1
|
Jiménez-Salcedo M, Manzano JI, Yuste S, Iñiguez M, Pérez-Matute P, Motilva MJ. Exploring biomarkers of regular wine consumption in human urine: Targeted and untargeted metabolomics approaches. Food Chem 2025; 469:142128. [PMID: 39729665 DOI: 10.1016/j.foodchem.2024.142128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/07/2024] [Accepted: 11/16/2024] [Indexed: 12/29/2024]
Abstract
The epidemiological assessment of wine consumption usually has been obtained using self-reporting questionnaires. In this study, two metabolomic approaches, targeted and untargeted, were applied to 24-h urine samples from a cohort of La Rioja (Spain) (aged 52-78), comparing moderate and daily wine consumers (20 males and 13 females) without diet intervention, versus non-consumers (8 males and 35 females). Results showed that the non-targeted metabolomics approach has allowed for the annotation of sixteen compounds in 24-h urine samples from regular wine-consumers that were not detected in the urine of non-wine consumers. Additionally, the targeted metabolomics approach showed a wide range of phenol metabolites, mainly hepatic phase-II conjugates, whose concentration was significantly higher in the urine of wine consumers. As a novelty, this study focuses on discovering the main urinary biomarkers of regular wine consumption involving free-living volunteers, without dietary intervention or restrictions that might alter their regular behaviors and lifestyles.
Collapse
Affiliation(s)
- Marta Jiménez-Salcedo
- University of La Rioja, C/Madre de Dios 53, Logroño E-26006, La Rioja, Spain; Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20, salida 13), Logroño E-26007, La Rioja, Spain
| | - José Ignacio Manzano
- Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20, salida 13), Logroño E-26007, La Rioja, Spain
| | - Silvia Yuste
- Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20, salida 13), Logroño E-26007, La Rioja, Spain; Antioxidants Research Group, Food Technology Department, Agrotecnio-Recerca Center, University of Lleida, Av/Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - María Iñiguez
- Infectious Diseases, Microbiota and Metabolism Unit, Center for Biomedical Research of La Rioja (CIBIR), CSIC Associated Unit, E-26006 Logroño, La Rioja, Spain
| | - Patricia Pérez-Matute
- University of La Rioja, C/Madre de Dios 53, Logroño E-26006, La Rioja, Spain; Infectious Diseases, Microbiota and Metabolism Unit, Center for Biomedical Research of La Rioja (CIBIR), CSIC Associated Unit, E-26006 Logroño, La Rioja, Spain
| | - Maria-Jose Motilva
- Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20, salida 13), Logroño E-26007, La Rioja, Spain.
| |
Collapse
|
2
|
Farella I, D’Amato G, Orellana-Manzano A, Segura Y, Vitale R, Clodoveo ML, Corbo F, Faienza MF. "OMICS" in Human Milk: Focus on Biological Effects on Bone Homeostasis. Nutrients 2024; 16:3921. [PMID: 39599707 PMCID: PMC11597255 DOI: 10.3390/nu16223921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Human milk (HM) is a complex biofluid rich in nutrients and bioactive compounds essential for infant health. Recent advances in omics technologies-such as proteomics, metabolomics, and transcriptomics-have shed light on the influence of HM on bone development and health. This review discusses the impact of various HM components, including proteins, lipids, carbohydrates, and hormones, on bone metabolism and skeletal growth. Proteins like casein and whey promote calcium absorption and osteoblast differentiation, supporting bone mineralization. Long-chain polyunsaturated fatty acids like docosahexaenoic acid (DHA) contribute to bone health by modulating inflammatory pathways and regulating osteoclast activity. Additionally, human milk oligosaccharides (HMOs) act as prebiotics, improving gut health and calcium bioavailability while influencing bone mineralization. Hormones present in HM, such as insulin-like growth factor 1 (IGF-1), leptin, and adiponectin, have been linked to infant growth, body composition, and bone density. Research has shown that higher IGF-1 levels in breast milk are associated with increased weight gain, while leptin and adiponectin influence fat mass and bone metabolism. Emerging studies have also highlighted the role of microRNAs (miRNAs) in regulating key processes like adipogenesis and bone homeostasis. Furthermore, microbiome-focused techniques reveal HM's role in establishing a balanced infant gut microbiota, indirectly influencing bone development by enhancing nutrient absorption. Although current findings are promising, comprehensive longitudinal studies integrating omics approaches are needed to fully understand the intricate relationships among maternal diet, HM composition, and infant bone health. Bridging these gaps could offer novel dietary strategies to optimize skeletal health during infancy, advancing early-life nutrition science.
