1
|
Drummond-Guy O, Daly J, Wu A, Stewart N, Milne K, Duff C, Nelson BH, Williams KC, Wisnovsky S. Polysialic acid is upregulated on activated immune cells and negatively regulates anticancer immune activity. Front Oncol 2025; 15:1520948. [PMID: 40182033 PMCID: PMC11965634 DOI: 10.3389/fonc.2025.1520948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025] Open
Abstract
Suppression of anticancer immune function is a key driver of tumorigenesis. Identifying molecular pathways that inhibit anticancer immunity is critical for developing novel immunotherapeutics. One such molecule that has recently been identified is the carbohydrate polysialic acid (polySia), whose expression is dramatically upregulated on both cancer cells and immune cells in breast cancer patient tissues. The role of polySia in the anticancer immune response, however, remains incompletely understood. In this study, we profile polySia expression on both healthy primary immune cells and on infiltrating immune cells in the tumour microenvironment (TME). These studies reveal polySia expression on multiple immune cell subsets in patient breast tumors. We find that stimulation of primary T-cells and macrophages in vitro induces a significant upregulation of polySia expression. We subsequently show that polySia is appended to a range of different carrier proteins within these immune cells. Finally, we find that selective removal of polySia can significantly potentiate killing of breast cancer cells by innate immune cells. These studies implicate polySia as a significant negative regulator of anticancer immunity.
Collapse
Affiliation(s)
- Olivia Drummond-Guy
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - John Daly
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Angeline Wu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Natalie Stewart
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Katy Milne
- Deeley Research Centre, British Columbia (BC) Cancer, Victoria, BC, Canada
| | - Chloe Duff
- Deeley Research Centre, British Columbia (BC) Cancer, Victoria, BC, Canada
| | - Brad H. Nelson
- Deeley Research Centre, British Columbia (BC) Cancer, Victoria, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Karla C. Williams
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Simon Wisnovsky
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Wang W, Bunyatov M, Lopez-Barbosa N, DeLisa MP. Engineering affinity-matured variants of an anti-polysialic acid monoclonal antibody with superior cytotoxicity-mediating potency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637914. [PMID: 40027839 PMCID: PMC11870402 DOI: 10.1101/2025.02.12.637914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Monoclonal antibodies (mAbs) that specifically recognize cell surface glycans associated with cancer and infectious disease hold tremendous value for both basic research and clinical applications. However, high-quality anti-glycan mAbs, especially those with sufficiently high affinity and specificity, remain scarce, highlighting the need for protein engineering approaches based on rational design or directed evolution that enable optimization of antigen-binding properties. To this end, we sought to enhance the affinity of a polysialic acid (polySia)-specific antibody called mAb735, which was raised by animal immunization and possesses only modest affinity, using a combination of rational design and directed evolution. The application of these approaches led to the discovery of affinity-matured IgG variants with up to ∼7-fold stronger affinity for polySia relative to the parental antibody. The higher affinity IgG variants were observed to opsonize polySia- positive cancer cells more avidly, which in turn resulted in significantly greater cytotoxicity as determined by both antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays. Collectively, these results demonstrate the effective application of both rational and random molecular evolution techniques to an important anti-glycan antibody, providing insights into its carbohydrate recognition while at the same time uncovering variants with greater therapeutic promise due to their enhanced affinity and potency.
Collapse
Affiliation(s)
- Weiyao Wang
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14853 USA
| | - Mehman Bunyatov
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14853 USA
| | - Natalia Lopez-Barbosa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14853 USA
| | - Matthew P. DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14853 USA
- Cornell Institute of Biotechnology, Cornell University, 130 Biotechnology Building, Ithaca, NY 14853 USA
| |
Collapse
|
3
|
Cheng P, Hothpet V, Bhat G, Bailey K, Li L, Samuelson DR. Alcohol induces α2-6sialo mucin O-glycans that kill U937 macrophages mediated by sialic acid-binding immunoglobulin-like lectin 7 (Siglec 7). FEBS Open Bio 2025; 15:165-179. [PMID: 39592427 PMCID: PMC11705458 DOI: 10.1002/2211-5463.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/06/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Alcohol misuse increases infections and cancer fatalities, but mechanisms underlying its toxicity are ill-defined. We show that alcohol treatment of human tracheobronchial epithelial cells leads to inactivation of giantin-mediated Golgi targeting of glycosylation enzymes. Loss of core 2 N-acetylglucosaminyltransferase 1, which uses only giantin for Golgi targeting, coupled with shifted targeting of other glycosylation enzymes to Golgi matrix protein 130-Golgi reassembly stacking protein 65, the site normally used by core 1 enzyme, results in loss of sialyl Lewis x and increase of sialyl Lewis a and α2-6sialo mucin O-glycans. The α2-6sialo mucin O-glycans induced by alcohol cause death of U937 macrophages mediated by sialic acid-binding immunoglobulin-like lectin 7. These results provide a mechanistic insight into the cause of the toxic effects of alcohol and might contribute to the development of therapies to alleviate its toxicity.
