succinamidyl Ester; on A: Concanavalin A; DAF-FM: 4-amino-5-methylamino-2',7'-difluorescein; DCF-DA: 2',7'-dichlorofluorescein diacetate; DSB: Double Strand Break; ELISA: Enzyme Linked ImmunoSorbent Assay; ERK: Extracellular signal-Regulated protein Kinase; FBS: Fetal Bovine Serum; HIF-1A: Hypoxia-Inducible Factor 1-alpha; LDR: Low Dose Radiation; MAPK: Mitogen Activated Protein Kinase; MAPKK/MKK: MAPK Kinase; MAPKKK: MAPK Kinase Kinase; NO: Nitric Oxide; NOS: Nitric Oxide Synthase; P + CD: Priming + Challenge dose; PBS: Phosphate Buffered Saline; PBST: Phosphate Buffered Saline-Tween 20; PD: Priming Dose; PI3K: Phosphatidyl Inositol 3-Kinase; PKC: Protein Kinase C; RAR: Radio Adaptive Response; RNS: Reactive Nitrogen Species; ROS: Reactive Oxygen Species; RPMI-1640: Roswell Park Memorial Institute-1640 medium; SAPK/JNK: Stress-Activated Protein Kinase/ c-Jun NH2-terminal Kinase; SEM: Standard Error of Mean; SNAP: S-nitro amino penicillamine; TP53: Tumor Protein 53; γ-H2AX: Gamma- H2A histone family member X; Th1: Type 1 helper T cell responses; Th2: Type 2 helper T cell responses.
Collapse
Affiliation(s)
- Kavitha Premkumar
- a Immunology Section, Radiation Biology & Health Sciences Division , Bio-Science Group, Bhabha Atomic Research Centre , Mumbai , India
| | - Jisha Nair
- a Immunology Section, Radiation Biology & Health Sciences Division , Bio-Science Group, Bhabha Atomic Research Centre , Mumbai , India
| | - Bhavani S Shankar
- a Immunology Section, Radiation Biology & Health Sciences Division , Bio-Science Group, Bhabha Atomic Research Centre , Mumbai , India
| |
Collapse
|
6
|
Nakashima M, Sugie C, Wang Z, Kondo T, Manabe Y, Murai T, Shibamoto Y. Biological Effects of Continuous Low-Dose-Rate Irradiation in Silkworms and Mice: Growth Promotion and Tumor Transplantability. Dose Response 2018; 16:1559325818811753. [PMID: 30479589 PMCID: PMC6247495 DOI: 10.1177/1559325818811753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 11/17/2022] Open
Abstract
A previous study showed that continuous low-dose-rate irradiation promoted the growth of silkworm larvae. This study aimed to confirm that finding, determine the optimal dose rate for growth promotion, and compare low- and high-dose-rate irradiation in silkworms, while also investigating the effects of the radiation-emitting sheet on growth and tumor transplantability in mice. Silkworm eggs were placed on low-dose-emitting sheets with 4 different dose rates (γ-ray rate: 1.7 -22.4 μSv/hour) or on control sheets. The other groups of silkworm larvae received single whole-body X-irradiation (0.1-50 Gy), and subsequent body weight changes were monitored. Starting at 3 weeks old, Balb/c mice were bred on the same sheets, and body weight change was measured. Seven weeks later, the mice were used to investigate the transplantability of EMT6 tumor cells cultured in vitro. The silkworms bred on the 13.4- and 22.4-μSv/hour sheets became larger than the control. Single 50-Gy irradiation suppressed the growth of silkworms. An increase in the time to EMT6 tumor development was observed in low-dose-rate-irradiated mice. This study confirmed growth promotion of silkworms by continuous low-dose radiation and demonstrated growth suppression at a high dose rate. Growth promotion was not observed in mice; further studies using higher dose-rate sheets may be warranted.