Collapse
Affiliation(s)
- Ilaria Farella
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy;
| | - Gabriele D’Amato
- Neonatal Intensive Care Unit, Di Venere Hospital, 70012 Bari, Italy;
| | - Andrea Orellana-Manzano
- Escuela Superior Politécnica del Litoral, ESPOL, Laboratorio Para Investigaciones Biomédicas, Facultad de Ciencias de la Vida (FCV), ESPOL Polytechnic University, Campus Gustavo Galindo Km 30.5 vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador; (A.O.-M.); (Y.S.)
| | - Yaritza Segura
- Escuela Superior Politécnica del Litoral, ESPOL, Laboratorio Para Investigaciones Biomédicas, Facultad de Ciencias de la Vida (FCV), ESPOL Polytechnic University, Campus Gustavo Galindo Km 30.5 vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador; (A.O.-M.); (Y.S.)
| | - Rossella Vitale
- Giovanni XXIII Pediatric Hospital, University of Bari “A. Moro”, 70124 Bari, Italy;
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, 70100 Bari, Italy;
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, 70125 Bari, Italy;
| | - Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A.Moro”, 70124 Bari, Italy
| |
Collapse
|
3
|
Wang Y, Xue Y, Yan C, Yu X, Zhang L, Wang Y, Lan Y, Zhang X. Ovary metabolome and cecal microbiota changes in aged laying hens supplemented with vitamin E. Poult Sci 2024; 103:103760. [PMID: 38678750 PMCID: PMC11067459 DOI: 10.1016/j.psj.2024.103760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
This study was aimed to evaluate the effect of vitamin E (VE) on laying performance, VE deposition, antioxidant capacity, immunity, follicle development, estrogen secretion, ovary metabolome, and cecal microbiota of laying hens. One hundred and twenty XinYang Black-Feathered laying hens (70 wk old) were randomly assigned to 2 groups (6 replicates of 20 birds), and fed a basal diet (containing 20 mg/kg VE, control (CON) group) and a basal diet supplemented with 20 mg/kg VE (VE group). The experiment lasted for 10 wk. Results showed that VE supplementation increased laying performance, antioxidant capacity, and immunity, as evidenced by increased (P < 0.05) performance (laying rate), antioxidant (glutathione peroxidase, total superoxide dismutase, total antioxidant capacity, and catalase) and immune (immunoglobulins) parameters, and decreased (P < 0.05) feed/egg ratio and malondialdehyde. Meanwhile, VE group had higher (P < 0.05) pregrade follicles, ovary index and serum estrogen levels than CON group. 16S rRNA sequencing showed that VE supplementation altered the cecal microbiota composition by increasing Bacteroides, Rikenellaceae_RC9_gut_group, Prevotellaceae_UCG-001 and Megamonas abundances and reducing Christensenellaceae_R-7_group abundance (at genus level), which are mainly associated with the production of short-chain fatty acids. Metabolomic profiling of the ovary revealed that the major metabolites altered by VE supplementation were mainly related to follicle development, estrogen secretion, anti-inflammatory, antioxidant, phototransduction, bile acid synthesis, and nutrient transport. Furthermore, changes in cecal microbiota (at genus level) and ovary metabolites were highly correlated with laying performance, antioxidant, and immune parameters. In summary, VE contributed to the laying performance of aged laying hens by enhancing antioxidant, immune, and ovarian functions, promoting follicle development and estrogen secretion, and regulating gut microbiota and ovary metabolites. These findings will provide a new perspective on the mechanisms of egg production in aged poultry ovaries.
Collapse
Affiliation(s)
- Yongxia Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an 311300, China
| | - Yajie Xue
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an 311300, China
| | - CongCong Yan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an 311300, China
| | - Xu Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an 311300, China
| | - Ling Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230000, China
| | - Yufang Wang
- Qujiang District Animal Husbandry and Veterinary Station, Quzhou 324000, China
| | - Yahua Lan
- Qujiang District Animal Husbandry and Veterinary Station, Quzhou 324000, China
| | - Xiaodong Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an 311300, China.
| |
Collapse
|
4
|
Missong H, Joshi R, Khullar N, Thareja S, Navik U, Bhatti GK, Bhatti JS. Nutrient-epigenome interactions: Implications for personalized nutrition against aging-associated diseases. J Nutr Biochem 2024; 127:109592. [PMID: 38325612 DOI: 10.1016/j.jnutbio.2024.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Aging is a multifaceted process involving genetic and environmental interactions often resulting in epigenetic changes, potentially leading to aging-related diseases. Various strategies, like dietary interventions and calorie restrictions, have been employed to modify these epigenetic landscapes. A burgeoning field of interest focuses on the role of microbiota in human health, emphasizing system biology and computational approaches. These methods help decipher the intricate interplay between diet and gut microbiota, facilitating the creation of personalized nutrition strategies. In this review, we analysed the mechanisms related to nutritional interventions while highlighting the influence of dietary strategies, like calorie restriction and intermittent fasting, on microbial composition and function. We explore how gut microbiota affects the efficacy of interventions using tools like multi-omics data integration, network analysis, and machine learning. These tools enable us to pinpoint critical regulatory elements and generate individualized models for dietary responses. Lastly, we emphasize the need for a deeper comprehension of nutrient-epigenome interactions and the potential of personalized nutrition informed by individual genetic and epigenetic profiles. As knowledge and technology advance, dietary epigenetics stands on the cusp of reshaping our strategy against aging and related diseases.
