1
|
Meng Y, Wei Y, Jin M, Zhang Y, Zhang S. Straw degradation enhanced in Thermomyces lanuginosus by transferring AgCMCase from Aspergillus glaucus. BIORESOURCE TECHNOLOGY 2024; 413:131431. [PMID: 39241812 DOI: 10.1016/j.biortech.2024.131431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Fungi play a crucial role in straw composting due to the synergistic degradation effects of their secreted lignocellulose hydrolases. An efficient straw-composting system relies on thermophilic fungi and their lignocellulose hydrolases. Thermomyces lanuginosus, a typical thermophilic fungus in compost, lacks cellulase genes. A versatile Thermomyces strain capable of degrading cellulose, T. lanuginosus M85, which grows at 67 °C, was developed and transformed using the AgCMCase of Aspergillus glaucus. The R6 transformant exhibited high-level expression of the AgCMCase. Significant quantities of active cellulase produced by R6 were detected in the cellulose fermentation broth, peaking within 6-8 days. Compost analysis indicated that R6 increased the internal compost temperatures and prolonged high-temperature durations. Correspondingly, more reducing sugars and humus were released, which could promote plants growth. In summary, a cellulase-producing strain of T. lanuginosus capable of efficiently converting straws into organic fertilizers was engineered. This innovation holds considerable promise for sustainable and circular agricultural practices.
Collapse
Affiliation(s)
- Yuan Meng
- College of Engineering, Shenyang Agricultural University, Shenyang 110866, China
| | - Yi Wei
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Meng Jin
- College of Engineering, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanli Zhang
- College of Engineering, Shenyang Agricultural University, Shenyang 110866, China
| | - Shihong Zhang
- College of Engineering, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
2
|
Rawat M, Chauhan M, Pandey A. Extremophiles and their expanding biotechnological applications. Arch Microbiol 2024; 206:247. [PMID: 38713374 DOI: 10.1007/s00203-024-03981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
Microbial life is not restricted to any particular setting. Over the past several decades, it has been evident that microbial populations can exist in a wide range of environments, including those with extremes in temperature, pressure, salinity, and pH. Bacteria and Archaea are the two most reported types of microbes that can sustain in extreme environments, such as hot springs, ice caves, acid drainage, and salt marshes. Some can even grow in toxic waste, organic solvents, and heavy metals. These microbes are called extremophiles. There exist certain microorganisms that are found capable of thriving in two or more extreme physiological conditions simultaneously, and are regarded as polyextremophiles. Extremophiles possess several physiological and molecular adaptations including production of extremolytes, ice nucleating proteins, pigments, extremozymes and exopolysaccharides. These metabolites are used in many biotechnological industries for making biofuels, developing new medicines, food additives, cryoprotective agents etc. Further, the study of extremophiles holds great significance in astrobiology. The current review summarizes the diversity of microorganisms inhabiting challenging environments and the biotechnological and therapeutic applications of the active metabolites obtained as a response to stress conditions. Bioprospection of extremophiles provides a progressive direction with significant enhancement in economy. Moreover, the introduction to omics approach including whole genome sequencing, single cell genomics, proteomics, metagenomics etc., has made it possible to find many unique microbial communities that could be otherwise difficult to cultivate using traditional methods. These findings might be capable enough to state that discovery of extremophiles can bring evolution to biotechnology.
Collapse
Affiliation(s)
- Manvi Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Mansi Chauhan
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Anita Pandey
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
3
|
Yang Y, Zhang C, Lu H, Wu Q, Wu Y, Li W, Li X. Improvement of thermostability and catalytic efficiency of xylanase from Myceliophthora thermophilar by N-terminal and C-terminal truncation. Front Microbiol 2024; 15:1385329. [PMID: 38659990 PMCID: PMC11039872 DOI: 10.3389/fmicb.2024.1385329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Extracting xylanase from thermophilic filamentous fungi is a feasible way to obtain xylanase with good thermal stability. Methods The transcriptomic data of Myceliophthora thermophilic destructive ATCC42464 were differentially expressed and enriched. By comparing the sequences of Mtxylan2 and more than 10 xylanases, the N-terminal and C-terminal of Mtxylan2 were truncated, and three mutants 28N, 28C and 28NC were constructed. Results and discussion GH11 xylan Mtxylan2 was identified by transcriptomic analysis, the specific enzyme activity of Mtxylan2 was 104.67 U/mg, and the optimal temperature was 65°C. Molecular modification of Mtxylan2 showed that the catalytic activity of the mutants was enhanced. Among them, the catalytic activity of 28C was increased by 9.3 times, the optimal temperature was increased by 5°C, and the residual enzyme activity remained above 80% after 30 min at 50-65°C, indicating that redundant C-terminal truncation can improve the thermal stability and catalytic performance of GH11 xylanase.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Chengnan Zhang
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing, China
| | - Hongyun Lu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - QiuHua Wu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Yanfang Wu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Weiwei Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Xiuting Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
4
|
Wang Y, Wei Y, Zhou K, Gao X, Chang Y, Zhang K, Deng J, Zhan Y, Li J, Li R, Li J, Xu Z. Regulating pH and Phanerochaete chrysosporium inoculation improved the humification and succession of fungal community at the cooling stage of composting. BIORESOURCE TECHNOLOGY 2023:129291. [PMID: 37295477 DOI: 10.1016/j.biortech.2023.129291] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
This study aimed to explore the effect of regulating pH and Phanerochaete chrysosporium inoculation at the cooling stage of composting on the lignocellulose degradation, humification process and related precursors as well as fungal community for secondary fermentation. Results showed that composting with P. chrysosporium inoculation and pH regulation (T4) had 58% cellulose decomposition, 73% lignin degradation and improved enzyme activities for lignin decomposition. There was 81.98% increase of humic substance content and more transformation of polyphenols and amino acids in T4 compared to control. Inoculating P. chrysosporium affected the fungal community diversity, and regulating pH helped to increase the colonization of P. chrysosporium. Network analysis showed that the network complexity and synergy between microorganisms was improved in T4. Correlation and Random Forest analysis suggested that enriched Phanerochaete and Thermomyces in the mature stage of T4 were key taxa for lignocellulose degradation, and humic acid formation by accumulating precursors.