Collapse
Affiliation(s)
- Pi‐Wan Cheng
- Department of Biochemistry and Molecular Biology, College of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Vishwanath‐Reddy Hothpet
- Department of Biochemistry and Molecular Biology, College of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
- Present address:
State Forensic LaboratoryBengaluruIndia
| | - Ganapati Bhat
- Department of Biochemistry and Molecular Biology, College of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
- Present address:
Dayananda Sagar UniversityBengaluruIndia
| | - Kristina Bailey
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Lei Li
- Department of Chemistry and Center for Diagnostic & TherapeuticsGeorgia State UniversityAtlantaGAUSA
| | - Derrick R. Samuelson
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
| |
Collapse
|
4
|
Tu H, Yuan L, Ni B, Lin Y, Wang K. Siglecs-mediated immune regulation in neurological disorders. Pharmacol Res 2024; 210:107531. [PMID: 39615617 DOI: 10.1016/j.phrs.2024.107531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024]
Abstract
The surfaces of various immune cells are rich in glycan chains, including the sialic-acid-binding immunoglobulin-like lectins (Siglecs) family. As an emerging glyco-immune checkpoint, Siglecs have the ability to bind and interact with various glycoproteins, thereby eliciting a series of downstream reactions to modulate the immune response. The impact of Siglecs has been extensively studied in tumor immunotherapy. However, research in neurological disorders and neurological diseases is very limited, and therapeutic options involving Siglecs need further exploration. Siglecs play a crucial role in the development, homeostasis, and repair processes of the nervous system, especially in degenerative diseases. This review summarizes studies on the immunomodulatory role mediated by Siglecs expressed on different immune cells in various neurological disorders, elucidates how dysregulated sialic acid contributes to several psychiatric disorders, and discusses the progress and limitations of research on the treatment of neurological disorders.
Collapse
Affiliation(s)
- Huifang Tu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Limei Yuan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Bo Ni
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yufeng Lin
- Department of Neurology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300190, China.
| | - Kaiyuan Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
5
|
Jie J, Gong Y, Hu H, Liu S. The role of cerebrospinal fluid metabolites in mediating the impact of lipids on Late-Onset Alzheimer's Disease: a two-step mendelian randomization analysis. J Transl Med 2024; 22:1077. [PMID: 39609832 PMCID: PMC11603644 DOI: 10.1186/s12967-024-05796-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Although research has indicated correlations between lipids, cerebrospinal fluid (CSF) metabolites, and Late-Onset Alzheimer's Disease (LOAD), the specific causal relationships among these elements, as well as the roles and mechanisms of the cerebrospinal fluid metabolites, remain unclear. METHODS Statistical datasets derived from Genome-Wide Association Studies (GWAS) were utilized to assess the bidirectional causal relationships between lipids and LOAD. Subsequently, genetic variants associated with CSF metabolites and established lipids underwent a two-step Mendelian randomization (MR) analysis to explore potential mediators and analyze mediation effects. Sensitivity analyses were employed to assess the robustness of the detection systems. RESULTS Genetically predicted cholesterol (IVW OR = 0.989; 95% CI 0.982-0.996) was found to reduce the risk of LOAD, whereas Phosphatidylcholine (PC) (18:1_0:0) (IVW OR = 1.015; 95% CI 1.005-1.025) posed a risk factor. The potential mediator, CSF metabolite N-acetylneuraminate (NeuAC), was identified with a mediation proportion of 21.02% (3.25%, 45.50%). No pleiotropy or heterogeneity was detected across MR analyses. CONCLUSIONS The findings underscore the pivotal role of CSF metabolomics in elucidating the lipid-mediated pathogenesis of LOAD, highlighting potential diagnostic and preventative biomarkers.