Collapse
Affiliation(s)
- Hemi Missong
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Riya Joshi
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
5
|
Hotea I, Sirbu C, Plotuna AM, Tîrziu E, Badea C, Berbecea A, Dragomirescu M, Radulov I. Integrating (Nutri-)Metabolomics into the One Health Tendency-The Key for Personalized Medicine Advancement. Metabolites 2023; 13:800. [PMID: 37512507 PMCID: PMC10384896 DOI: 10.3390/metabo13070800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Metabolomics is an advanced technology, still under development, with multiple research applications, especially in the field of health. Individual metabolic profiles, the functionality of the body, as well as its interaction with the environment, can be established using this technology. The body's response to various external factors, including the food consumed and the nutrients it contains, has increased researchers' interest in nutrimetabolomics. Establishing correlations between diet and the occurrence of various diseases, or even the development of personalized nutrition plans, could contribute to advances in precision medicine. The interdependence between humans, animals, and the environment is of particular importance today, with the dramatic emergence and spread of zoonotic diseases, food, water and soil contamination, and the degradation of resources and habitats. All these events have led to an increase in risk factors for functional diseases, burdening global health. Thus, this study aimed to highlight the importance of metabolomics, and, in particular, nutrimetabolomics, as a technical solution for a holistic, collaborative, and precise approach for the advancement of the One Health strategy.
Collapse
Affiliation(s)
- Ionela Hotea
- Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Catalin Sirbu
- Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Ana-Maria Plotuna
- Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Emil Tîrziu
- Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Corina Badea
- Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Adina Berbecea
- Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Monica Dragomirescu
- Faculty of Bioengineering of Animal Resources, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Isidora Radulov
- Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| |
Collapse
|
6
|
Zheng J, Wu F, Wang F, Cheng J, Zou H, Li Y, Du J, Kan J. Biomarkers of Micronutrients and Phytonutrients and Their Application in Epidemiological Studies. Nutrients 2023; 15:nu15040970. [PMID: 36839326 PMCID: PMC9959711 DOI: 10.3390/nu15040970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Nutritional biomarkers can be used as important indicators of nutritional status and play crucial roles in the prevention as well as prognosis optimization of various metabolism-related diseases. Measuring dietary with the deployment of biomarker assessments provides quantitative nutritional information that can better predict the health outcomes. With the increased availability of nutritional biomarkers and the development of assessment tools, the specificity and sensitivity of nutritional biomarkers have been greatly improved. This enables efficient disease surveillance in nutrition research. A wide range of biomarkers have been used in different types of studies, including clinical trials, observational studies, and qualitative studies, to reflect the relationship between diet and health. Through a comprehensive literature search, we reviewed the well-established nutritional biomarkers of vitamins, minerals, and phytonutrients, and their association with epidemiological studies, to better understand the role of nutrition in health and disease.
Collapse
Affiliation(s)
- Jianheng Zheng
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China
| | - Feng Wu
- Sequanta Technologies Co., Ltd., 240 Hedan Road, Shanghai 200131, China
| | - Feijie Wang
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China
| | - Junrui Cheng
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Hong Zou
- Sequanta Technologies Co., Ltd., 240 Hedan Road, Shanghai 200131, China
| | - Yuan Li
- Sequanta Technologies Co., Ltd., 240 Hedan Road, Shanghai 200131, China
| | - Jun Du
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China
| | - Juntao Kan
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China
- Correspondence: ; Tel.: +86-21-2305-6982
| |
Collapse
|
7
|
L-Theanine Regulates the Abundance of Amino Acid Transporters in Mice Duodenum and Jejunum via the mTOR Signaling Pathway. Nutrients 2022; 15:nu15010142. [PMID: 36615799 PMCID: PMC9824403 DOI: 10.3390/nu15010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The intestine is a key organ for the absorption of amino acids. L-theanine (LTA) is a structural analog of glutamine and a characteristic non-protein amino acid found in tea (Camellia sinensis) that regulates lipid and protein metabolism. The present study explored the role of LTA in intestinal amino acid absorption, protein synthesis, and its mechanisms. Overall, our findings suggest that LTA supplementation not only affects serum alkaline phosphatase (AKP), total protein (TP), and urea nitrogen (BUN) levels, but it also upregulates the mRNA and protein expression of amino acid transporters (EAAT3, EAAT1, 4F2hc, y+LAT1, CAT1, ASCT2, and B0AT1), and activates the mTOR signaling pathway. The downstream S6 and S6K1 proteins are regulated, and the expression of amino acid transporters is regulated. These findings suggest that LTA increases intestinal AA absorption, promotes protein metabolism, and increases nitrogen utilization by upregulating AAT expression, activating the mTOR signaling pathway, and phosphorylating the mTOR downstream proteins S6 and S6K1.