Collapse
Affiliation(s)
- Yuyun Wang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yuquan Wei
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Kaiyun Zhou
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Xin Gao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Yuan Chang
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Kui Zhang
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Jie Deng
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yabin Zhan
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
| | - Jun Li
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Ruoqi Li
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Ji Li
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Zhi Xu
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
5
|
Ghattavi S, Homaei A. Marine enzymes: Classification and application in various industries. Int J Biol Macromol 2023; 230:123136. [PMID: 36621739 DOI: 10.1016/j.ijbiomac.2023.123136] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Oceans are regarded as a plentiful and sustainable source of biological compounds. Enzymes are a group of marine biomaterials that have recently drawn more attention because they are produced in harsh environmental conditions such as high salinity, extensive pH, a wide temperature range, and high pressure. Hence, marine-derived enzymes are capable of exhibiting remarkable properties due to their unique composition. In this review, we overviewed and discussed characteristics of marine enzymes as well as the sources of marine enzymes, ranging from primitive organisms to vertebrates, and presented the importance, advantages, and challenges of using marine enzymes with a summary of their applications in a variety of industries. Current biotechnological advancements need the study of novel marine enzymes that could be applied in a variety of ways. Resources of marine enzyme can benefit greatly for biotechnological applications duo to their biocompatible, ecofriendly and high effectiveness. It is beneficial to use the unique characteristics offered by marine enzymes to either develop new processes and products or improve existing ones. As a result, marine-derived enzymes have promising potential and are an excellent candidate for a variety of biotechnology applications and a future rise in the use of marine enzymes is to be anticipated.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
6
|
Cai R, Cui X, Zhang S, Xu C. Effects of Regular Water Replenishment on Enzyme Activities and Fungal Metabolic Function of Sheep Manure Composting on the Qinghai-Tibet Plateau. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12143. [PMID: 36231444 PMCID: PMC9566448 DOI: 10.3390/ijerph191912143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The dry climate characteristics of the Qinghai-Tibet Plateau will seriously affect microbial metabolism during composting. In this study, we aimed to investigate the effects of regular water supplementation on the fungal and enzymatic activities of sheep manure composting in the Qinghai-Tibet Plateau. The experiment set up the treatments of water replenishment once every 7 days(T2) and 3.5 days (T3) days, and no water supplementation was used as the control (T1). The results showed that regular water supplementation increased the activities of various enzymes during composting, and the activities of protease, cellulase, peroxidase and polyphenol oxidase in T3 were higher than those in T2. Regular water supplementation increased the relative abundance of Remersonia and Mycothermus, which were significantly positively correlated with the germination index, and degradation of organic components. Regular water supplementation could enrich fungi carbohydrate, protein, and nucleotide metabolisms, and T3 had a better effect. A redundancy analysis showed that environmental factors could significantly affect the fungal community; among them, moisture content (76.9%, p = 0.002) was the greatest contributor. In conclusion, regular water supplementation can improve the key enzyme activities and fungal metabolic function of sheep manure composting, and water replenishment once every 3.5 days had the best effect.
Collapse
|
7
|
Kochhar N, I․K K, Shrivastava S, Ghosh A, Rawat VS, Sodhi KK, Kumar M. Perspectives on the microorganism of extreme environments and their applications. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100134. [PMID: 35909612 PMCID: PMC9325743 DOI: 10.1016/j.crmicr.2022.100134] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Extremophiles are organisms that can survive and thrive in conditions termed as "extreme" by human beings. Conventional methods cannot be applied under extreme conditions like temperature and pH fluctuations, high salinity, etc. for a variety of reasons. Extremophiles can function and are adapted to thrive in these environments and are sustainable, cheaper, and efficient, therefore, they serve as better alternatives to the traditional methods. They adapt to these environments with biochemical and physiological changes and produce products like extremolytes, extremozymes, biosurfactants, etc., which are found to be useful in a wide range of industries like sustainable agriculture, food, cosmetics, and pharmaceuticals. These products also play a crucial role in bioremediation, production of biofuels, biorefinery, and astrobiology. This review paper comprehensively lists out the current applications of extremophiles and their products in various industries and explores the prospects of the same. They help us understand the underlying basis of biological mechanisms exploring the boundaries of life and thus help us understand the origin and evolution of life on Earth. This helps us in the research for extra-terrestrial life and space exploration. The structure and biochemical properties of extremophiles along with any possible long-term effects of their applications need to be investigated further.
Collapse
Affiliation(s)
- Nikita Kochhar
- Department of Zoology, Hindu College, University of Delhi, Delhi-110007, India
| | - Kavya I․K
- Department of Zoology, Hindu College, University of Delhi, Delhi-110007, India
| | | | - Anshika Ghosh
- Department of Zoology, Hindu College, University of Delhi, Delhi-110007, India
| | | | - Kushneet Kaur Sodhi
- Department of Zoology, Hansraj College, University of Delhi, Delhi-110007, India
- Department of Zoology, University of Delhi, Delhi-110007, India
| | - Mohit Kumar
- Department of Zoology, Hindu College, University of Delhi, Delhi-110007, India
- Department of Zoology, University of Delhi, Delhi-110007, India
| |
Collapse
|
8
|
Liu D, Xu Z, Li J, Liu Q, Yuan Q, Guo Y, Ma H, Tian C. Reconstruction and analysis of genome-scale metabolic model for thermophilic fungus Myceliophthora thermophila. Biotechnol Bioeng 2022; 119:1926-1937. [PMID: 35257374 DOI: 10.1002/bit.28080] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 11/11/2022]
Abstract
Myceliophthora thermophila, a thermophilic fungus that can degrade and utilize all major polysaccharides in plant biomass, has great potential in biotechnological industries. Here, the first manually curated genome-scale metabolic model iDL1450 for M. thermophila was reconstructed using an auto-generating pipeline with thorough manual curation. The model contains 1450 genes, 2592 reactions and 1784 unique metabolites. High accuracy was shown in predictions related to carbon and nitrogen source utilization based on data obtained from Biolog experiments. Besides, metabolism profiles were analyzed using iDL1450 integrated with transcriptomics data of M. thermophila at various growth temperatures. The refined model provides new insights into thermophilic fungi metabolism and sheds light on model-driven strain design to improve biotechnological applications of this thermophilic lignocellulosic fungus. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Defei Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Zixiang Xu
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.,National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Qian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Qianqian Yuan
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.,Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yanmei Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Hongwu Ma
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.,Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
9
|
Acar A, Singh D, Srivastava AK. Assessment of the ameliorative effect of curcumin on pendimethalin-induced genetic and biochemical toxicity. Sci Rep 2022; 12:2195. [PMID: 35140281 PMCID: PMC8828890 DOI: 10.1038/s41598-022-06278-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/19/2022] [Indexed: 11/21/2022] Open
Abstract
The present study aimed to assess the toxic effects of pendimethalin herbicide and protective role of curcumin using the Allium test on cytological, biochemical and physiological parameters. The effective concentration (EC50) of pendimethalin was determined at 12 mg/L by the root growth inhibition test as the concentration reducing the root length by 50%. The roots of Allium cepa L. was treated with tap water (group I), 5 mg/L curcumin (group II), 10 mg/L curcumin (group III), 12 mg/L pendimethalin (group IV), 12 mg/L pendimethalin + 5 mg/L curcumin (group V) and 12 mg/L pendimethalin + 10 mg/L curcumin (group VI). The cytological (mitotic index, chromosomal abnormalities and DNA damage), physiological (rooting percentage, root length, growth rate and weight gain) and oxidative stress (malondialdehyde level, superoxide dismutase level, catalase level and glutathione reductase level) indicators were determined after 96 h of treatment. The results revealed that pendimethalin treatment reduced rooting percentage, root length, growth rate and weight gain whereas induced chromosomal abnormalities and DNA damage in roots of A. cepa L. Further, pendimethalin exposure elevated malondialdehyde level followed by antioxidant enzymes. The activities of superoxide dismutase and catalase were up-regulated and glutathione reductase was down-regulated. The molecular docking supported the antioxidant enzymes activities result. However, a dose-dependent reduction of pendimethalin toxicity was observed when curcumin was supplied with pendimethalin. The maximum recovery of cytological, physiological and oxidative stress parameters was recorded at 10 mg/L concentration of curcumin. The correlation studies also revealed positive relation of curcumin with rooting percentage, root length, weight gain, mitotic activity and glutathione reductase enzyme level while an inverse correlation was observed with chromosomal abnormalities, DNA damage, superoxide dismutase and catalase enzyme activities, and lipid peroxidation indicating its protective effect.