Collapse
Affiliation(s)
- Jie Jie
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People' s Hospital of Changde City), 818 Renmin Road, Changde City, Hunan Province, 415000, China
| | - Yonglu Gong
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People' s Hospital of Changde City), 818 Renmin Road, Changde City, Hunan Province, 415000, China
| | - Hongbo Hu
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People' s Hospital of Changde City), 818 Renmin Road, Changde City, Hunan Province, 415000, China
| | - Su Liu
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People' s Hospital of Changde City), 818 Renmin Road, Changde City, Hunan Province, 415000, China.
| |
Collapse
|
6
|
Barboza BR, Macedo-da-Silva J, Silva LAMT, Gomes VDM, Santos DM, Marques-Neto AM, Mule SN, Angeli CB, Borsoi J, Moraes CB, Moutinho-Melo C, Mühlenhoff M, Colli W, Marie SKN, Pereira LDV, Alves MJM, Palmisano G. ST8Sia2 polysialyltransferase protects against infection by Trypanosoma cruzi. PLoS Negl Trop Dis 2024; 18:e0012454. [PMID: 39321148 PMCID: PMC11466412 DOI: 10.1371/journal.pntd.0012454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 10/10/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
Glycosylation is one of the most structurally and functionally diverse co- and post-translational modifications in a cell. Addition and removal of glycans, especially to proteins and lipids, characterize this process which has important implications in several biological processes. In mammals, the repeated enzymatic addition of a sialic acid unit to underlying sialic acids (Sia) by polysialyltransferases, including ST8Sia2, leads to the formation of a sugar polymer called polysialic acid (polySia). The functional relevance of polySia has been extensively demonstrated in the nervous system. However, the role of polysialylation in infection is still poorly explored. Previous reports have shown that Trypanosoma cruzi (T. cruzi), a flagellated parasite that causes Chagas disease (CD), changes host sialylation of glycoproteins. To understand the role of host polySia during T. cruzi infection, we used a combination of in silico and experimental tools. We observed that T. cruzi reduces both the expression of the ST8Sia2 and the polysialylation of target substrates. We also found that chemical and genetic inhibition of host ST8Sia2 increased the parasite load in mammalian cells. We found that modulating host polysialylation may induce oxidative stress, creating a microenvironment that favors T. cruzi survival and infection. These findings suggest a novel approach to interfere with parasite infections through modulation of host polysialylation.
Collapse
Affiliation(s)
- Bruno Rafael Barboza
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Vinícius de Morais Gomes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Deivid Martins Santos
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Antônio Moreira Marques-Neto
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Claudia Blanes Angeli
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Borsoi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Carolina Borsoi Moraes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristiane Moutinho-Melo
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Immunological and Antitumor Analysis, Department of Antibiotics, Bioscience Center, and Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Recife, Brazil
| | - Martina Mühlenhoff
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Walter Colli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Suely Kazue Nagashi Marie
- Laboratory of Molecular and Cellular Biology (LIM 15), Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lygia da Veiga Pereira
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Julia Manso Alves
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Çakar MM, Milčić N, Andreadaki T, Charnock S, Fessner WD, Blažević ZF. Kinetic characterization of two neuraminic acid synthases and evaluation of their application potential. Appl Microbiol Biotechnol 2024; 108:446. [PMID: 39167161 PMCID: PMC11339185 DOI: 10.1007/s00253-024-13277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Neuraminic acid synthases are an important yet underexplored group of enzymes. Thus, in this research, we performed a detailed kinetic and stability analysis and a comparison of previously known neuraminic acid synthase from Neisseria meningitidis, and a novel enzyme, PNH5, obtained from a metagenomic library. A systematic analysis revealed a high level of similarity of PNH5 to other known neuraminic acid synthases, except for its pH optimum, which was found to be at 5.5 for the novel enzyme. This is the first reported enzyme from this family that prefers an acidic pH value. The effect of different metal cofactors on enzyme activity, i.e. Co2+, Mn2+ and Mg2+, was studied systematically. The kinetics of neuraminic acid synthesis was completely elucidated, and an appropriate kinetic model was proposed. Enzyme stability study revealed that the purified enzyme exhibits changes in its structure during time as observed by differential light scattering, which cause a drop in its activity and protein concentration. The operational enzyme stability for the neuraminic acid synthase from N. meningitidis is excellent, where no activity drop was observed during the batch reactor experiments. In the case of PNH5, some activity drop was observed at higher concentration of substrates. The obtained results present a solid platform for the future application of these enzymes in the synthesis of sialic acids. KEY POINTS: • A novel neuraminic acid synthase was characterized. • The effect of cofactors on NeuS activity was elucidated. • Kinetic and stability characterization of two neuraminic acid synthases was performed.