Collapse
|
8
|
Nimbkar S, Leena MM, Moses JA, Anandharamakrishnan C. Microfluidic assessment of nutritional biomarkers: Concepts, approaches and advances. Crit Rev Food Sci Nutr 2022; 64:5113-5127. [PMID: 36503314 DOI: 10.1080/10408398.2022.2150597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Among various approaches to understand the health status of an individual, nutritional biomarkers can provide valuable information, particularly in terms of deficiencies, if any, and their severity. Commonly, the approach revolves around molecular sciences, and the information gained can support prognosis, diagnosis, remediation, and impact assessment of therapies. Microfluidic platforms can offer benefits of low sample and reagent requirements, low cost, high precision, and lower detection limits, with simplicity in handling and the provision for complete automation and integration with information and communication technologies (ICTs). While several advances are being made, this work details the underlying concepts, with emphasis on different point-of-care devices for the analysis of macro and micronutrient biomarkers. In addition, the scope of using different wearable microfluidic sensors for real-time and noninvasive determination of biomarkers is detailed. While several challenges remain, a strong focus is given on recent advances, presenting the state-of-the-art of this field. With more such biomarkers being discovered and commercialization-driven research, trends indicate the wide prospects of this advancing field in supporting clinicians, food technologists, nutritionists, and others.
Collapse
Affiliation(s)
- Shubham Nimbkar
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management, Ministry of Food Processing Industries, Thanjavur, Tamil Nadu, India
| | - M Maria Leena
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management, Ministry of Food Processing Industries, Thanjavur, Tamil Nadu, India
| | - Jeyan Arthur Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management, Ministry of Food Processing Industries, Thanjavur, Tamil Nadu, India
| | - Chinnaswamy Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management, Ministry of Food Processing Industries, Thanjavur, Tamil Nadu, India
| |
Collapse
|
9
|
Aldubayan MA, Pigsborg K, Gormsen SMO, Serra F, Palou M, Mena P, Wetzels M, Calleja A, Caimari A, Del Bas J, Gutierrez B, Magkos F, Hjorth MF. Empowering consumers to PREVENT diet-related diseases through OMICS sciences (PREVENTOMICS): protocol for a parallel double-blinded randomised intervention trial to investigate biomarker-based nutrition plans for weight loss. BMJ Open 2022; 12:e051285. [PMID: 35351696 PMCID: PMC8966553 DOI: 10.1136/bmjopen-2021-051285] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Personalised nutrition holds immense potential over conventional one-size-fits-all approaches for preventing and treating diet-related diseases, such as obesity. The current study aims to examine whether a personalised nutritional plan produces more favourable health outcomes than a standard approach based on general dietary recommendations in subjects with overweight or obesity and elevated waist circumference. METHODS AND ANALYSIS This project is a 10-week parallel, double-blinded randomised intervention trial. We plan to include 100 adults aged 18-65 years interested in losing weight, with body mass index ≥27 but<40 kg/m2 and elevated waist circumference (males >94 cm; females >80 cm). Participants will be categorised into one of five predefined 'clusters' based on their individual metabolic biomarker profile and genetic background, and will be randomised in a 1:1 ratio to one of two groups: (1) personalised plan group that will receive cluster-specific meals every day for 6 days a week, in conjunction with a personalised behavioural change programme via electronic push notifications; or (2) control group that will receive meals following the general dietary recommendations in conjunction with generic health behaviour prompts. The primary outcome is the difference between groups (personalised vs control) in the change in fat mass from baseline. Secondary outcomes include changes in weight and body composition, fasting blood glucose and insulin, lipid profile, adipokines, inflammatory biomarkers, and blood pressure. Other outcomes involve measures of physical activity and sleep patterns, health-related quality of life, dietary intake, eating behaviour, and biomarkers of food intake. The effect of the intervention on the primary outcome will be analysed by means of linear mixed models. ETHICS AND DISSEMINATION The protocol has been approved by the Ethics Committee of the Capital Region, Copenhagen, Denmark. Study findings will be disseminated through peer-reviewed publications, conference presentations and media outlets. TRIAL REGISTRATION NUMBER NCT04590989.