Collapse
Affiliation(s)
- Masahiro Nakashima
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Chikao Sugie
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Zhen Wang
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takuhito Kondo
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshihiko Manabe
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Taro Murai
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
7
|
Jiang X, Hong Y, Zhao D, Meng X, Zhao L, Du Y, Wang Z, Zheng Y, Cai L, Jiang H. Low dose radiation prevents doxorubicin-induced cardiotoxicity. Oncotarget 2017; 9:332-345. [PMID: 29416617 PMCID: PMC5787469 DOI: 10.18632/oncotarget.23013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 11/26/2017] [Indexed: 02/02/2023] Open
Abstract
This study aimed to develop a novel and non-invasive approach, low-dose radiation (LDR, 75 mGy X-rays), to prevent doxorubicin (DOX)-induced cardiotoxicity. BALB/c mice were randomly divided into five groups, Control, LDR (a single exposure), Sham (treated same as LDR group except for irradiation), DOX (a single intraperitoneal injection of DOX at 7.5 mg/kg), and LDR/DOX (received LDR and 72 h later received DOX). Electrocardiogram analysis displayed several kinds of abnormal ECG profiles in DOX-treated mice, but less in LDR/DOX group. Cardiotoxicity indices included histopathological changes, oxidative stress markers, and measurements of mitochondrial membrane permeability. Pretreatment of DOX group with LDR reduced oxidative damages (reactive oxygen species formation, protein nitration, and lipid peroxidation) and increased the activities of antioxidants (superoxide dismutase and glutathione peroxidase) in the heart of LDR/DOX mice compared to DOX mice. Pretreatment of DOX-treated mice with LDR also decreased DOX-induced cardiac cell apoptosis (TUNEL staining and cleaved caspase-3) and mitochondrial apoptotic pathway (increased p53, Bax, and caspase-9 expression and decreased Bcl2 expression and ΔΨm dissipation). These results suggest that LDR could induce adaptation of the heart to DOX-induced toxicity. Cardiac protection by LDR may attribute to attenuate DOX-induced cell death via suppressing mitochondrial-dependent oxidative stress and apoptosis signaling.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yaqiong Hong
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Di Zhao
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xinxin Meng
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lijing Zhao
- The School of Basic Medicine, Jilin University, Changchun, Jilin 130021, China
| | - Yanwei Du
- Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Zan Wang
- Department of Internal Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yan Zheng
- Department of Gerontology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lu Cai
- Pediatric Research Institute, The Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, The University of Louisville, Louisville, KY 40202, USA
| | - Hongyu Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
8
|
Gao Y, Xu D, Zhao L, Sun Y. The DNA damage response of C. elegans affected by gravity sensing and radiosensitivity during the Shenzhou-8 spaceflight. Mutat Res 2017; 795:15-26. [PMID: 28088539 DOI: 10.1016/j.mrfmmm.2017.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/06/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
Space radiation and microgravity are recognized as primary and inevitable risk factors for humans traveling in space, but the reports regarding their synergistic effects remain inconclusive and vary across studies due to differences in the environmental conditions and intrinsic biological sensitivity. Thus, we studied the synergistic effects on transcriptional changes in the global genome and DNA damage response (DDR) by using dys-1 mutant and ced-1 mutant of C. elegans, which respectively presented microgravity-insensitivity and radiosensitivity when exposure to spaceflight condition (SF) and space radiation (SR). The dys-1 mutation induced similar transcriptional changes under both conditions, including the transcriptional distribution and function of altered genes. The majority of alterations were related to metabolic shift under both conditions, including transmembrane transport, lipid metabolic processes and proteolysis. Under SF and SR conditions, 12/14 and 10/13 altered pathways, respectively, were both grouped in the metabolism category. Out of the 778 genes involved in DDR, except eya-1 and ceh-34, 28 altered genes in dys-1 mutant showed no predicted protein interactions, or anti-correlated miRNAs during spaceflight. The ced-1 mutation induced similar changes under SF and SR; however, these effects were stronger than those of the dys-1 mutant. The additional genes identified were related to phosphorous/phosphate metabolic processes and growth rather than, metabolism, especially for environmental information processing under SR. Although the DDR profiles were significantly changed under both conditions, the ced-1 mutation favored DNA repair under SF and apoptosis under SR. Notably, 37 miRNAs were predicted to be involved in the DDR. Our study indicates that, the dys-1 mutation reduced the transcriptional response to SF, and the ced-1 mutation increased the response to SR, when compared with the wild type C. elegans. Although some effects were due to radiosensitivity, microgravity, depending on the dystrophin, exerts predominant effects on transcription in C. elegans during short-duration spaceflight.
Collapse
Affiliation(s)
- Ying Gao
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031, China; Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031, China
| | - Dan Xu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China.
