1
|
Albacar M, Sacka L, Calafí C, Velázquez D, Casamayor A, Ariño J, Zimmermannova O. The Toxic Effects of Ppz1 Overexpression Involve Nha1-Mediated Deregulation of K + and H + Homeostasis. J Fungi (Basel) 2021; 7:1010. [PMID: 34946993 PMCID: PMC8704375 DOI: 10.3390/jof7121010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
The alteration of the fine-tuned balance of phospho/dephosphorylation reactions in the cell often results in functional disturbance. In the yeast Saccharomyces cerevisiae, the overexpression of Ser/Thr phosphatase Ppz1 drastically blocks cell proliferation, with a profound change in the transcriptomic and phosphoproteomic profiles. While the deleterious effect on growth likely derives from the alteration of multiple targets, the precise mechanisms are still obscure. Ppz1 is a negative effector of potassium influx. However, we show that the toxic effect of Ppz1 overexpression is unrelated to the Trk1/2 high-affinity potassium importers. Cells overexpressing Ppz1 exhibit decreased K+ content, increased cytosolic acidification, and fail to properly acidify the medium. These effects, as well as the growth defect, are counteracted by the deletion of NHA1 gene, which encodes a plasma membrane Na+, K+/H+ antiporter. The beneficial effect of a lack of Nha1 on the growth vanishes as the pH of the medium approaches neutrality, is not eliminated by the expression of two non-functional Nha1 variants (D145N or D177N), and is exacerbated by a hyperactive Nha1 version (S481A). All our results show that high levels of Ppz1 overactivate Nha1, leading to an excessive entry of H+ and efflux of K+, which is detrimental for growth.
Collapse
Affiliation(s)
- Marcel Albacar
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (M.A.); (C.C.); (A.C.)
| | - Lenka Sacka
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, 142220 Prague, Czech Republic; (L.S.); (D.V.)
| | - Carlos Calafí
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (M.A.); (C.C.); (A.C.)
| | - Diego Velázquez
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, 142220 Prague, Czech Republic; (L.S.); (D.V.)
| | - Antonio Casamayor
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (M.A.); (C.C.); (A.C.)
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (M.A.); (C.C.); (A.C.)
| | - Olga Zimmermannova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, 142220 Prague, Czech Republic; (L.S.); (D.V.)
| |
Collapse
|
2
|
Folch PL, Bisschops MM, Weusthuis RA. Metabolic energy conservation for fermentative product formation. Microb Biotechnol 2021; 14:829-858. [PMID: 33438829 PMCID: PMC8085960 DOI: 10.1111/1751-7915.13746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/02/2022] Open
Abstract
Microbial production of bulk chemicals and biofuels from carbohydrates competes with low-cost fossil-based production. To limit production costs, high titres, productivities and especially high yields are required. This necessitates metabolic networks involved in product formation to be redox-neutral and conserve metabolic energy to sustain growth and maintenance. Here, we review the mechanisms available to conserve energy and to prevent unnecessary energy expenditure. First, an overview of ATP production in existing sugar-based fermentation processes is presented. Substrate-level phosphorylation (SLP) and the involved kinase reactions are described. Based on the thermodynamics of these reactions, we explore whether other kinase-catalysed reactions can be applied for SLP. Generation of ion-motive force is another means to conserve metabolic energy. We provide examples how its generation is supported by carbon-carbon double bond reduction, decarboxylation and electron transfer between redox cofactors. In a wider perspective, the relationship between redox potential and energy conservation is discussed. We describe how the energy input required for coenzyme A (CoA) and CO2 binding can be reduced by applying CoA-transferases and transcarboxylases. The transport of sugars and fermentation products may require metabolic energy input, but alternative transport systems can be used to minimize this. Finally, we show that energy contained in glycosidic bonds and the phosphate-phosphate bond of pyrophosphate can be conserved. This review can be used as a reference to design energetically efficient microbial cell factories and enhance product yield.
Collapse
Affiliation(s)
- Pauline L. Folch
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| | - Markus M.M. Bisschops
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| | - Ruud A. Weusthuis
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| |
Collapse
|
3
|
Ke CL, Deng FS, Chuang CY, Lin CH. Antimicrobial Actions and Applications of Chitosan. Polymers (Basel) 2021; 13:904. [PMID: 33804268 PMCID: PMC7998239 DOI: 10.3390/polym13060904] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
Chitosan is a naturally originating product that can be applied in many areas due to its biocompatibility, biodegradability, and nontoxic properties. The broad-spectrum antimicrobial activity of chitosan offers great commercial potential for this product. Nevertheless, the antimicrobial activity of chitosan varies, because this activity is associated with its physicochemical characteristics and depends on the type of microorganism. In this review article, the fundamental properties, modes of antimicrobial action, and antimicrobial effects-related factors of chitosan are discussed. We further summarize how microorganisms genetically respond to chitosan. Finally, applications of chitosan-based biomaterials, such as nanoparticles and films, in combination with current clinical antibiotics or antifungal drugs, are also addressed.
Collapse
Affiliation(s)
| | | | | | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (C.-L.K.); (F.-S.D.); (C.-Y.C.)
| |
Collapse
|
4
|
Zhgun A, Dumina M, Valiakhmetov A, Eldarov M. The critical role of plasma membrane H+-ATPase activity in cephalosporin C biosynthesis of Acremonium chrysogenum. PLoS One 2020; 15:e0238452. [PMID: 32866191 PMCID: PMC7458343 DOI: 10.1371/journal.pone.0238452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/16/2020] [Indexed: 11/19/2022] Open
Abstract
The filamentous fungus Acremonium chrysogenum is the main industrial producer of cephalosporin C (CPC), one of the major precursors for manufacturing of cephalosporin antibiotics. The plasma membrane H+-ATPase (PMA) plays a key role in numerous fungal physiological processes. Previously we observed a decrease of PMA activity in A. chrysogenum overproducing strain RNCM 408D (HY) as compared to the level the wild-type strain A. chrysogenum ATCC 11550. Here we report the relationship between PMA activity and CPC biosynthesis in A. chrysogenum strains. The elevation of PMA activity in HY strain through overexpression of PMA1 from Saccharomyces cerevisiae, under the control of the constitutive gpdA promoter from Aspergillus nidulans, results in a 1.2 to 10-fold decrease in CPC production, shift in beta-lactam intermediates content, and is accompanied by the decrease in cef genes expression in the fermentation process; the characteristic colony morphology on agar media is also changed. The level of PMA activity in A. chrysogenum HY OE::PMA1 strains has been increased by 50–100%, up to the level observed in WT strain, and was interrelated with ATP consumption; the more PMA activity is elevated, the more ATP level is depleted. The reduced PMA activity in A. chrysogenum HY strain may be one of the selected events during classical strain improvement, aimed at elevating the ATP content available for CPC production.