Collapse
Affiliation(s)
- Mona Adnan Aldubayan
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Nutrition, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Kristina Pigsborg
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology - NUO group, University of the Balearic Islands, Palma, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology - NUO group, University of the Balearic Islands, Palma, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Antoni Caimari
- Biotechnology Area, Nutrition and Health Unit, Eurecat Centre Tecnològic de Catalunya, Reus, Spain
| | - Josep Del Bas
- Biotechnology Area, Nutrition and Health Unit, Eurecat Centre Tecnològic de Catalunya, Reus, Spain
| | - Biotza Gutierrez
- Biotechnology Area, Nutrition and Health Unit, Eurecat Centre Tecnològic de Catalunya, Reus, Spain
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mads Fiil Hjorth
- Healthy Weight Center, Novo Nordisk Foundation, Hellerup, Denmark
| |
Collapse
|
10
|
Ortea I. Foodomics in health: advanced techniques for studying the bioactive role of foods. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Borisov N, Sorokin M, Garazha A, Buzdin A. Quantitation of Molecular Pathway Activation Using RNA Sequencing Data. Methods Mol Biol 2020; 2063:189-206. [PMID: 31667772 DOI: 10.1007/978-1-0716-0138-9_15] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intracellular molecular pathways (IMPs) control all major events in the living cell. IMPs are considered hotspots in biomedical sciences and thousands of IMPs have been discovered for humans and model organisms. Knowledge of IMPs activation is essential for understanding biological functions and differences between the biological objects at the molecular level. Here we describe the Oncobox system for accurate quantitative scoring activities of up to several thousand molecular pathways based on high throughput molecular data. Although initially designed for gene expression and mainly RNA sequencing data, Oncobox is now also applicable for quantitative proteomics, microRNA and transcription factor binding sites mapping data. The Oncobox system includes modules of gene expression data harmonization, aggregation and comparison and a recursive algorithm for automatic annotation of molecular pathways. The universal rationale of Oncobox enables scoring of signaling, metabolic, cytoskeleton, immunity, DNA repair, and other pathways in a multitude of biological objects. The Oncobox system can be helpful to all those working in the fields of genetics, biochemistry, interactomics, and big data analytics in molecular biomedicine.
Collapse
Affiliation(s)
- Nicolas Borisov
- Laboratory of Clinical Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Omicsway Corp., Walnut, CA, USA
| | - Maxim Sorokin
- Laboratory of Clinical Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Omicsway Corp., Walnut, CA, USA
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Anton Buzdin
- Laboratory of Clinical Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
- Omicsway Corp., Walnut, CA, USA.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| |
Collapse
|
12
|
Araujo MC, Estima CDCP, Yokoo EM, Lopes TDS, Pereira RA, Sichieri R. Are there differences in nutrient intake of Brazilian adults according to weight status? CIENCIA & SAUDE COLETIVA 2019; 24:2411-2418. [PMID: 31340260 DOI: 10.1590/1413-81232018247.15752017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 09/21/2017] [Indexed: 01/24/2023] Open
Abstract
It was assessed the intake and prevalence of inadequate nutrient intake according to weight status among Brazilian adults from urban areas (n=16,198) evaluated in the Brazilian National Dietary Survey (NDS - 2008-2009), that obtained food records from two non-consecutive days. The prevalence of inadequate nutrient intake according to weight status was estimated based on Brazilian and international recommendations, in which usual intake was estimated applying the National Cancer Institute method. From 14 nutrients evaluated, six differed according to weight status in men, and only two among women. For men, the mean proportion of energy derived from lipids and saturated fat and mean intake of cholesterol, zinc, and vitamin B12 were greater among those with excess weight compared to those with normal weight; the inverse was observed for dietary fiber. Mean sodium intake was greater and proportion of energy from added sugar intake was lower among obese women compared to overweight ones. Strategies to encourage food consumption with high micronutrient density should be targeted to adult population regardless of their weight status.
Collapse
Affiliation(s)
- Marina Campos Araujo
- Escola Nacional de Saúde Pública Sérgio Arouca, Fiocruz. R. Leopoldo Bulhões 1480/803, Bonsucesso. 21041-210 Rio de Janeiro RJ Brasil.