Collapse
Affiliation(s)
- Ali Acar
- Department of Medical Services and Techniques, Vocational School of Health Services, Giresun University, Giresun, Turkey.
| | - Divya Singh
- Central Sericultural Research and Training Institute, Mysore, India
| | | |
Collapse
|
10
|
Trichoderma Role in Anthropogenic Pollutions Mycoremediation: Pesticides and Heavy Metals. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Meganathan B, Rathinavel T, Rangaraj S. Trends in microbial degradation and bioremediation of emerging contaminants. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Modernization and modern ways of living demands more improved products from pharmaceuticals, cosmetics, and food processing industries. Moreover, industries like pesticides, fertilizers, dyeing, paints, detergent etc., also needs improvised products as per demand. As the new product emerges, the pollutants from these industries also constitute new type of danger to the environment and serious health risks to the living organisms. These emerging contaminants (ECs) are from different category of sources such as personal care products (PCPs), pharmaceuticals (Phcs), endocrine disrupting chemicals (EDCs), etc. These ECs can easily escape from the conventional water treatment and eventually get discharged in to the surface water and thus enters in to the ground water, soil, sediments, and also into the oceans. When these contaminants emerge we also require progress in tremendous process for preventing these hazardous chemicals by effective removal and treatment. For the past 50 years, both developed and developing countries are working on this treatment process and found that Microbial degradation and bioremediation are very useful for effective treatment to prevent their emissions. This treatment can be designed for any sort of ECs since the microbial members are so versatile to redesign their metabolic pathways when subject to exposure. However, implementing bioremediation is not alone efficient to degrade ECs and hence, combination of bioremediation, nanotechnology and physical treatment method will also provide sustainable, potent and fast degradation process. In this Book Chapter, we discuss in detail about the ECs, sources of microbial degradation process and its usefulness in the bioremediation of these ECs.
Collapse
Affiliation(s)
| | | | - Suriyaprabha Rangaraj
- Department of Biotechnology , Sona College of Arts and Science , Salem 636 005 , India
| |
Collapse
|
12
|
Insights into the Lignocellulose-Degrading Enzyme System of Humicola grisea var. thermoidea Based on Genome and Transcriptome Analysis. Microbiol Spectr 2021; 9:e0108821. [PMID: 34523973 PMCID: PMC8557918 DOI: 10.1128/spectrum.01088-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Humicola grisea var. thermoidea is a thermophilic ascomycete and important enzyme producer that has an efficient enzymatic system with a broad spectrum of thermostable carbohydrate-active (CAZy) enzymes. These enzymes can be employed in lignocellulose biomass deconstruction and other industrial applications. In this work, the genome of H. grisea var. thermoidea was sequenced. The acquired sequence reads were assembled into a total length of 28.75 Mbp. Genome features correlate with what was expected for thermophilic Sordariomycetes. The transcriptomic data showed that sugarcane bagasse significantly upregulated genes related to primary metabolism and polysaccharide deconstruction, especially hydrolases, at both pH 5 and pH 8. However, a number of exclusive and shared genes between the pH values were found, especially at pH 8. H. grisea expresses an average of 211 CAZy enzymes (CAZymes), which are capable of acting in different substrates. The top upregulated genes at both pH values represent CAZyme-encoding genes from different classes, including acetylxylan esterase, endo-1,4-β-mannosidase, exoglucanase, and endoglucanase genes. For the first time, the arsenal that the thermophilic fungus H. grisea var. thermoidea possesses to degrade the lignocellulosic biomass is shown. Carbon source and pH are of pivotal importance in regulating gene expression in this organism, and alkaline pH is a key regulatory factor for sugarcane bagasse hydrolysis. This work paves the way for the genetic manipulation and robust biotechnological applications of this fungus. IMPORTANCE Most studies regarding the use of fungi as enzyme producers for biomass deconstruction have focused on mesophile species, whereas the potential of thermophiles has been evaluated less. This study revealed, through genome and transcriptome analyses, the genetic repertoire of the biotechnological relevant thermophile fungus Humicola grisea. Comparative genomics helped us to further understand the biology and biotechnological potential of H. grisea. The results demonstrate that this fungus possesses an arsenal of carbohydrate-active (CAZy) enzymes to degrade the lignocellulosic biomass. Indeed, it expresses more than 200 genes encoding CAZy enzymes when cultivated in sugarcane bagasse. Carbon source and pH are key factors for regulating the gene expression in this organism. This work shows, for the first time, the great potential of H. grisea as an enzyme producer and a gene donor for biotechnological applications and provides the base for the genetic manipulation and robust biotechnological applications of this fungus.
Collapse
|
13
|
Thermostable cellulose saccharifying microbial enzymes: Characteristics, recent advances and biotechnological applications. Int J Biol Macromol 2021; 188:226-244. [PMID: 34371052 DOI: 10.1016/j.ijbiomac.2021.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
Cellulases play a promising role in the bioconversion of renewable lignocellulosic biomass into fermentable sugars which are subsequently fermented to biofuels and other value-added chemicals. Besides biofuel industries, they are also in huge demand in textile, detergent, and paper and pulp industries. Low titres of cellulase production and processing are the main issues that contribute to high enzyme cost. The success of ethanol-based biorefinery depends on high production titres and the catalytic efficiency of cellulases functional at elevated temperatures with acid/alkali tolerance and the low cost. In view of their wider application in various industrial processes, stable cellulases that are active at elevated temperatures in the acidic-alkaline pH ranges, and organic solvents and salt tolerance would be useful. This review provides a recent update on the advances made in thermostable cellulases. Developments in their sources, characteristics and mechanisms are updated. Various methods such as rational design, directed evolution, synthetic & system biology and immobilization techniques adopted in evolving cellulases with ameliorated thermostability and characteristics are also discussed. The wide range of applications of thermostable cellulases in various industrial sectors is described.
Collapse
|
14
|
Singh B, Bala A, Anu, Alokika, Kumar V, Singh D. Biochemical properties of cellulolytic and xylanolytic enzymes from Sporotrichum thermophile and their utility in bioethanol production using rice straw. Prep Biochem Biotechnol 2021; 52:197-209. [PMID: 34010094 DOI: 10.1080/10826068.2021.1925911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Production of cellulolytic and xylanolytic enzymes by Sporotrichum thermophile was enhanced using response surface methodology in solid-state fermentation (SSF) using wheat straw and cotton oil cake. Cellulolytic and xylanolytic enzymes were partially purified by ammonium sulfate precipitation followed by ion exchange and gel filtration chromatographic techniques. Xylanase of S. thermophile is neutral xylanase displaying optimal activity at 60 °C with Km and Vmax values of 0.2 mg/mL and 238.05 µmole/min, respectively. All cellulases produced by the thermophilic mold showed optimal activity at pH 5.0 and 60 °C with Km values of 0.312 mg/mL, 0.113 mg/mL, and 0.285 mM for carboxymethyl cellulase (CMCase), filter paper cellulase (FPase), and β-glucosidase, respectively and while Vmax values were 181.81, 138.88, and 66.67 µmole/min, respectively. The presence of various metal ions (Ca2+ and Co2+), chemical reagent (glutaraldehyde), and surfactants (Tween 80 and Triton X-100) significantly improved the activities of all enzymes. All the enzymes showed high storage stability under low temperature (-20 and 4 °C) conditions. Cellulolytic and xylanolytic enzymes resulted in enhanced liberation of reducing sugars (356.34 mg/g) by hydrolyzing both cellulosic and hemicellulosic fractions of ammonia-pretreated rice straw as compared to other pretreatment methods used in the study. Fermentation of enzymatic hydrolysate resulted in the formation of 28.88 and 27.18 g/L of bioethanol in separate hydrolysis and fermentation (SHF) process by Saccharomyces cerevisiae and Pichia stipitis, respectively. Therefore, cellulolytic and xylanolytic enzymes of S. thermophile exhibited ideal properties of biocatalysts useful in the saccharification of cellulosic and hemicellulosic fractions of rice straw for the production of bioethanol.