Collapse
Affiliation(s)
- Alexander Zhgun
- Research Center of Biotechnology RAS, Moscow, Russia
- * E-mail:
| | - Mariya Dumina
- Research Center of Biotechnology RAS, Moscow, Russia
| | - Ayrat Valiakhmetov
- Skryabin Institute of Biophysics and Physiology of Microorganisms, RAS, Pushchino, Russia
| | | |
Collapse
|
5
|
Xiao L, Liu Y, Yi T. Development of a New Ex Vivo Lipolysis-Absorption Model for Nanoemulsions. Pharmaceutics 2019; 11:pharmaceutics11040164. [PMID: 30987303 PMCID: PMC6523376 DOI: 10.3390/pharmaceutics11040164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/11/2022] Open
Abstract
The use of lipid-based formulations (LBFs) in improving the absorption of poorly water-soluble drugs has now well established. Because the in vivo evaluation of LBFs is labor-intensive, in vitro or ex vivo approaches could provide advantages. In this study, a new ex vivo lipolysis-absorption model (evLAM) composed of an intestinal digestion system and an intestinal tissue system was developed to evaluate and predict the in vivo absorption performances of LBFs. Model factors, including the pH of the system and concentrations of d-glucose and pancreatic lipase, were investigated and optimized by a Box-Behnken design. To evaluate this new model, a lipid formulation of indomethacin, which was chosen based on preliminary studies of pseudo-ternary phase diagrams, emulsion droplets, and solubility, was further investigated by an in vivo pharmacokinetic study of rats, the everted gut sac model, and the evLAM, respectively. The absorption percentages obtained from the evLAM were much more similar to the data of rats in vivo than those from the everted gut sac model, showing a preferable in vitro-in vivo correlation (r = 0.9772). Compared with the conventional in vitro and in vivo methods, the evLAM, which allowed precise insights into the in vivo absorption characteristics without much time or a complicated process, could be a better tool for assessing LBFs of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Basic Medicine, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, China.
| | - Ying Liu
- Pharmacy Department, Wuhan Medical Treatment Center, Wuhan 430023, China.
| | - Tao Yi
- School of Health Sciences, Macao Polytechnic Institute, Macau 999078, China.
| |
Collapse
|
6
|
Identification of Antifungal H +-ATPase Inhibitors with Effect on Plasma Membrane Potential. Antimicrob Agents Chemother 2017; 61:AAC.00032-17. [PMID: 28438931 PMCID: PMC5487681 DOI: 10.1128/aac.00032-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/15/2017] [Indexed: 02/07/2023] Open
Abstract
The plasma membrane H+-ATPase (Pma1) is an essential fungal protein and a proposed target for new antifungal medications. The compounds in a small-molecule library containing ∼191,000 commercially available compounds were screened for their ability to inhibit Saccharomyces cerevisiae plasma membranes containing Pma1. The overall hit rate was 0.2%, corresponding to 407 compounds. These hit compounds were further evaluated for ATPase selectivity and broad-spectrum antifungal activity. Following this work, one Pma1 inhibitor series based on compound 14 and analogs was selected for further evaluation. This compound series was able to depolarize the membrane and inhibit extracellular acidification in intact fungal cells concomitantly with a significant increase in intracellular ATP levels. Collectively, we suggest that these effects may be a common feature of Pma1 inhibitors. Additionally, the work uncovered a dual mechanism for the previously identified cationic peptide BM2, revealing fungal membrane disruption, in addition to Pma1 inhibition. The methods presented here provide a solid platform for the evaluation of Pma1-specific inhibitors in a drug development setting. The present inhibitors could serve as a starting point for the development of new antifungal agents with a novel mode of action.
Collapse
|
7
|
Collin-Hansen C, Andersen RA, Steinnes E. Molecular defense systems are expressed in the king bolete (Boletus edulis) growing near metal smelters. Mycologia 2017. [DOI: 10.1080/15572536.2006.11832747] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Christian Collin-Hansen
- Department of Chemistry, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Rolf A. Andersen
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Eiliv Steinnes
- Department of Chemistry, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
8
|
Myrold DD, Bottomley PJ. Nitrogen Mineralization and Immobilization. NITROGEN IN AGRICULTURAL SYSTEMS 2015. [DOI: 10.2134/agronmonogr49.c5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Šimkovič M, Olejníková P, Mat'at'a M, Žemla P, Vilimová V, Farkašová L, Varečka L. Nutrient transport into germinating Trichoderma atroviride conidia and development of its driving force. MICROBIOLOGY-SGM 2015; 161:1240-50. [PMID: 25777081 DOI: 10.1099/mic.0.000079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The exit from dormancy and the start of growth should be preceded or at least accompanied by the uptake of nutrients. In this work we studied changes in the transport of several nutrients into Trichoderma atroviride conidia. Germination started with a short period of isodiametric growth (conidial swelling), followed by polarized growth (germ tube formation) after about 8 h at 26 °C. The onset of isodiametric growth required the presence of external both phosphate and nitrate. At the same time, an increased uptake of precursors of macromolecules and phospholipids ((14)C- or (3)H-labelled valine, uracil, N-acetylglucosamine and choline) occurred. A low uptake of these precursors was observed also in non-germinating conidia. Concomitantly, this uptake developed an increased sensitivity to the uncoupler 3,3',4',5-tetrachlorosalicylanilide. Expression and activity of H(+)-ATPase started after completing isodiametric growth, suggesting that the proton-motive force (PMF) generated by H(+)-ATPase may be an accelerator of nutrient uptake and metabolism. (14)C-valine uptake was also measured into a mutant with disrupted pma1 gene. This mutant did not form conidia. The mutant also exhibited uncoupler sensitivity of (14)C-valine uptake. These observations showed that a PMF must have been generated by a mechanism(s) other than the H(+)-ATPase activity in the WT before H(+)-ATPase expression and in mycelia with disrupted H(+)-ATPase.