| | | | - Edna Massae Yokoo
- Departamento de Epidemiologia e Bioestatística, Universidade Federal Fluminense. Niterói RJ Brasil
| | - Taís de Souza Lopes
- Departamento de Nutrição Social e Aplicada, Universidade Federal do Rio de Janeiro. Rio de Janeiro RJ Brasil
| | - Rosangela Alves Pereira
- Departamento de Nutrição Social e Aplicada, Universidade Federal do Rio de Janeiro. Rio de Janeiro RJ Brasil
| | - Rosely Sichieri
- Departamento de Epidemiologia, Instituto de Medicina Social, Universidade do Estado do Rio de Janeiro. Rio de Janeiro RJ Brasil
| |
Collapse
|
13
|
Picó C, Serra F, Rodríguez AM, Keijer J, Palou A. Biomarkers of Nutrition and Health: New Tools for New Approaches. Nutrients 2019; 11:E1092. [PMID: 31100942 PMCID: PMC6567133 DOI: 10.3390/nu11051092] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
A main challenge in nutritional studies is the valid and reliable assessment of food intake, as well as its effects on the body. Generally, food intake measurement is based on self-reported dietary intake questionnaires, which have inherent limitations. They can be overcome by the use of biomarkers, capable of objectively assessing food consumption without the bias of self-reported dietary assessment. Another major goal is to determine the biological effects of foods and their impact on health. Systems analysis of dynamic responses may help to identify biomarkers indicative of intake and effects on the body at the same time, possibly in relation to individuals' health/disease states. Such biomarkers could be used to quantify intake and validate intake questionnaires, analyse physiological or pathological responses to certain food components or diets, identify persons with specific dietary deficiency, provide information on inter-individual variations or help to formulate personalized dietary recommendations to achieve optimal health for particular phenotypes, currently referred as "precision nutrition." In this regard, holistic approaches using global analysis methods (omics approaches), capable of gathering high amounts of data, appear to be very useful to identify new biomarkers and to enhance our understanding of the role of food in health and disease.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| |
Collapse
|
14
|
Karouia F, Peyvan K, Pohorille A. Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth. Biotechnol Adv 2017; 35:905-932. [PMID: 28433608 DOI: 10.1016/j.biotechadv.2017.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 12/18/2022]
Abstract
Space biotechnology is a nascent field aimed at applying tools of modern biology to advance our goals in space exploration. These advances rely on our ability to exploit in situ high throughput techniques for amplification and sequencing DNA, and measuring levels of RNA transcripts, proteins and metabolites in a cell. These techniques, collectively known as "omics" techniques have already revolutionized terrestrial biology. A number of on-going efforts are aimed at developing instruments to carry out "omics" research in space, in particular on board the International Space Station and small satellites. For space applications these instruments require substantial and creative reengineering that includes automation, miniaturization and ensuring that the device is resistant to conditions in space and works independently of the direction of the gravity vector. Different paths taken to meet these requirements for different "omics" instruments are the subjects of this review. The advantages and disadvantages of these instruments and technological solutions and their level of readiness for deployment in space are discussed. Considering that effects of space environments on terrestrial organisms appear to be global, it is argued that high throughput instruments are essential to advance (1) biomedical and physiological studies to control and reduce space-related stressors on living systems, (2) application of biology to life support and in situ resource utilization, (3) planetary protection, and (4) basic research about the limits on life in space. It is also argued that carrying out measurements in situ provides considerable advantages over the traditional space biology paradigm that relies on post-flight data analysis.
Collapse
Affiliation(s)
- Fathi Karouia
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS239-4, Moffett Field, CA 94035, USA; NASA Ames Research Center, Flight Systems Implementation Branch, Moffett Field, CA 94035, USA.
| | | | - Andrew Pohorille
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS239-4, Moffett Field, CA 94035, USA.
| |
Collapse
|
15
|
Badimon L, Vilahur G, Padro T. Systems biology approaches to understand the effects of nutrition and promote health. Br J Clin Pharmacol 2017; 83:38-45. [PMID: 27062443 PMCID: PMC5338131 DOI: 10.1111/bcp.12965] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/12/2022] Open
Abstract
Within the last years the implementation of systems biology in nutritional research has emerged as a powerful tool to understand the mechanisms by which dietary components promote health and prevent disease as well as to identify the biologically active molecules involved in such effects. Systems biology, by combining several '-omics' disciplines (mainly genomics/transcriptomics, proteomics and metabolomics), creates large data sets that upon computational integration provide in silico predictive networks that allow a more extensive analysis of the individual response to a nutritional intervention and provide a more global comprehensive understanding of how diet may influence health and disease. Numerous studies have demonstrated that diet and particularly bioactive food components play a pivotal role in helping to counteract environmental-related oxidative damage. Oxidative stress is considered to be strongly implicated in ageing and the pathophysiology of numerous diseases including neurodegenerative disease, cancers, metabolic disorders and cardiovascular diseases. In the following review we will provide insights into the role of systems biology in nutritional research and focus on transcriptomic, proteomic and metabolomics studies that have demonstrated the ability of functional foods and their bioactive components to fight against oxidative damage and contribute to health benefits.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Research Center, CSIC‐ICCCHospital de la Santa Creu i Sant Pau, IIB‐Sant PauBarcelonaSpain