Collapse
Affiliation(s)
- Bijender Singh
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, India.,Department of Biotechnology, Central University of Haryana, Mahendergarh, India
| | - Anju Bala
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Anu
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Alokika
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| | - Davender Singh
- Department of Physics, RPS Degree College, Mahendergarh, India
| |
Collapse
|
15
|
Diversity and composition of the North Sikkim hot spring mycobiome using a culture-independent method. Folia Microbiol (Praha) 2021; 66:457-468. [PMID: 33755859 DOI: 10.1007/s12223-021-00859-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Fungi are considered to be the most resilient and economically important microbial community that can easily survive and optimally grow under a wide range of growth conditions. Thermophilic fungi from the geothermal sources have been less pondered upon and lie unexplored. Here, a microbiome approach was conducted to understand the concealed world of the environmental mycobiota from the two hot springs of North Sikkim district located in North-east India. The solfataric muds from the hot springs were analyzed. In both the samples, on the basis of genus level classification, genus Fusarium had the highest abundance followed by Colletotrichum, Pochonia, Pyricularia, Neurospora, etc. Analyzing the predicted genes, the functional proteins of New Yume Samdung mycobiome were found to be dominated by the genera Fusarium (22%), Trichoderma (12%), and Aspergillus (11%), whereas in the case of Old Yume Samdung, it was dominated by the genera Aspergillus (11%), Saccharomyces (6%), and Fusarium (5%). Interestingly, in the studied mycobiome, environmental yeasts were also detected. From the functional metagenomics, sulfate adenylatetransferase (SAT) proteins for sulfur assimilation were found in some of the fungal reads. Toxin protein reads such as AM-toxin biosynthesis proteins, AF-toxin biosynthesis proteins, Gliotoxin biosynthesis proteins, and aflatoxin biosynthesis proteins were detected in the mycobiomes.
Collapse
|
16
|
Feng J, Wang B, Zhang D, Chu S, Zhi Y, Hayat K, Wang J, Chen X, Hui N, Zhou P. Streptomyces griseorubens JSD-1 promotes rice straw composting efficiency in industrial-scale fermenter: Evaluation of change in physicochemical properties and microbial community. BIORESOURCE TECHNOLOGY 2021; 321:124465. [PMID: 33296775 DOI: 10.1016/j.biortech.2020.124465] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The influence of Streptomyces griseorubens JSD-1 on microbial community succession during rice straw composting in an industrial-scale fermenter was assessed by high-throughput sequencing technology. Compared to uninoculated control, JSD-1 inoculation effectively raised composting temperature and improved other maturation indices. JSD-1 inoculation increased the relative abundance of Actinobacteria in thermophilic phase and Firmicutes in cooling and maturation phases. At the genus level, JSD-1 inoculation increased the abundance of organic matter degrading bacteria (Virgibacillus) and lignocellulose degrading fungi (Chaetomium and Melanocarpus); while it decreased the abundance of pathogenic fungi (Geosmithia and Acremonium). Moreover, JSD-1 changed microbes that differed significantly and altered the key connecting nodes of microbial community. Organic matter and temperature were the most significant indices that had mutual influences on bacterial and fungal communities, respectively. This study demonstrated that JSD-1 was an effective inoculant on rice straw fast composting in the industrial-scale fermenter.
Collapse
Affiliation(s)
- Jie Feng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yuee Zhi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Juncai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
17
|
Zhao C, Su W, Mu Y, Jiang L, Mu Y. Correlations between microbiota with physicochemical properties and volatile flavor components in black glutinous rice wine fermentation. Food Res Int 2020; 138:109800. [PMID: 33288182 DOI: 10.1016/j.foodres.2020.109800] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
Black glutinous rice wine (BGRW) is a popular traditional Chinese rice wine; however, the flavors profiles associated with microbiota changes during its fermentation have not yet been evaluated. In this study, we explored the correlations between microbial communities with physicochemical properties and flavor components during BGRW fermentation. High-throughput sequencing was used to identify the microbial community composition of BGRW at different fermentation stages, and physicochemical properties and volatile flavor compounds (VFCs) were identified via fermentation features testing and headspace solid phase microextraction gas chromatography mass spectrometry. First, we revealed Pantoea and Kosakonia predominated bacterial genera the early stage of BGRW fermentation, Leuconostoc, Pediococcus, Bacillus, and Lactobacillus predominated bacterial genera the later stage, while Rhizopus and Saccharomyces were the predominant fungal genera throughout fermentation. Second, total sugars, titratable acids, pH, ethanol, amino acid nitrogen, and 43 VFCs were detected during fermentation. Twenty-three VFCs were differentially produced according to the linear discriminant analysis effect size method. With the increase of the fermentation time, the kinds and contents of esters and alcohols were also increased, while acids decreased. Moreover, 12 microbial genera, Lactococcus, Pediococcus, Leuconostoc, Lactobacillus, Cronobacter, Pantoea, Weissella, Enterococcus, Rhizopus, Myceliophthora, Cystofilobasidium, and Aspergillus were found to be highly correlated (|ρ| > 0.7 and P < 0.05) with physicochemical properties and VFCs, by redundancy analysis (RDA) and two-way orthogonal partial least squares (O2PLS) analysis. Ultimately, based on the results, a metabolic map of dominant genera in BGRW was established. Our findings provided detailed information on the dynamic changes of physicochemical properties and VFCs and selection of beneficial strains to improve the quality of BGRW.
Collapse
Affiliation(s)
- Chi Zhao
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang 550025, China
| | - Wei Su
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang 550025, China.
| | - Yingchun Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Li Jiang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yu Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang 550025, China
| |
Collapse
|
18
|
Meynet P, Davenport RJ, Fenner K. Understanding the Dependence of Micropollutant Biotransformation Rates on Short-Term Temperature Shifts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12214-12225. [PMID: 32897072 DOI: 10.1021/acs.est.0c04017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Temperature is a key factor that influences chemical biotransformation potential and rates, on which exposure and fate models rely to predict the environmental (micro)pollutant fate. Arrhenius-based models are currently implemented in environmental exposure assessment to adapt biotransformation rates to actual temperatures, assuming validity in the 0-30 °C range. However, evidence on how temperature shifts affect the physicochemical and microbial features in biological systems is scarce, questioning the validity of the existing modeling approaches. In this work, laboratory-scale batch assays were designed to investigate how a mixed microbial community responds to short-term temperature shifts, and how this impacts its ability to biotransform a range of structurally diverse micropollutants. Our results revealed three distinct kinetic responses at temperatures above 20 °C, mostly deviating from the classic Arrhenius-type behavior. Micropollutants with similar temperature responses appeared to undergo mostly similar initial biotransformation reactions, with substitution-type reactions maintaining Arrhenius-type behavior up to higher temperatures than oxidation-type reactions. Above 20 °C, the microbial community also showed marked shifts in both composition and activity, which mostly correlated with the observed deviations from Arrhenius-type behavior, with compositional changes becoming a more relevant factor in biotransformations catalyzed by more specific enzymes (e.g., oxidation reactions). Our findings underline the need to re-examine and further develop current environmental fate models by integrating biological aspects, to improve accuracy in predicting the environmental fate of micropollutants.