Collapse
Affiliation(s)
- Martin Šimkovič
- Department of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237-Bratislava, Slovakia
| | - Petra Olejníková
- Department of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237-Bratislava, Slovakia
| | - Matej Mat'at'a
- Department of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237-Bratislava, Slovakia
| | - Peter Žemla
- Department of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237-Bratislava, Slovakia
| | - Viera Vilimová
- Department of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237-Bratislava, Slovakia
| | - Lenka Farkašová
- Department of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237-Bratislava, Slovakia
| | - L'udovít Varečka
- Department of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237-Bratislava, Slovakia
| |
Collapse
|
10
|
de Kok S, Yilmaz D, Daran JM, Pronk JT, van Maris AJA. In vivo analysis of Saccharomyces cerevisiae plasma membrane ATPase Pma1p isoforms with increased in vitro H+/ATP stoichiometry. Antonie van Leeuwenhoek 2012; 102:401-6. [PMID: 22488179 PMCID: PMC3397212 DOI: 10.1007/s10482-012-9730-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/22/2012] [Indexed: 11/24/2022]
Abstract
Plasma membrane H+-ATPase isoforms with increased H+/ATP ratios represent a desirable asset in yeast metabolic engineering. In vivo proton coupling of two previously reported Pma1p isoforms (Ser800Ala, Glu803Gln) with increased in vitro H+/ATP stoichiometries was analysed by measuring biomass yields of anaerobic maltose-limited chemostat cultures expressing only the different PMA1 alleles. In vivo H+/ATP stoichiometries of wildtype Pma1p and the two isoforms did not differ significantly.
Collapse
Affiliation(s)
- Stefan de Kok
- Department of Biotechnology, Delft University of Technology, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Douma RD, Deshmukh AT, de Jonge LP, de Jong BW, Seifar RM, Heijnen JJ, van Gulik WM. Novel insights in transport mechanisms and kinetics of phenylacetic acid and penicillin-G in Penicillium chrysogenum. Biotechnol Prog 2011; 28:337-48. [DOI: 10.1002/btpr.1503] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/24/2011] [Indexed: 11/06/2022]
|
12
|
Dietz S, von Bülow J, Beitz E, Nehls U. The aquaporin gene family of the ectomycorrhizal fungus Laccaria bicolor: lessons for symbiotic functions. THE NEW PHYTOLOGIST 2011; 190:927-940. [PMID: 21352231 DOI: 10.1111/j.1469-8137.2011.03651.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Soil humidity and bulk water transport are essential for nutrient mobilization. Ectomycorrhizal fungi, bridging soil and fine roots of woody plants, are capable of modulating both by being integrated into water movement driven by plant transpiration and the nocturnal hydraulic lift. Aquaporins are integral membrane proteins that function as gradient-driven water and/or solute channels. Seven aquaporins were identified in the genome of the ectomycorrhizal basidiomycete Laccaria bicolor and their role in fungal transfer processes was analyzed. Heterologous expression in Xenopus laevis oocytes revealed relevant water permeabilities for three aquaporins. In fungal mycelia, expression of the corresponding genes was high compared with other members of the gene family, indicating the significance of the respective proteins for plasma membrane water permeability. As growth temperature and ectomycorrhiza formation modified gene expression profiles of these water-conducting aquaporins, specific roles in those aspects of fungal physiology are suggested. Two aquaporins, which were highly expressed in ectomycorrhizas, conferred plasma membrane ammonia permeability in yeast. This indicates that these proteins are an integral part of ectomycorrhizal fungus-based plant nitrogen nutrition in symbiosis.
Collapse
Affiliation(s)
- Sandra Dietz
- Interfaculty Institute of Microbiology and Infection Medicine, Physiological Ecology of Plants, University of Tübingen, Tübingen, Germany
| | - Julia von Bülow
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Kiel, Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Kiel, Kiel, Germany
| | - Uwe Nehls
- Faculty for Biology and Chemistry, Botany, University of Bremen, Bremen, Germany
| |
Collapse
|
13
|
Shabala L, McMeekin T, Shabala S. Osmotic adjustment and requirement for sodium in marine protist thraustochytrid. Environ Microbiol 2011; 11:1835-43. [PMID: 20849566 DOI: 10.1111/j.1462-2920.2009.01908.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A non-invasive ion-selective microelectrode technique was used to elucidate the ionic mechanisms of osmotic adjustment in a marine protist thraustochytrid. Hypoosmotic stress caused significant efflux of Na(+), Cl(-) and K(+) from thraustochytrid cells. Model calculations showed that almost complete osmotic adjustment was achieved within the first 30 min after stress onset. Of these, sodium was the major contributor (more than half of the total osmotic adjustment), with chloride being the second major contributor. The role of K(+) in the process of osmotic adjustment was relatively small. Changes in Ca(2+) and H(+) flux were attributed to intracellular signalling. Ion flux data were confirmed by growth experiments. Thraustochytrium cells showed normal growth patterns even when grown in a sodium-free solution provided the medium osmolality was adjusted by mannitol to one of the seawater. That suggests that the requirement of sodium for thraustochytrid growth cycle is due to its role in cell osmotic adjustment rather than because of the direct Na(+) involvement in cell metabolism. Altogether, these data demonstrate the evidence for turgor regulation in thraustochytrids and suggest that these cells may be grown in the absence of sodium providing that cell turgor is adjusted by some other means.