- Cardiovascular Research ChairUABBarcelonaSpain
| | - Gemma Vilahur
- Cardiovascular Research Center, CSIC‐ICCCHospital de la Santa Creu i Sant Pau, IIB‐Sant PauBarcelonaSpain
| | - Teresa Padro
- Cardiovascular Research Center, CSIC‐ICCCHospital de la Santa Creu i Sant Pau, IIB‐Sant PauBarcelonaSpain
| |
Collapse
|
16
|
Beger RD, Dunn W, Schmidt MA, Gross SS, Kirwan JA, Cascante M, Brennan L, Wishart DS, Oresic M, Hankemeier T, Broadhurst DI, Lane AN, Suhre K, Kastenmüller G, Sumner SJ, Thiele I, Fiehn O, Kaddurah-Daouk R. Metabolomics enables precision medicine: "A White Paper, Community Perspective". Metabolomics 2016; 12:149. [PMID: 27642271 PMCID: PMC5009152 DOI: 10.1007/s11306-016-1094-6] [Citation(s) in RCA: 388] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/08/2016] [Indexed: 01/12/2023]
Abstract
INTRODUCTION BACKGROUND TO METABOLOMICS Metabolomics is the comprehensive study of the metabolome, the repertoire of biochemicals (or small molecules) present in cells, tissues, and body fluids. The study of metabolism at the global or "-omics" level is a rapidly growing field that has the potential to have a profound impact upon medical practice. At the center of metabolomics, is the concept that a person's metabolic state provides a close representation of that individual's overall health status. This metabolic state reflects what has been encoded by the genome, and modified by diet, environmental factors, and the gut microbiome. The metabolic profile provides a quantifiable readout of biochemical state from normal physiology to diverse pathophysiologies in a manner that is often not obvious from gene expression analyses. Today, clinicians capture only a very small part of the information contained in the metabolome, as they routinely measure only a narrow set of blood chemistry analytes to assess health and disease states. Examples include measuring glucose to monitor diabetes, measuring cholesterol and high density lipoprotein/low density lipoprotein ratio to assess cardiovascular health, BUN and creatinine for renal disorders, and measuring a panel of metabolites to diagnose potential inborn errors of metabolism in neonates. OBJECTIVES OF WHITE PAPER—EXPECTED TREATMENT OUTCOMES AND METABOLOMICS ENABLING TOOL FOR PRECISION MEDICINE We anticipate that the narrow range of chemical analyses in current use by the medical community today will be replaced in the future by analyses that reveal a far more comprehensive metabolic signature. This signature is expected to describe global biochemical aberrations that reflect patterns of variance in states of wellness, more accurately describe specific diseases and their progression, and greatly aid in differential diagnosis. Such future metabolic signatures will: (1) provide predictive, prognostic, diagnostic, and surrogate markers of diverse disease states; (2) inform on underlying molecular mechanisms of diseases; (3) allow for sub-classification of diseases, and stratification of patients based on metabolic pathways impacted; (4) reveal biomarkers for drug response phenotypes, providing an effective means to predict variation in a subject's response to treatment (pharmacometabolomics); (5) define a metabotype for each specific genotype, offering a functional read-out for genetic variants: (6) provide a means to monitor response and recurrence of diseases, such as cancers: (7) describe the molecular landscape in human performance applications and extreme environments. Importantly, sophisticated metabolomic analytical platforms and informatics tools have recently been developed that make it possible to measure thousands of metabolites in blood, other body fluids, and tissues. Such tools also enable more robust analysis of response to treatment. New insights have been gained about mechanisms of diseases, including neuropsychiatric disorders, cardiovascular disease, cancers, diabetes and a range of pathologies. A series of ground breaking studies supported by National Institute of Health (NIH) through the Pharmacometabolomics Research Network and its partnership with the Pharmacogenomics Research Network illustrate how a patient's metabotype at baseline, prior to treatment, during treatment, and post-treatment, can inform about treatment outcomes and variations in responsiveness to drugs (e.g., statins, antidepressants, antihypertensives and antiplatelet therapies). These studies along with several others also exemplify how metabolomics data can complement and inform genetic data in defining ethnic, sex, and gender basis for variation in responses to treatment, which illustrates how pharmacometabolomics and pharmacogenomics are complementary and powerful tools for precision medicine. CONCLUSIONS KEY SCIENTIFIC CONCEPTS AND RECOMMENDATIONS FOR PRECISION MEDICINE Our metabolomics community believes that inclusion of metabolomics data in precision medicine initiatives is timely and will provide an extremely valuable layer of data that compliments and informs other data obtained by these important initiatives. Our Metabolomics Society, through its "Precision Medicine and Pharmacometabolomics Task Group", with input from our metabolomics community at large, has developed this White Paper where we discuss the value and approaches for including metabolomics data in large precision medicine initiatives. This White Paper offers recommendations for the selection of state of-the-art metabolomics platforms and approaches that offer the widest biochemical coverage, considers critical sample collection and preservation, as well as standardization of measurements, among other important topics. We anticipate that our metabolomics community will have representation in large precision medicine initiatives to provide input with regard to sample acquisition/preservation, selection of optimal omics technologies, and key issues regarding data collection, interpretation, and dissemination. We strongly recommend the collection and biobanking of samples for precision medicine initiatives that will take into consideration needs for large-scale metabolic phenotyping studies.