Collapse
Affiliation(s)
- Paola Meynet
- School of Engineering, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Russell J Davenport
- School of Engineering, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Kathrin Fenner
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
19
|
Dahiya S, Kumar A, Singh B. Enhanced endoxylanase production by Myceliophthora thermophila using rice straw and its synergism with phytase in improving nutrition. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Fernandes CLF, Volcão LM, Ramires PF, Moura RRD, Da Silva Júnior FMR. Distribution of pesticides in agricultural and urban soils of Brazil: a critical review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:256-270. [PMID: 31984396 DOI: 10.1039/c9em00433e] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The extensive use of pesticides leads to soil contamination and is harmful to environmental health. Brazil is considered the world's largest consumer of pesticides; however, there is no published review of the distribution and concentration of pesticides in the Brazilian soils. Thus, the objective of this study was to analyze the occurrence of pesticide residues in Brazilian soils through a systematic review of the data obtained from the official records of government agencies and scientific literature. Further, this review aims to estimate the risk quotient using the data extracted from these studies and compare it with the values from current legislation. The studies on pesticides were selected and screened, out of which 21 scientific articles were included in this review. The studies highlighted that 55 pesticides were detected in the soils in Brazil. Of these, 58% belonged to the chemical class of organochlorines and their concentration ranged from 0.0002-1243.68 mg kg-1. DDT (0.00002-1243.68 mg kg-1), HCH (0.00007-962.00 mg kg-1) and diuron (0.0031-4.16 mg kg-1) contributed to highest pesticide concentrations in soil. Residential soils had higher pesticide concentrations and greater risk factors than the agricultural soils. Moreover, 20% of the studies detected mixtures containing more than 10 types of pesticides. This study concluded that the specific scenarios evaluated by the reviewed studies do not reflect the current pesticide use and contamination in Brazil and there is a need for more information related to pesticide contamination in soils.
Collapse
Affiliation(s)
- Caroline Lopes Feijo Fernandes
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102 Bairro Centro, Rio Grande, 96200-190, Rio Grande do Sul, Brazil. and Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Laboratório de Ensaios Farmacológicos e Toxicológicos - LEFT, Av. Itália km 8 Bairro Carreiros, Rio Grande, 96203-900, Rio Grande do Sul, Brazil
| | - Lisiane Martins Volcão
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102 Bairro Centro, Rio Grande, 96200-190, Rio Grande do Sul, Brazil. and Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Laboratório de Ensaios Farmacológicos e Toxicológicos - LEFT, Av. Itália km 8 Bairro Carreiros, Rio Grande, 96203-900, Rio Grande do Sul, Brazil
| | - Paula Florêncio Ramires
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102 Bairro Centro, Rio Grande, 96200-190, Rio Grande do Sul, Brazil. and Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Laboratório de Ensaios Farmacológicos e Toxicológicos - LEFT, Av. Itália km 8 Bairro Carreiros, Rio Grande, 96203-900, Rio Grande do Sul, Brazil
| | - Renata Rodrigues De Moura
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102 Bairro Centro, Rio Grande, 96200-190, Rio Grande do Sul, Brazil. and Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Laboratório de Ensaios Farmacológicos e Toxicológicos - LEFT, Av. Itália km 8 Bairro Carreiros, Rio Grande, 96203-900, Rio Grande do Sul, Brazil
| | - Flavio Manoel Rodrigues Da Silva Júnior
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102 Bairro Centro, Rio Grande, 96200-190, Rio Grande do Sul, Brazil. and Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Laboratório de Ensaios Farmacológicos e Toxicológicos - LEFT, Av. Itália km 8 Bairro Carreiros, Rio Grande, 96203-900, Rio Grande do Sul, Brazil
| |
Collapse
|
21
|
Xie XL, Wei Y, Song YY, Pan GM, Chen LN, Wang G, Zhang SH. Genetic Analysis of Four Sexual Differentiation Process Proteins (isp4/SDPs) in Chaetomium thermophilum and Thermomyces lanuginosus Reveals Their Distinct Roles in Development. Front Microbiol 2020; 10:2994. [PMID: 31969873 PMCID: PMC6956688 DOI: 10.3389/fmicb.2019.02994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/10/2019] [Indexed: 12/29/2022] Open
Abstract
Fungal sexual development requires the involvement of a large number of functional genes. Fungal genes encoding sexual differentiation process proteins (SDPs), isps, have been known for decades. isp4/SDP and its homologs function as oligopeptide transporters (OPTs), yet their roles in reproduction are unknown. Here, we genetically analyzed all four isp4/SDP homologs in the sexual species Chaetomium thermophilum and asexual species Thermomyces lanuginosus. Using single gene deletion mutants, we found that T. lanuginosus SDP (TlSDP) participated in asexual sporulation, whereas the other homologs participated in sexual morphogenesis. In complementary tests, C. thermophilum SDPs (CtSDP1-3) restored sporulation defects in TlSDP deletion strains (ΔTlSDP), and their translated proteins, which were localized onto the cytomembrane, possessed OPT activity. Interestingly, CtSDP2 accumulated at the top of the hyphae played a distinct role in determining the sexual cycle, glutathione transport, and lifespan shortening. A unique 72nt-insertion fragment (72INS) was discovered in CtSDP2. Biological analysis of the 72INS deletion and DsRED-tagged fusion strains implied the involvement of 72INS in fungal growth and development. In contrast to TlSDP, which only contributes to conidial production, the three CtSDPs play important roles in sexual and asexual reproduction, and CtSDP2 harbors a unique functional 72INS that initiates sexual morphogenesis.
Collapse
Affiliation(s)
- Xiang-Li Xie
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yi Wei
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yan-Yue Song
- College of Plant Sciences, Jilin University, Changchun, China
| | - Guan-Ming Pan
- College of Plant Sciences, Jilin University, Changchun, China
| | - Li-Na Chen
- College of Plant Sciences, Jilin University, Changchun, China
| | - Gang Wang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
22
|
Narimani M, da Silva G. Thermal decomposition kinetics of glyphosate (GP) and its metabolite aminomethylphosphonic acid (AMPA). ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:152-160. [PMID: 31778134 DOI: 10.1039/c9em00422j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Glyphosate (GP) is a widely used herbicide worldwide, yet accumulation of GP and its main byproduct, aminomethylphosphonic acid (AMPA), in soil and water has raised concerns about its potential effects on human health. Thermal treatment, in which contaminants are vaporised and decomposed in the gas-phase, is one option for decontaminating material containing GP and AMPA, yet the thermal decomposition chemistry of these compounds remains poorly understood. Here, we have revealed the thermal decomposition mechanism of GP and AMPA in the gas phase by applying computational chemistry and reaction rate theory methods. The preferred decomposition channel for both substances involves the elimination of P(OH)3 to yield the imine N-methylene-glycine (from GP) or methanimine (from AMPA), with relatively low barrier heights (ca. 45 kcal mol-1). The half-life of GP and AMPA at 1000 K are predicted to be 0.1 and 4 ms respectively, and they should be readily destroyed via conventional incineration processes. The further decomposition of N-methylene-glycine is expected to also take place at similar temperatures, leading to N-methyl-methanimine + CO2, with a barrier height of ca. 48 kcal mol-1. The imine decomposition products of GP and AMPA are expected to react with water vapour to form simple amines and carbonyl compounds.