Collapse
Affiliation(s)
- Lana Shabala
- School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | | | | |
Collapse
|
14
|
Vrabl P, Mutschlechner W, Burgstaller W. Characteristics of glucose uptake by glucose- and NH4-limited grown Penicillium ochrochloron at low, medium and high glucose concentration. Fungal Genet Biol 2008; 45:1380-92. [PMID: 18722543 DOI: 10.1016/j.fgb.2008.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 06/30/2008] [Accepted: 07/26/2008] [Indexed: 11/15/2022]
Abstract
Glucose uptake by Penicillium ochrochloron (formerly Penicillium simplicissimum) was studied from 0.01 to 400 mM glucose using chemostat culture and bioreactor batch culture. The characteristics of glucose uptake varied considerably with the conditions of growth, harvest and uptake assay. Glucose-limited grown mycelium showed one saturable transport system [K(S) below 0.01 mM; v(max) 1.1-1.2 mmol (g dry weight)(-1)h(-1)] plus a first order process (permeability P=1.2x10(-7)cm s(-1)). Ammonium-limited grown mycelium showed only one saturable transport system [K(S) 0.3-0.7 mM; v(max) 0.5-0.8 mmol (g dry weight)(-1)h(-1)]. During exponential growth at high glucose concentration (300-400 mM) a first order process was found with a P value of 5.6-9.3x10(-7)cm s(-1). After ammonium exhaustion a second first order phase showed a lower P value (6.1-9.3x10(-8)cm s(-1)). A similar change in permeability was also found after a re-evaluation of published data for Gibberella fujikuroi, Aspergillus niger, Aspergillus awamori and Saccharomycopsis lipolytica. For the first order processes simple diffusion was ruled out as a mechanism for glucose uptake. Glucose uptake by P. ochrochloron was controlled more strongly by metabolism than by transport and was not rate limiting for overflow metabolism.
Collapse
Affiliation(s)
- Pamela Vrabl
- University of Innsbruck, Institute of Microbiology, Technikerstrasse 25, 6020 Innsbruck, Austria.
| | | | | |
Collapse
|
15
|
Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 2008; 74:5759-68. [PMID: 18676708 DOI: 10.1128/aem.01030-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Based on the high acid tolerance and the simple nutritional requirements of Saccharomyces cerevisiae, engineered strains of this yeast are considered biocatalysts for industrial production of high-purity undissociated lactic acid. However, high concentrations of lactic acid are toxic to S. cerevisiae, thus limiting its growth and product formation. Physiological and transcriptional responses to high concentrations of lactic acid were studied in anaerobic, glucose-limited chemostat cultures grown at different pH values and lactic acid concentrations, resulting in a 50% decrease in the biomass yield. At pH 5, the yield decrease was caused mostly by osmotically induced glycerol production and not by the classic weak-acid action, as was observed at pH 3. Cultures grown at pH 5 with 900 mM lactic acid revealed an upregulation of many genes involved in iron homeostasis, indicating that iron chelation occurred at high concentrations of dissociated lactic acid. Chemostat cultivation at pH 3 with 500 mM lactate, resulting in lower anion concentrations, showed an alleviation of this iron homeostasis response. Six of the 10 known targets of the transcriptional regulator Haa1p were strongly upregulated in lactate-challenged cultures at pH 3 but showed only moderate induction by high lactate concentrations at pH 5. Moreover, the haa1Delta mutant exhibited a growth defect at high lactic acid concentrations at pH 3. These results indicate that iron homeostasis plays a major role in the response of S. cerevisiae to high lactate concentrations, whereas the Haa1p regulon is involved primarily in the response to high concentrations of undissociated lactic acid.
Collapse
|
16
|
Partially saturated canthaxanthin purified from Aspergillus carbonarius induces apoptosis in prostrate cancer cell line. Appl Microbiol Biotechnol 2008; 80:467-73. [PMID: 18542946 DOI: 10.1007/s00253-008-1538-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 05/08/2008] [Accepted: 05/08/2008] [Indexed: 10/22/2022]
Abstract
A mutant Aspergillus carbonarius selected for temperature tolerance after UV treatment, when grown in shake flasks, produced mycelia bearing yellow pigment. Since the mutant was affected in sterol biosynthetic pathway, the pigment was apparently produced to maintain membrane fluidity and rigidity for growth sustenance in low-pH culture broth. Nuclear magnetic resonance analyses characterizing the pigment as a partially saturated canthaxanthin, containing beta-ionone end rings, suggested its application as a retinoid. When tested for this property in retinoic acid receptor expressing prostate cancer cell line, LNCaP, the fungal partially saturated canthaxanthin induced apoptosis. Low apoptosis percentage in DU145 prostrate cancer cells that does not express functional retinoic acid receptor-beta (RAR-beta) suggested binding specificity of the partially saturated canthaxanthin for RAR-beta.
Collapse
|
17
|
Ramos ASP, Chambergo FS, Bonaccorsi ED, Ferreira AJS, Cella N, Gombert AK, Tonso A, El-Dorry H. Oxygen- and glucose-dependent expression of Trhxt1, a putative glucose transporter gene of Trichoderma reesei. Biochemistry 2006; 45:8184-92. [PMID: 16800643 DOI: 10.1021/bi052553y] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The filamentous fungus Trichoderma reesei is adapted to nutrient-poor environments, in which it uses extracellular cellulases to obtain glucose from the available cellulose biomass. We have isolated and characterized Trhxt1, a putative glucose transporter gene, as judged by the glucose accumulation phenotype of a DeltaTrhxt1 mutant. This gene is repressed at high glucose concentrations and expressed at micromolar levels and in the absence of glucose. The gene is also induced during the growth of T. reesei on cellulose when the glucose concentration generated from the hydrolysis of cellulose present in the culture medium is in the micromolar range. We also show that oxygen availability controls the expression of the Trxht1 gene. In this regard, the gene is down-regulated by hypoxia and also by the inhibition of the flow of electrons through the respiratory chain using antimycin A. Intriguingly, anoxia but not hypoxia strongly induces the expression of the gene in the presence of an otherwise repressive concentration of glucose. These results indicate that although the absence of repressing concentrations of glucose and an active respiratory chain are required for Trhxt1 expression under normoxic conditions these physiological processes have no effect on the expression of this gene under an anoxic state. Thus, our results highlight the presence of a novel coordinated interaction between oxygen and the regulatory circuit for glucose repression under anoxic conditions.