Collapse
Affiliation(s)
- Richard D. Beger
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 USA
| | - Warwick Dunn
- School of Biosciences, Phenome Centre Birmingham and Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Michael A. Schmidt
- Advanced Pattern Analysis and Countermeasures Group, Research Innovation Center, Colorado State University, Fort Collins, CO 80521 USA
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021 USA
| | - Jennifer A. Kirwan
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain
- Institute of Biomedicine of Universitat de Barcelona (IBUB) and CSIC-Associated Unit, Barcelona, Spain
| | | | - David S. Wishart
- Departments of Computing Science and Biological Sciences, University of Alberta, Edmonton, AB Canada
| | - Matej Oresic
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - Thomas Hankemeier
- Division of Analytical Biosciences and Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University & Netherlands Metabolomics Centre, Leiden, The Netherlands
| | | | - Andrew N. Lane
- Center for Environmental Systems Biochemistry, Department Toxicology and Cancer Biology, Markey Cancer Center, Lexington, KY USA
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, Oberschleißheim, Germany
| | - Susan J. Sumner
- Discovery Sciences, RTI International, Research Triangle Park, Durham, NC USA
| | - Ines Thiele
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Campus Belval, Esch-Sur-Alzette, Luxembourg
| | - Oliver Fiehn
- West Coast Metabolomics Center, UC Davis, Davis, CA USA
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rima Kaddurah-Daouk
- Psychiatry and Behavioral Sciences, Duke Internal Medicine and Duke Institute for Brain Sciences and Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Box 3903, Durham, NC 27710 USA
| | - for “Precision Medicine and Pharmacometabolomics Task Group”-Metabolomics Society Initiative
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 USA
- School of Biosciences, Phenome Centre Birmingham and Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
- Advanced Pattern Analysis and Countermeasures Group, Research Innovation Center, Colorado State University, Fort Collins, CO 80521 USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021 USA
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain
- Institute of Biomedicine of Universitat de Barcelona (IBUB) and CSIC-Associated Unit, Barcelona, Spain
- UCD Institute of Food and Health, UCD, Belfield, Dublin Ireland
- Departments of Computing Science and Biological Sciences, University of Alberta, Edmonton, AB Canada
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
- Division of Analytical Biosciences and Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University & Netherlands Metabolomics Centre, Leiden, The Netherlands
- School of Science, Edith Cowan University, Perth, Australia
- Center for Environmental Systems Biochemistry, Department Toxicology and Cancer Biology, Markey Cancer Center, Lexington, KY USA
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Doha, Qatar
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, Oberschleißheim, Germany
- Discovery Sciences, RTI International, Research Triangle Park, Durham, NC USA
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Campus Belval, Esch-Sur-Alzette, Luxembourg
- West Coast Metabolomics Center, UC Davis, Davis, CA USA
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
- Psychiatry and Behavioral Sciences, Duke Internal Medicine and Duke Institute for Brain Sciences and Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Box 3903, Durham, NC 27710 USA
| |
Collapse
|
17
|
Madeeha IR, Ikram A, Imran M. A preliminary insight of correlation between human fecal microbial diversity and blood lipid profile. Int J Food Sci Nutr 2016; 67:865-71. [PMID: 27354183 DOI: 10.1080/09637486.2016.1201791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The study aimed to evaluate the effect of human gut-derived lactic acid bacteria and yeast on cholesterol levels. Fecal samples from five healthy volunteers were examined for the level and diversity of dominant microbiota. Pichia kudriavzevii (QAUPK01, QAUPK02, QAUPK03, QAUPK04 and QAUPK05) and Candida tropicalis (QAUCT06) were identified by phenotypic methods and DNA sequencing and tested for in vitro cholesterol assimilation ability. Significant correlations (p < 0.05) between fecal microbial diversity, volunteers' age, body mass index (BMI) and serum lipid profile were established. From biochemical tests, eight strains of lactic acid bacteria (M1.1, M1.2, M2.1, M3.1, M3.2, M4.1, M5.1 and M5.2) were identified but no bsh activity was found in them. However, all yeast strains were able to assimilate cholesterol and maximum assimilation ability was shown by QAUPK03 (83.6%) and QAUPK05 (85.2%) after 72 h of growth at 37 °C.
Collapse
Affiliation(s)
- Ilyas Rana Madeeha
- a Department of Microbiology, Faculty of Biological Sciences , Quaid-i-Azam University, Islamabad , Pakistan
| | - Aamer Ikram
- b Armed Forces Institute of Pathology (AFIP), National University of Medical Sciences , Rawalpindi , Pakistan
| | - Muhammad Imran
- a Department of Microbiology, Faculty of Biological Sciences , Quaid-i-Azam University, Islamabad , Pakistan ;,c Unité de Recherche Aliments Bioprocédés Toxicologie Environnements EA , Normandie Université, UNICAEN , Caen , France
| |
Collapse
|
18
|
European Obesity Summit (EOS) - Joint Congress of EASOand IFSO-EC, Gothenburg, Sweden, June 1 - 4, 2016: Abstracts. Obes Facts 2016; 9 Suppl 1:1-376. [PMID: 27238363 PMCID: PMC5672850 DOI: 10.1159/000446744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|