Collapse
Affiliation(s)
- Milad Narimani
- Department of Chemical Engineering, University of Melbourne, Victoria 3010, Australia.
| | - Gabriel da Silva
- Department of Chemical Engineering, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
23
|
Rubiano-Labrador C, Díaz-Cárdenas C, López G, Gómez J, Baena S. Colombian Andean thermal springs: reservoir of thermophilic anaerobic bacteria producing hydrolytic enzymes. Extremophiles 2019; 23:793-808. [PMID: 31555903 DOI: 10.1007/s00792-019-01132-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/13/2019] [Indexed: 11/25/2022]
Abstract
Anaerobic cultivable microbial communities in thermal springs producing hydrolytic enzymes were studied. Thermal water samples from seven thermal springs located in the Andean volcanic belt, in the eastern and central mountain ranges of the Colombian Andes were used as inocula for the growth and isolation of thermophilic microorganisms using substrates such as starch, gelatin, xylan, cellulose, Tween 80, olive oil, peptone and casamino acids. These springs differed in temperature (50-70 °C) and pH (6.5-7.5). The predominant ion in eastern mountain range thermal springs was sulphate, whereas that in central mountain range springs was bicarbonate. A total of 40 anaerobic thermophilic bacterial strains that belonged to the genera Thermoanaerobacter, Caloramator, Anoxybacillus, Caloranaerobacter, Desulfomicrobium, Geotoga, Hydrogenophilus, Desulfacinum and Thermoanaerobacterium were isolated. To investigate the metabolic potential of these isolates, selected strains were analysed for enzymatic activities to identify strains than can produce hydrolytic enzymes. We demonstrated that these thermal springs contained diverse microbial populations of anaerobic thermophilic comprising different metabolic groups of bacteria including strains belonging to the genera Thermoanaerobacter, Caloramator, Anoxybacillus, Caloranaerobacter, Desulfomicrobium, Geotoga, Hydrogenophilus, Desulfacinum and Thermoanaerobacterium with amylases, proteases, lipases, esterases, xylanases and pectinases; therefore, the strains represent a promising source of enzymes with biotechnological potential.
Collapse
Affiliation(s)
- Carolina Rubiano-Labrador
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia
- Facultad de Ciencias Básicas, Universidad Tecnológica de Bolívar, Cartagena de Indias D.T. y C., Colombia
| | - Carolina Díaz-Cárdenas
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia.
| | - Gina López
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia
| | - Javier Gómez
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia
| | - Sandra Baena
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia
| |
Collapse
|
24
|
Senik SV, Psurtseva NV, Shavarda AL, Kotlova ER. Role of lipids in the thermal plasticity of basidial fungus Favolaschia manipularis. Can J Microbiol 2019; 65:870-879. [PMID: 31398296 DOI: 10.1139/cjm-2019-0284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this study, we examined the lipid composition of two strains of the tropical basidiomycete Favolaschia manipularis (Berk.) Teng, which differ in their adaptive potential to high (35 °C) and low (5 °C) temperatures. The results suggest that adaptation to extreme temperatures involves a change in the molecular composition of sterols, in addition to other well-known mechanisms of regulating membrane thickness and fluidity, such as changes in the lipid unsaturation and in the proportion of bilayer- and non-bilayer-forming lipids. It was demonstrated for the first time that adaptation to high temperature stress in fungi is accompanied by the accumulation of 9(11)-dehydroergosterol and ergosterol peroxide. Furthermore, increased thermal plasticity correlates with high storage lipid (triglycerides) content, accumulation of phosphatidic acid in the membrane, and an equal proportion of bilayer and non-bilayer lipids in the membrane.
Collapse
Affiliation(s)
- Svetlana V Senik
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov Street, St. Petersburg 197376, Russia.,Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov Street, St. Petersburg 197376, Russia
| | - Nadezhda V Psurtseva
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov Street, St. Petersburg 197376, Russia.,Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov Street, St. Petersburg 197376, Russia
| | - Alexey L Shavarda
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov Street, St. Petersburg 197376, Russia.,Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov Street, St. Petersburg 197376, Russia
| | - Ekaterina R Kotlova
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov Street, St. Petersburg 197376, Russia.,Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov Street, St. Petersburg 197376, Russia
| |
Collapse
|
25
|
Cloning, Characterization, and Functional Expression of a Thermostable Type B Feruloyl Esterase from Thermophilic Thielavia Terrestris. Appl Biochem Biotechnol 2019; 189:1304-1317. [DOI: 10.1007/s12010-019-03065-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
|
26
|
Dahiya S, Singh B. Enhanced endoxylanase production by Myceliophthora thermophila with applicability in saccharification of agricultural substrates. 3 Biotech 2019; 9:214. [PMID: 31114738 DOI: 10.1007/s13205-019-1750-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/08/2019] [Indexed: 11/25/2022] Open
Abstract
The production of enzymes by solid-state fermentation is an interesting process and currently used worldwide as it can be carried out in solid matrix in absence of free water. In present study, Myceliophthora thermophila BJTLRMDU3 produced high titres of endoxylanase (890.55 U/g DR, dry residue) using 5 g rice straw at pH 7.0 and at 45 °C with 1:7 (w/v) solid-to-moisture ratio with inoculum rate of 12 × 106 spores/ml after 4 days in solid-state fermentation. High enzyme titre was produced after moistening the rice straw with solution containing ammonium sulphate (0.4%), K2HPO4 (1.0%), MgSO4·7H2O (0.3%), FeSO4·7H2O (0.03%) and CaCl2 (0.03%). Addition of sucrose (2% w/v) and ammonium nitrate (2% w/v) further enhanced the endoxylanase production. A high endoxylanase production was achieved at water activity (a W) of 0.95 (1639.80 U/g DR) that declined drastically below this value. Among different surfactants, Tween 20 (3% v/v) enhanced the secretion of endoxylanase (2047.91 U/g DR). Furthermore, on optimization of K2HPO4 concentration, it was found that 0.5% K2HPO4 improved (2191.28 U/g DR) endoxylanase production and overall 4.35-folds increase in production of endoxylanase was achieved after optimization of culture conditions. The enzyme has potential to liberate monomeric (xylose) as well as oligomeric (xylotiose, xylotetrose, and xylopantose) sugars from xylan. On saccharification of rice straw and corncob with endoxylanase, maximum yield of reducing sugars was 135.61 and 132.61 mg/g of substrate recorded after 48, and 36 h, respectively.
Collapse
Affiliation(s)
- Seema Dahiya
- 1Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Bijender Singh
- 1Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
- 2Department of Biotechnology, School of Interdisciplinary and Applied Life Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031 India
| |
Collapse
|
27
|
Du F, Cheng Z, Lai Z, Ruan G, Zhao C. Red-emissive nitrogen doped carbon quantum dots for highly selective and sensitive fluorescence detection of the alachlor herbicide in soil samples. NEW J CHEM 2019. [DOI: 10.1039/c9nj04232f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis of red-emissive nitrogen-doped carbon quantum dots and their applications in the highly selective and sensitive detection of the alachlor herbicide in soil samples.