Collapse
Affiliation(s)
- Augusto S P Ramos
- Department of Biochemistry, Institute of Chemistry, Avenida Prof. Lineu Prestes 748, São Paulo SP 05508-000, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Burgstaller W. Thermodynamic boundary conditions suggest that a passive transport step suffices for citrate excretion in Aspergillus and Penicillium. MICROBIOLOGY-SGM 2006; 152:887-893. [PMID: 16514167 DOI: 10.1099/mic.0.28454-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Excretion of organic acids, e.g. citrate, by anamorphic fungi is a frequent phenomenon in natural habitats and in laboratory cultures. In biotechnological processes for citrate production with Aspergillus niger extracellular citrate concentrations up to 1 mol l(-1) are achieved. Intracellular citrate concentrations are in the millimolar range. Therefore the question arises whether citrate excretion depends on active transport. In this article thermodynamic calculations are presented for citrate excretion by A. niger at an extracellular pH of 3 and by Penicillium simplicissimum at an extracellular pH of 7. From the results of these calculations it is concluded that in both cases a passive transport step suffices for citrate excretion.
Collapse
|
19
|
Chalot M, Blaudez D, Brun A. Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. TRENDS IN PLANT SCIENCE 2006; 11:263-6. [PMID: 16697245 DOI: 10.1016/j.tplants.2006.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Revised: 02/20/2006] [Accepted: 04/26/2006] [Indexed: 05/09/2023]
Abstract
In mycorrhizal associations, the fungal partner assists its plant host with nitrogen and phosphorus uptake while obtaining photosynthetically fixed carbon. Recent studies in mycorrhiza have highlighted the potential for direct transfer of ammonia from fungal to plant cells. This presents a new perspective on nitrogen transfer at the mycorrhizal interface, which is discussed here in light of recent progress made in characterizing a large array of membrane proteins that could fulfil the function of transporting ammonia.
Collapse
Affiliation(s)
- Michel Chalot
- Université Henri Poincaré, Nancy I, Faculté des Sciences et Techniques, IFR 110 Génomique, Ecophysiologie et Ecologie fonctionnelles, Vandoeuvre-les-Nancy Cedex, France.
| | | | | |
Collapse
|
20
|
van Maris AJA, Konings WN, van Dijken JP, Pronk JT. Microbial export of lactic and 3-hydroxypropanoic acid: implications for industrial fermentation processes. Metab Eng 2005; 6:245-55. [PMID: 15491854 DOI: 10.1016/j.ymben.2004.05.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2004] [Indexed: 11/17/2022]
Abstract
Lactic acid and 3-hydroxypropanoic acid are industrially relevant microbial products. This paper reviews the current knowledge on export of these compounds from microbial cells and presents a theoretical analysis of the bioenergetics of different export mechanisms. It is concluded that export can be a key constraint in industrial production, especially under the conditions of high product concentration and low extracellular pH that are optimal for recovery of the undissociated acids. Under these conditions, the metabolic energy requirement for product export may equal or exceed the metabolic energy yield from product formation. Consequently, prolonged product formation at low pH and at high product concentrations requires the involvement of alternative, ATP-yielding pathways to sustain growth and maintenance processes, thereby reducing the product yield on substrate. Research on export mechanisms and energetics should therefore be an integral part of the development of microbial production processes for these and other weak acids.
Collapse
Affiliation(s)
- Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, NL-2628 BC Delft, The Netherlands
| | | | | | | |
Collapse
|
21
|
Papagianni M, Mattey M. Modeling the mechanisms of glucose transport through the cell membrane of Aspergillus niger in submerged citric acid fermentation processes. Biochem Eng J 2004. [DOI: 10.1016/j.bej.2004.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Mennink-Kersten MASH, Donnelly JP, Verweij PE. Detection of circulating galactomannan for the diagnosis and management of invasive aspergillosis. THE LANCET. INFECTIOUS DISEASES 2004; 4:349-57. [PMID: 15172343 DOI: 10.1016/s1473-3099(04)01045-x] [Citation(s) in RCA: 361] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The availability of the Platelia Aspergillus, a sandwich ELISA kit that detects circulating galactomannan, has been a major advance for managing patients at risk for invasive aspergillosis because of the early detection of the antigen. The assay is now widely used throughout the world, including the USA. Although initial studies that assessed the performance characteristics of this assay reported high sensitivity and specificity, more recent studies show significant variation in performance. The causes of this variability are multifactorial and, in large part, cannot be explained because there is insufficient understanding of the kinetics of galactomannan in vivo. We explored some of the factors that affect the release of the aspergillus antigen that bears the epitope that reacts with the monoclonal antibody used in the ELISA, its leakage from the site of infection into the blood, and its binding to substances present in the blood. Factors that affect the detection of antigen in blood are also discussed, most notably the pretreatment procedure aimed at liberating the antigen from immune complexes. Understanding the biology of galactomannan release by aspergillus will greatly enhance our understanding of the kinetics of this and other surrogate markers and allow their optimum use in the management of invasive aspergillosis.