| |
Collapse
|
9
|
Bannister LA, Mantha RR, Devantier Y, Petoukhov ES, Brideau CLA, Serran ML, Klokov DY. Dose and Radioadaptive Response Analysis of Micronucleus Induction in Mouse Bone Marrow. Int J Mol Sci 2016; 17:ijms17091548. [PMID: 27649149 PMCID: PMC5037821 DOI: 10.3390/ijms17091548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 12/12/2022] Open
Abstract
Enhanced cellular DNA repair efficiency and suppression of genomic instability have been proposed as mechanisms underlying radio-adaptive responses following low-dose radiation exposures. We previously showed that low-dose γ irradiation does not generate radio-adaptation by lowering radiation-induced cytogenetic damage in mouse spleen. Since radiation may exert tissue-specific effects, we extended these results here by examining the effects of γ radiation on cytogenetic damage and proliferative index in bone marrow erythrocytes of C57BL/6 and BALB/c mice. In C57BL/6 mice, the induction of micronuclei in polychromatic erythrocytes (MN-PCE) was observed at radiation doses of 100 mGy and greater, and suppression of erythroblast maturation occurred at doses of >500 mGy. A linear dose-response relationship for MN-PCE frequencies in C57BL/6 mice was established for radiation doses between 100 mGy and 1 Gy, with departure from linearity at doses of >1 Gy. BALB/c mice exhibited increased MN-PCE frequencies above baseline following a 20 mGy radiation exposure but did not exhibit radio-sensitivity relative to C57BL/6 mice following 2 Gy exposure. Radio-adaptation of bone marrow erythrocytes was not observed in either strain of mice exposed to low-dose priming γ irradiation (single doses of 20 mGy or 100 mGy or multiple 20 mGy doses) administered at various times prior to acute 2 Gy irradiation, confirming the lack of radio-adaptive response for induction of cytogenetic damage or suppression or erythrocyte proliferation/maturation in bone marrow of these mouse strains.
Collapse
Affiliation(s)
- Laura A Bannister
- Canadian Nuclear Laboratories, Radiobiology and Health, Chalk River, ON K0J1J0, Canada.
| | - Rebecca R Mantha
- Canadian Nuclear Laboratories, Radiobiology and Health, Chalk River, ON K0J1J0, Canada.
| | - Yvonne Devantier
- Canadian Nuclear Laboratories, Radiobiology and Health, Chalk River, ON K0J1J0, Canada.
| | - Eugenia S Petoukhov
- Canadian Nuclear Laboratories, Radiobiology and Health, Chalk River, ON K0J1J0, Canada.
| | - Chantal L A Brideau
- Canadian Nuclear Laboratories, Radiobiology and Health, Chalk River, ON K0J1J0, Canada.
| | - Mandy L Serran
- Canadian Nuclear Laboratories, Radiobiology and Health, Chalk River, ON K0J1J0, Canada.
| | - Dmitry Y Klokov
- Canadian Nuclear Laboratories, Radiobiology and Health, Chalk River, ON K0J1J0, Canada.
| |
Collapse
|
10
|
Lal M, Gupta D. Studies on radiation sensitization efficacy by silymarin in colon carcinoma cells. Discoveries (Craiova) 2016; 4:e56. [PMID: 32309577 PMCID: PMC6941569 DOI: 10.15190/d.2016.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 11/22/2022] Open
Abstract
Recent reports demonstrated the role of silymarin as a cytoprotective agent for normal cells against ionizing or non-ionizing (UV) radiation, and in inhibiting the chemically initiated or promoted carcinogenesis in several malignancies, such as skin or prostate cancers. Silymarin is a plant flavonoid obtained from milk thistle; the main active principles in milk thistle are silybin (silibinin), sylichrisitin and silydianin, commonly referred as silymarin. In the present study, we aimed to investigate the radiation modulatory effects of silymarin on cancer cells. For this, we used the HCT-15 and RKO colon cancer cell lines as a model. Pre-irradiation treatment of cells with silymarin (20 mg/ml) followed by radiation exposure inhibits colon cancer cell proliferation and enhances cell death in a time-dependent manner. We have also examined the changes in p53 phosphorylation at Ser15, phosphorylation of p38 and their association with DNA damage. Silymarin was found to reduce proliferation of the human colon carcinoma cells in a concentration and time-dependent manner. Moreover, percentage of cell death was also increased in combined treatment (20µg/ml of silymarin + radiation). Our studies indicate that the combination increases the arrest of cells in G2/M phase of cell cycle, DNA damage-induced decrease in mitochondrial membrane potential (MMP) and a decrease of the reactive oxygen species (ROS) levels, which are associated with an increase in cell death. Altogether, these results suggest that silymarin sensitizes colon cancer cells to radiation, strategy with potential for colon cancer treatment. Noteworthy, since silymarin was previously shown to confer protection against radiation in at least some types of normal tissues, additional studies are needed to further investigate the potential of silymarin in colon cancer therapy when combined with radiation, its potential protective effects on normal tissues and its mechanisms of action.
Collapse
Affiliation(s)
- Mitu Lal
- Division of Metabolic Cell Signaling and Research, Institute of Nuclear Medicine & Allied Sciences, DRDO, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Damodar Gupta
- Division of Metabolic Cell Signaling and Research, Institute of Nuclear Medicine & Allied Sciences, DRDO, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| |
Collapse
|