Collapse
Affiliation(s)
- Fuyou Du
- College of Biological and Environmental Engineering, Changsha University
- Changsha
- China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
| | - Zhenfang Cheng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| | - Zhan Lai
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| | - Guihua Ruan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- China
| | - Chenxi Zhao
- College of Biological and Environmental Engineering, Changsha University
- Changsha
- China
| |
Collapse
|
28
|
Zbair M, Anfar Z, Ait Ahsaine H, Khallok H. Kinetics, equilibrium, statistical surface modeling and cost analysis of paraquat removal from aqueous solution using carbonated jujube seed. RSC Adv 2019; 9:1084-1094. [PMID: 35517617 PMCID: PMC9059636 DOI: 10.1039/c8ra09337g] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/13/2018] [Indexed: 11/21/2022] Open
Abstract
This paper reports the removal of paraquat from an aqueous solution using prepared carbonated jujube seed (JS/HSO-700). JS/HSO-700 was characterized by XPS, TGA, FTIR, N2 physisorption, SEM, and Raman techniques. FTIR revealed the presence of active species on the JS/HSO-700 surface. The removal rate of paraquat was investigated as a function of multiple operational factors such as contact time, adsorbent dose and solution pH. Adsorption mechanism was fully investigated based on FTIR, Raman, and BET analyses before and after adsorption. Response surface methodology modeling using central composite design was performed to statistically optimize the adsorption conditions. The experimental paraquat removal efficiency was found to be 96.7 ± 2.02%, whereas the predicted value of the model was 94.31 ± 4.43%, showing that the predicted model values are in good agreement with the experimental value. Finally, cost analysis was performed to confirm the cost of the adsorbent based on energy consumption and reagent costs. This paper reports the removal of paraquat from an aqueous solution using prepared carbonated jujube seed (JS/HSO-700).![]()
Collapse
Affiliation(s)
- Mohamed Zbair
- Laboratory of Catalysis and Corrosion of Materials
- Chouaïb Doukkali University
- Faculty of Sciences El Jadida
- El Jadida 24000
- Morocco
| | - Zakaria Anfar
- Materials and Environment Laboratory
- Ibn Zohr University
- Faculty of Sciences
- Agadir
- Morocco
| | - Hassan Ait Ahsaine
- Materials and Environment Laboratory
- Ibn Zohr University
- Faculty of Sciences
- Agadir
- Morocco
| | - Hamza Khallok
- Team of Energy, Materials and Environment
- Chemistry Department
- Chouaïb Doukkali University
- Faculty of Sciences El Jadida
- El Jadida 24000
| |
Collapse
|
29
|
Alokika, Singh D, Singh B. Utility of acidic xylanase of Bacillus subtilis subsp. subtilis JJBS250 in improving the nutritional value of poultry feed. 3 Biotech 2018; 8:503. [PMID: 30498676 DOI: 10.1007/s13205-018-1526-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022] Open
Abstract
Cane molasses has been employed as a cost-effective medium for enhanced xylanase production in submerged fermentation. Bacillus subtilis subsp. subtilis JJBS250 produced xylanase (15.16 U/ml) at pH 4.0, 35 °C and 200 rpm after 54 h using optimized basal medium by 'one variable at a time approach'. Addition of Tween 80 and PEG 4000 also enhanced xylanase production in cane molasses medium. Combined effect of yeast extract, incubation time and PEG 4000 using statistical optimization enhanced xylanase production to 38.60 U/ml, which was 2.54-fold higher than the 'one variable at a time approach'. The efficacy of xylanase from Bacillus subtilis subsp. subtilis JJBS 250 was evaluated in the improvement of poultry feed nutrition. Xylanase addition (10 IU/g feed) enhanced liberation of reducing sugars (95.540 mg/g substrate) after 48 h at 60 °C. Optimization has resulted in enhanced production of xylanase that improved the nutritional quality of poultry feed.
Collapse
|
30
|
Achermann S, Falås P, Joss A, Mansfeldt CB, Men Y, Vogler B, Fenner K. Trends in Micropollutant Biotransformation along a Solids Retention Time Gradient. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11601-11611. [PMID: 30208701 DOI: 10.1021/acs.est.8b02763] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
For many polar organic micropollutants, biotransformation by activated sludge microorganisms is a major removal process during wastewater treatment. However, our current understanding of how wastewater treatment operations influence microbial communities and their micropollutant biotransformation potential is limited, leaving major parts of observed variability in biotransformation rates across treatment facilities unexplained. Here, we present biotransformation rate constants for 42 micropollutants belonging to different chemical classes along a gradient of solids retention time (SRT). The geometric mean of biomass-normalized first-order rate constants shows a clear increase between 3 and 15 d SRT by 160% and 87%, respectively, in two experiments. However, individual micropollutants show a variety of trends. Rate constants of oxidative biotransformation reactions mostly increased with SRT. Yet, nitrifying activity could be excluded as primary driver. For substances undergoing other than oxidative reactions, i.e., mostly substitution-type reactions, more diverse dependencies on SRT were observed. Most remarkably, characteristic trends were observed for groups of substances undergoing similar types of initial transformation reaction, suggesting that shared enzymes or enzyme systems that are conjointly regulated catalyze biotransformation reactions within such groups. These findings open up opportunities for correlating rate constants with measures of enzyme abundance such as genes or gene products, which in turn should help to identify enzymes associated with the respective biotransformation reactions.
Collapse
Affiliation(s)
- Stefan Achermann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , 8092 Zürich , Switzerland
| | - Per Falås
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
- Department of Chemical Engineering , Lund University , 221 00 Lund , Sweden
| | - Adriano Joss
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
| | - Cresten B Mansfeldt
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
| | - Yujie Men
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Bernadette Vogler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , 8092 Zürich , Switzerland
- Department of Chemistry , University of Zürich , 8057 Zürich , Switzerland
| |
Collapse
|
31
|
Benito N, Carranza CS, Magnoli CE, Barberis CL. Effect of atrazine on growth and production of AFB1 in Aspergillus section Flavi strains isolated from maize soils. Mycotoxin Res 2018; 35:55-64. [DOI: 10.1007/s12550-018-0330-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022]
|
32
|
Lipomyces starkeyi: an emerging cell factory for production of lipids, oleochemicals and biotechnology applications. World J Microbiol Biotechnol 2018; 34:147. [DOI: 10.1007/s11274-018-2532-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
|
33
|
Growth of Paenarthrobacter aurescens strain TC1 on atrazine and isopropylamine during osmotic stress. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1364-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
34
|
Puig-Castellví F, Bedia C, Alfonso I, Piña B, Tauler R. Deciphering the Underlying Metabolomic and Lipidomic Patterns Linked to Thermal Acclimation in Saccharomyces cerevisiae. J Proteome Res 2018; 17:2034-2044. [PMID: 29707950 DOI: 10.1021/acs.jproteome.7b00921] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Temperature is one of the most critical parameters for yeast growth, and it has deep consequences in many industrial processes where yeast is involved. Nevertheless, the metabolic changes required to accommodate yeast cells at high or low temperatures are still poorly understood. In this work, the ultimate responses of these induced transcriptomic effects have been examined using metabolomics-derived strategies. The yeast metabolome and lipidome have been characterized by 1D proton nuclear magnetic resonance spectroscopy and ultra-high-performance liquid chromatography-mass spectrometry at four temperatures, corresponding to low, optimal, high, and extreme thermal conditions. The underlying pathways that drive the acclimation response of yeast to these nonoptimal temperatures were evaluated using multivariate curve resolution-alternating least-squares. The analysis revealed three different thermal profiles (cold, optimal, and high temperature), which include changes in the lipid composition, secondary metabolic pathways, and energy metabolism, and we propose that they reflect the acclimation strategy of yeast cells to low and high temperatures. The data suggest that yeast adjusts membrane fluidity by changing the relative proportions of the different lipid families (acylglycerides, phospholipids, and ceramides, among others) rather than modifying the average length and unsaturation levels of the corresponding fatty acids.