Collapse
|
23
|
Chelico L, Khachatourians GG. Permeabilization of Beauveria bassianablastospores for in situ enzymatic assays. Mycologia 2003. [DOI: 10.1080/15572536.2004.11833056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - George G. Khachatourians
- Department of Applied Microbiology and Food Science, College of Agriculture, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A8
| |
Collapse
|
24
|
Hesse SJA, Ruijter GJG, Dijkema C, Visser J. Intracellular pH homeostasis in the filamentous fungus Aspergillus niger. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3485-94. [PMID: 12135488 DOI: 10.1046/j.1432-1033.2002.03042.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intracellular pH homeostasis in the filamentous fungus Aspergillus niger was measured in real time by 31P NMR during perfusion in the NMR tube of fungal biomass immobilized in Ca2+-alginate beads. The fungus maintained constant cytoplasmic pH (pH(cyt)) and vacuolar pH (pH(vac)) values of 7.6 and 6.2, respectively, when the extracellular pH (pH(ex)) was varied between 1.5 and 7.0 in the presence of citrate. Intracellular metabolism did not collapse until a Delta pH over the cytoplasmic membrane of 6.6-6.7 was reached (pH(ex) 0.7-0.8). Maintenance of these large pH differences was possible without increased respiration compared to pH(ex) 5.8. Perfusion in the presence of various hexoses and pentoses (pH(ex) 5.8) revealed that the magnitude of Delta pH values over the cytoplasmic and vacuolar membrane could be linked to the carbon catabolite repressing properties of the carbon source. Also, larger Delta pH values coincided with a higher degree of respiration and increased accumulation of polyphosphate. Addition of protonophore (carbonyl cyanide m-chlorophenylhydrazone, CCCP) to the perfusion buffer led to decreased ATP levels, increased respiration and a partial (1 microm CCCP), transient (2 microm CCCP) or permanent (10 microm CCCP) collapse of the vacuolar membrane Delta pH. Nonlethal levels of the metabolic inhibitor azide (N3-, 0.1 mm) caused a transient decrease in pH(cyt) that was closely paralleled by a transient vacuolar acidification. Vacuolar H+ influx in response to cytoplasmic acidification, also observed during extreme medium acidification, indicates a role in pH homeostasis for this organelle. Finally, 31P NMR spectra of citric acid producing A. niger mycelium showed that despite a combination of low pH(ex) (1.8) and a high acid-secreting capacity, pH(cyt) and pH(vac) values were still well maintained (pH 7.5 and 6.4, respectively).
Collapse
|
25
|
Javelle A, Rodríguez-Pastrana BR, Jacob C, Botton B, Brun A, André B, Marini AM, Chalot M. Molecular characterization of two ammonium transporters from the ectomycorrhizal fungus Hebeloma cylindrosporum. FEBS Lett 2001; 505:393-8. [PMID: 11576535 DOI: 10.1016/s0014-5793(01)02802-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heterologous expression of the yeast triple Mep mutant has enabled the first molecular characterization of AMT/MEP family members in an ectomycorrhizal fungus. External hyphae, which play a key role in nitrogen nutrition of trees, are considered as the absorbing structure of the ectomycorrhizal symbiosis and therefore molecular studies on ammonium transport in hyphae are urgently needed. The kinetic properties of AMT2 and AMT3 from Hebeloma cylindrosporum were studied in Saccharomyces cerevisiae. Expression of HcAmts in the yeast triple Mep mutant restored ammonium retention within cells. The HcAmts did not complement the ammonium sensing defect phenotype of Mep2Delta cells during pseudohyphal differentiation. Northern blot analysis in H. cylindrosporum showed that the HcAMTs were up-regulated upon nitrogen deprivation and down-regulated by ammonium.
Collapse
Affiliation(s)
- A Javelle
- Université Henri Poincaré, Nancy I, UMR INRA/UHP 1136 Interactions Arbres Micro-organismes, Vandoeuvre-les-Nancy, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Valdez-Taubas J, Diallinas G, Scazzocchio C, Rosa AL. Protein expression and subcellular localization of the general purine transporter UapC from Aspergillus nidulans. Fungal Genet Biol 2000; 30:105-13. [PMID: 11017766 DOI: 10.1006/fgbi.2000.1197] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The uapC gene of Aspergillus nidulans belongs to a family of nucleobase-specific transporters conserved in prokaryotic and eucaryotic organisms. We report the use of immunological and green fluorescent protein based strategies to study protein expression and subcellular distribution of UapC. A chimeric protein containing a plant-adapted green fluorescent protein (sGFP) fused to the C-terminus of UapC was shown to be functional in vivo, as it complements a triple mutant (i.e., uapC(-) uapA(-) azgA(-)) unable to grow on uric acid as the sole nitrogen source. UapC-GFP is located in the plasma membrane and, secondarily, in internal structures observed as fluorescent dots. A strong correlation was found between cellular levels of UapC-GFP fluorescence and known patterns of uapC gene expression. This work represents the first in vivo study of protein expression and subcellular localization of a filamentous fungal nucleobase transporter.
Collapse
Affiliation(s)
- J Valdez-Taubas
- Departamento de Química Biológica (CIQUIBIC-CONICET), Universidad de Nacional de Córdoba, Argentina
| | | | | | | |
Collapse
|
27
|
Blaudez D, Botton B, Chalot M. Effects of heavy metals on nitrogen uptake by Paxillus involutus and mycorrhizal birch seedlings. FEMS Microbiol Ecol 2000; 33:61-67. [PMID: 10922504 DOI: 10.1111/j.1574-6941.2000.tb00727.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The effects of the heavy metals Cu, Cd, Ni, Pb and Zn on [(14)C]methylamine and [(14)C]aminoisobutyric acid uptake were studied in the free-living fungus Paxillus involutus and in mycorrhizal and non-mycorrhizal birch roots. The uptake of both N sources by P. involutus was inhibited by the five metals tested. However, Cu(2+) and Pb(2+) had a greater inhibitory effect. Non-competitive inhibitions were determined between heavy metals and [(14)C]methylamine uptake. [(14)C]Methylamine uptake was reduced by one third by 2 µM Cd(2+) and Cu(2+) in non-mycorrhizal roots, whereas that of mycorrhizal roots was not affected. However, it was reduced by 30 to 80% by 200 µM Cd(2+) and Cu(2+) irrespective of the mycorrhizal status. [(14)C]Aminoisobutyric acid uptake in mycorrhizal roots was not significantly affected by Cd(2+) and Cu(2+), whereas that of non-mycorrhizal roots was decreased by 77% at 200 µM Cu(2+). [(14)C]Aminoisobutyric acid uptake was 4.5 to 6 fold higher in mycorrhizal roots, compared with non-mycorrhizal roots, even under metal exposure. The high efficiency of N acquisition by mycorrhizal birch seedlings under metal exposure might be regarded as a mechanism of stress avoidance.
Collapse
Affiliation(s)
- D Blaudez
- University Henri Poincaré Nancy I, Faculty of Sciences, Laboratory of Forest Biology, UA INRA 977, P.O. Box 239, 54506 Cedex, Vandoeuvre, France
| | | | | |
Collapse
|
28
|
Blaudez D, Botton B, Chalot M. Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 5):1109-1117. [PMID: 10832638 DOI: 10.1099/00221287-146-5-1109] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus were investigated using radiotracer flux analyses. Concentration-dependent Cd2+-uptake kinetics were characterized by a smooth, non-saturating curve that could be dissected into linear and saturable components. The linear-uptake kinetic component was interpreted as representing binding of Cd to apoplastic components, whereas the remaining saturable component was the result of carrier-mediated transport across the plasma membrane. Cell-wall-bound Cd was almost completely removed during desorption from cell-wall preparations. Cd2+ desorption from intact mycelium was found to be a function of time involving three compartments corresponding in series to cell wall (50%), cytoplasm (30%) and vacuole (20%), when mycelia were exposed to a 0.05 microM Cd concentration. At 4 degrees C, most of the Cd recovered was due to the cell-wall-bound fraction, suggesting that transport across the plasma membrane is a metabolically mediated process. Carbonyl cyanide m-chlorophenylhydrazone (CCCP) inhibited Cd accumulation in P. involutus mycelia by up to 28%, which indicates that transport of Cd2+ was partially dependent on the membrane potential. Cd2+ uptake into symplasm is linked to Ca2+ transport, as revealed by the inhibition of Cd accumulation by the Ca2+ ionophore A23187. The present work demonstrates the ability of the ectomycorrhizal fungus P. involutus to take up and further accumulate Cd in different compartments. Binding of Cd onto cell walls and accumulation of Cd in the vacuolar compartment may be regarded as two essential metal-detoxification mechanisms. These data represent a first step towards the understanding of metal-tolerance mechanisms in mycorrhizal fungi.
Collapse
Affiliation(s)
- Damien Blaudez
- University Henri Poincaré Nancy I, Faculty of Sciences, Laboratory of Forest Biology, UA INRA 977, BP 239, 54506 Vandœuvre Cedex, France1
| | - Bernard Botton
- University Henri Poincaré Nancy I, Faculty of Sciences, Laboratory of Forest Biology, UA INRA 977, BP 239, 54506 Vandœuvre Cedex, France1
| | - Michel Chalot
- University Henri Poincaré Nancy I, Faculty of Sciences, Laboratory of Forest Biology, UA INRA 977, BP 239, 54506 Vandœuvre Cedex, France1
| |
Collapse
|
29
|
Wayman FM, Mattey M. Simple diffusion is the primary mechanism for glucose uptake during the production phase of the Aspergillus niger citric acid process. Biotechnol Bioeng 2000; 67:451-6. [PMID: 10620760 DOI: 10.1002/(sici)1097-0290(20000220)67:4<451::aid-bit8>3.0.co;2-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Models for the known glucose transporters in Aspergillus niger and for simple diffusion of glucose through the hyphal membrane were prepared. The results from the models were compared with fermentation data from published studies on citric acid. It was found that the purely physical and uncontrolled process of diffusion could explain the specific rate of glucose uptake observed during the production phase in several different types of fermentation.
Collapse
Affiliation(s)
- F M Wayman
- Department of Bioscience and Biotechnology, University of Strathclyde, Royal College, George Street, Glasgow G1 1XW, UK
| | | |
Collapse
|
30
|
Javelle A, Chalot M, Söderström B, Botton B. Ammonium and methylamine transport by the ectomycorrhizal fungus Paxillus involutus and ectomycorrhizas. FEMS Microbiol Ecol 1999; 30:355-366. [PMID: 10568844 DOI: 10.1111/j.1574-6941.1999.tb00663.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Using [(14)C]methylamine as an analogue of ammonium, the kinetics and the energetics of NH(4)(+) transport were studied in the ectomycorrhizal fungus, Paxillus involutus (Batsch) Fr. The apparent half-saturation constant (K(m)) and the maximum uptake rate (V(max)) for the carrier-mediated transport derived from the Eadie-Hofstee transformation were 180 µM and 380 nmol (mg dry wt)(-1) min(-1,) respectively. Both pH dependence and inhibition by protonophores indicate that methylamine transport in P. involutus was dependent on the electrochemical H(+) gradient. Both long-term and short-term uptake experiments were consistent with regulation of ammonium/methylamine transport processes by the presence of an organic nitrogen source. Analysis of methylamine uptake by different P. involutus isolates revealed no obvious trend in the uptake capacities in relation to N deposition at the collection site. Kinetic parameters were determined in P. involutus/Betula pendula (Roth.) axenic association and in detached mycorrhizal roots isolated from forest sites. Enhanced methylamine uptake in the presence of the fungal symbiont was demonstrated. Homogeneous V(max) values were found for axenic and detached mycorrhizas, whereas K(m) values showed greater variations.