Collapse
Affiliation(s)
- Francesc Puig-Castellví
- Department of Environmental Chemistry , IDAEA-CSIC , Jordi Girona 18-26 , Barcelona 08034 , Catalonia , Spain
| | - Carmen Bedia
- Department of Environmental Chemistry , IDAEA-CSIC , Jordi Girona 18-26 , Barcelona 08034 , Catalonia , Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry and Molecular Modelling , IQAC-CSIC , Jordi Girona 18-26 , Barcelona 08034 , Catalonia , Spain
| | - Benjamin Piña
- Department of Environmental Chemistry , IDAEA-CSIC , Jordi Girona 18-26 , Barcelona 08034 , Catalonia , Spain
| | - Romà Tauler
- Department of Environmental Chemistry , IDAEA-CSIC , Jordi Girona 18-26 , Barcelona 08034 , Catalonia , Spain
| |
Collapse
|
35
|
|
36
|
Yuan H, Xu J, van Dam EP, Giubertoni G, Rezus YLA, Hammink R, Bakker HJ, Zhan Y, Rowan AE, Xing C, Kouwer PHJ. Strategies To Increase the Thermal Stability of Truly Biomimetic Hydrogels: Combining Hydrophobicity and Directed Hydrogen Bonding. Macromolecules 2017; 50:9058-9065. [PMID: 29213150 PMCID: PMC5707627 DOI: 10.1021/acs.macromol.7b01832] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/08/2017] [Indexed: 01/29/2023]
Abstract
Enhancing the thermal stability of proteins is an important task for protein engineering. There are several ways to increase the thermal stability of proteins in biology, such as greater hydrophobic interactions, increased helical content, decreased occurrence of thermolabile residues, or stable hydrogen bonds. Here, we describe a well-defined polymer based on β-helical polyisocyanotripeptides (TriPIC) that uses biological approaches, including hydrogen bonding and hydrophobic interactions for its exceptional thermal stability in aqueous solutions. The multiple hydrogen bonding arrays along the polymer backbone shield the hydrophobic core from water. Variable temperature CD and FTIR studies indicate that, on heating, a better packed polymer conformation further stiffens the backbone. Driven by hydrophobic interactions, TriPIC solutions give fully reversible hydrogels that can withstand high temperatures (80 °C) for extended times. Cryo-scanning electron microscopy (cryo-SEM), small-angle X-ray scattering (SAXS), and thorough rheological analysis show that the hydrogel has a bundled architecture, which gives rise to strain stiffening effects on deformation of the gel, analogous to many biological hydrogels.
Collapse
Affiliation(s)
- Hongbo Yuan
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China.,Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Jialiang Xu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.,Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | | | | | - Yves L A Rezus
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Roel Hammink
- Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Huib J Bakker
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Yong Zhan
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Alan E Rowan
- Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Paul H J Kouwer
- Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| |
Collapse
|
37
|
Lu XM, Lu PZ. Response of microbial communities to pesticide residues in soil restored with Azolla imbricata. Appl Microbiol Biotechnol 2017; 102:475-484. [DOI: 10.1007/s00253-017-8596-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/27/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022]
|
38
|
Longa C, Nicola L, Antonielli L, Mescalchin E, Zanzotti R, Turco E, Pertot I. Soil microbiota respond to green manure in organic vineyards. J Appl Microbiol 2017; 123:1547-1560. [DOI: 10.1111/jam.13606] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 02/04/2023]
Affiliation(s)
- C.M.O. Longa
- Research and Innovation Centre Fondazione Edmund Mach (FEM) San Michele all' Adige (TN) Italy
| | - L. Nicola
- Research and Innovation Centre Fondazione Edmund Mach (FEM) San Michele all' Adige (TN) Italy
| | - L. Antonielli
- Research and Innovation Centre Fondazione Edmund Mach (FEM) San Michele all' Adige (TN) Italy
| | - E. Mescalchin
- Research and Innovation Centre Fondazione Edmund Mach (FEM) San Michele all' Adige (TN) Italy
| | - R. Zanzotti
- Research and Innovation Centre Fondazione Edmund Mach (FEM) San Michele all' Adige (TN) Italy
| | - E. Turco
- Research and Innovation Centre Fondazione Edmund Mach (FEM) San Michele all' Adige (TN) Italy
| | - I. Pertot
- Research and Innovation Centre Fondazione Edmund Mach (FEM) San Michele all' Adige (TN) Italy
| |
Collapse
|
39
|
Dimitrova NH, Dermen IA, Todorova ND, Vasilev KG, Dimitrov SD, Mekenyan OG, Ikenaga Y, Aoyagi T, Zaitsu Y, Hamaguchi C. CATALOGIC 301C model - validation and improvement. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:511-524. [PMID: 28728491 DOI: 10.1080/1062936x.2017.1343255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
In Europe, REACH legislation encourages the use of alternative in silico methods such as (Q)SAR models. According to the recent progress of Chemical Substances Control Law (CSCL) in Japan, (Q)SAR predictions are also utilized as supporting evidence for the assessment of bioaccumulation potential of chemicals along with read across. Currently, the effective use of read across and QSARs is examined for other hazards, including biodegradability. This paper describes the results of external validation and improvement of CATALOGIC 301C model based on more than 1000 tested new chemical substances of the publication schedule under CSCL. CATALOGIC 301C model meets all REACH requirements to be used for biodegradability assessment. The model formalism built on scientific understanding for the microbial degradation of chemicals has a well-defined and transparent applicability domain. The model predictions are adequate for the evaluation of the ready degradability of chemicals.
Collapse
Affiliation(s)
- N H Dimitrova
- a Laboratory of Mathematical Chemistry , University "Prof. As. Zlatarov" , Bourgas , Bulgaria
| | - I A Dermen
- a Laboratory of Mathematical Chemistry , University "Prof. As. Zlatarov" , Bourgas , Bulgaria
| | - N D Todorova
- a Laboratory of Mathematical Chemistry , University "Prof. As. Zlatarov" , Bourgas , Bulgaria
| | - K G Vasilev
- a Laboratory of Mathematical Chemistry , University "Prof. As. Zlatarov" , Bourgas , Bulgaria
| | - S D Dimitrov
- a Laboratory of Mathematical Chemistry , University "Prof. As. Zlatarov" , Bourgas , Bulgaria
| | - O G Mekenyan
- a Laboratory of Mathematical Chemistry , University "Prof. As. Zlatarov" , Bourgas , Bulgaria
| | - Y Ikenaga
- b Chemical Management Center, National Institute of Technology and Evaluation (NITE) , Japan
| | - T Aoyagi
- b Chemical Management Center, National Institute of Technology and Evaluation (NITE) , Japan
| | - Y Zaitsu
- b Chemical Management Center, National Institute of Technology and Evaluation (NITE) , Japan
| | - C Hamaguchi
- b Chemical Management Center, National Institute of Technology and Evaluation (NITE) , Japan
| |
Collapse
|
40
|
Concomitant production of cellulase and xylanase by thermophilic mould Sporotrichum thermophile in solid state fermentation and their applicability in bread making. World J Microbiol Biotechnol 2017; 33:109. [DOI: 10.1007/s11274-017-2278-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
|
41
|
Ranawat P, Rawat S. Stress response physiology of thermophiles. Arch Microbiol 2017; 199:391-414. [DOI: 10.1007/s00203-016-1331-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
|