Collapse
Affiliation(s)
- A Javelle
- Laboratory of Forest Biology, U.A. INRA 977, University Henri Poincaré, Nancy I, Faculty of Sciences, F-54506, Vandoeuvre-Les-Nancy, France
| | | | | | | |
Collapse
|
31
|
Papagianni M, Mattey M, Kristiansen B. The influence of glucose concentration on citric acid production and morphology of Aspergillus niger in batch and culture. Enzyme Microb Technol 1999. [DOI: 10.1016/s0141-0229(99)00102-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Kersten MA, Arninkhof MJ, Op den Camp HJ, Van Griensven LJ, van der Drift C. Transport of amino acids and ammonium in mycelium of Agaricus bisporus. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1428:260-72. [PMID: 10434044 DOI: 10.1016/s0304-4165(99)00093-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mycelium of Agaricus bisporus took up methylamine (MA), glutamate, glutamine and arginine by high-affinity transport systems following Michaelis-Menten kinetics. The activities of these systems were influenced by the nitrogen source used for mycelial growth. Moreover, MA, glutamate and glutamine uptakes were derepressed by nitrogen starvation, whereas arginine uptake was repressed. The two ammonium-specific transport systems with different affinities and capacities were inhibited by NH(+)(4), with a K(i) of 3.7 microM for the high-velocity system. The K(m) values for glutamate, glutamine and arginine transport were 124, 151 and 32 microM, respectively. Inhibition of arginine uptake by lysine and histidine showed that they are competitive inhibitors. MA, glutamate and glutamine uptake was inversely proportional to the intracellular NH(+)(4) concentration. Moreover, increase of the intracellular NH(+)(4) level caused by PPT (DL-phosphinotricin) resulted in an immediate cessation of MA, glutamine and glutamate uptake. It seems that the intracellular NH(+)(4) concentration regulates its own influx by feedback-inhibition of the uptake system and probably also its efflux which becomes apparent when mycelium is grown on protein. Addition of extracellular NH(+)(4) did not inhibit glutamine uptake, suggesting that NH(+)(4) and glutamine are equally preferred nitrogen sources. The physiological importance of these uptake systems for the utilization of nitrogen compounds by A. bisporus is discussed.
Collapse
Affiliation(s)
- M A Kersten
- Department of Microbiology and Evolutionary Biology, Faculty of Science, University of Nijmegen, Toernooiveld 1, NL-6525 ED, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Lakatos B, Simkovic M, Betina V, Varecka L. Properties of uracil transport by vegetative mycelium of Trichoderma viride. FEMS Microbiol Lett 1999; 171:161-5. [PMID: 10077840 DOI: 10.1111/j.1574-6968.1999.tb13427.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The transport of radioactively labelled uracil into submerged mycelium of T. viride was measured by means of a membrane filtration technique. It was found to be time-dependent (up to 90 min) and concentration-dependent (up to 8 mmol l-1). Its concentration dependence was biphasic and consisted from the saturatable part (at the uracil concentration below 0.2 mmol l-1) with KM = 0.08 +/- 0.02 mmol l-1 and Vmax = 1.74 +/- 0.3 nmol (mg dry wt.)-1 h-1, and from the region at higher uracil concentration which showed only a weak saturatability with the substrate. The transport measured in the saturatable part of the curve was also pH- and temperature-dependent. The optimal pH was between 5.4 and 6.4 and the optimal temperature was at 37 degrees C. The activation energy of 54 kJ mol-1 and the temperature quotient of Q10 = 2.1 could be calculated from the temperature dependence. The entry of uracil was in part inhibited by nucleobases and their analogues, nucleosides, nucleotides and amino acids. The inhibitors had similar inhibitory efficiency about 50% at 0.2 mmol l-1. 3,3',4',5-tetrachlorosalicylanilide (TCS), the uncoupling agent, significantly inhibited the uracil transport, but its inhibitory efficiency decreased upon increasing the uracil concentration. Ionophore antibiotics valinomycin and monensin also inhibited the uracil transport. Inhibitors of RNA-polymerase, rifamycin and rifampicin were without effect. The results suggest that at low uracil concentrations (below 0.2 mmol l-1), its transport is mediated by a carrier and is driven by the electrochemical potential of protons. At higher uracil concentrations, the transport may be driven by the concentration difference of uracil with the contribution of the protonmotive force. It is feasible that inhibitors of uracil transport tested exert their inhibition by the dissipation of the driving force rather than by the direct competition with the substrate-binding site.
Collapse
Affiliation(s)
- B Lakatos
- Department of Biochemistry and Microbiology, Slovak University of Technology, Bratislava, Slovak Republic
| | | | | | | |
Collapse
|
35
|
Chalot M, Brun A. Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol Rev 1998; 22:21-44. [PMID: 9640645 DOI: 10.1111/j.1574-6976.1998.tb00359.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Ectomycorrhizal fungi are symbiotically associated microorganisms which ecological importance has been repeatedly demonstrated. There has been a considerable amount of research aimed at assessing the ability of ectomycorrhizal fungi and ectomycorrhizas to utilize organic nitrogen sources. The fate of soil proteins, peptides and amino acids has been studied from a number of perspectives. Exocellular hydrolytic enzymes have been detected and characterized in a number of ectomycorrhizal and ericoid fungi. Studies on amino acid transport through the plasma membrane have demonstrated the ability of ectomycorrhizal fungi to take up the products of proteolytic activities. Investigations on intracellular metabolism of amino acids have allowed the identification of the metabolic pathways involved. Possible intracellular compartmentation of amino acids will be examined by immunocytochemistry. Further translocation of amino acids in symbiotic tissues has been established by experiments using isotopic tracers, although the exact nature of the nitrogenous compounds transferred at the symbiotic interface remained unclear. One of the main future challenges in the physiology of organic nitrogen acquisition is to determine the nature, the regulation and the location of N-compound transporters at the soil-fungus and fungus-plant interfaces. The molecular approach which is just emerging in this particular research area will greatly improve our knowledge. Future research should also address the extent of competition between different ectomycorrhizal species and between different microbial populations for organic nitrogen.
Collapse
Affiliation(s)
- M Chalot
- Laboratory of Forest Biology, INRA 977, University Henri Poincaré, Nancy I, Faculty of Sciences, Vandoeuvre, France.
| | | |
Collapse
|