Collapse
Affiliation(s)
- Mehmet Mervan Çakar
- University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, 10000, Zagreb, Croatia
| | - Nevena Milčić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, 10000, Zagreb, Croatia
| | | | - Simon Charnock
- Prozomix Limited, Station Court, Haltwhistle, Northumberland, NE49 9HN, UK
| | - Wolf-Dieter Fessner
- Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287, Darmstadt, Germany
| | - Zvjezdana Findrik Blažević
- University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, 10000, Zagreb, Croatia.
| |
Collapse
|
8
|
Teppa RE, Galuska SP, Harduin-Lepers A. Molecular dynamics simulations shed light into the donor substrate specificity of vertebrate poly-alpha-2,8-sialyltransferases ST8Sia IV. Biochim Biophys Acta Gen Subj 2024; 1868:130647. [PMID: 38801837 DOI: 10.1016/j.bbagen.2024.130647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Sialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer of Sia residues to glycoconjugates playing critical roles in cellular recognition and signaling. Despite their importance, the molecular mechanisms underlying their substrate specificity, especially between different organisms, remain poorly understood. Recently, the human ST8Sia IV, a key enzyme in the synthesis of polysialic acids, was found to accept only CMP-Neu5Ac as a sugar-donor, whereas the whitefish Coregonus maraena enzyme showed a wider donor substrate specificity, accepting CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn. However, what causes these differences in donor substrate specificity is unknown. METHODS Computational approaches were used to investigate the structural and biochemical determinants of the donor substrate specificity in ST8Sia IV. Accurate structural models of the human and fish ST8Sia IV catalytic domains and their complexes with three sialic acid donors (CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn) were generated. Subsequently, molecular dynamics simulations were conducted to analyze the stability and interactions within these complexes and identify differences in complex stability and substrate binding sites between the two ST8Sia IV. RESULTS Our MD simulations revealed that the human enzyme effectively stabilizes CMP-Neu5Ac, whereas CMP-Neu5Gc and CMP-Kdn are unstable and explore different conformations. In contrast, the fish ST8Sia IV stabilizes all three donor substrates. Based on these data, we identified the key interacting residues for the different Sias parts of the substrate donors. GENERAL SIGNIFICANCE This work advances our knowledge of the enzymatic mechanisms governing sialic acid transfer, shedding light on the evolutionary adaptations of sialyltransferases.
Collapse
Affiliation(s)
- Roxana Elin Teppa
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France.
| | - Sebastian Peter Galuska
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Anne Harduin-Lepers
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France; Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Faculté des sciences et Technologies, Univ. Lille, 59655 Villeneuve d'Ascq, France.
| |
Collapse
|
9
|
Bagheri J, Alipour N, Delavar A, Baradaran R, Salimi A, Rahimi Anbarkeh F. Resveratrol as modulator of PSA-NCAM expression in the hippocampus of diazinon-injured rat fetuses. Neurosci Lett 2024; 836:137892. [PMID: 38981564 DOI: 10.1016/j.neulet.2024.137892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/11/2024]
Abstract
Polysialylated neural cell adhesion molecule (PSA-NCAM) is expressed in the developing central nervous system (CNS) and plays an important role in neurogenesis. Organophosphorus (OP) toxins, including diazinon (DZN), cause oxidative stress (OS) and damage the CNS. Resveratrol (RV), with its antioxidant effect, leads to the reduction of OS. Therefore, this research was conducted with the aim of the effect of RVon the expression of PSA-NCAM in the hippocampus (HPC) of rat fetuses treated with DZN. In this study, 24 female Wistar rats were divided into 4 groups (n = 6): Control, DZN (40 mg/kg), RV(10 mg/kg), and DZN + RV(40 mg/kg + 10 mg/kg) after confirming they were pregnant. On the 21st day of pregnancy, the mother mice were anesthetized with ketamine and xylazine, and the fetuses were removed; after anesthesia, their brains were removed for immunohistochemistry and western blot (WB) technique. The results of the study showed that in the group receiving DZN, the level of PSA-NCAM protein expression decreased significantly compared to the control group, and the group receiving RV with its antioxidant property increased the expression of PSA-NCAM protein compared to the DZN group. All in all, the exposure of pregnant mice to DZN causes disorders in the CNS, especially the level of PSA-NCAM protein expression in the HPC of fetuses, and the use of RV as an antioxidant by pregnant mothers neutralizes the effects of DZN in the HPC of their fetuses.
Collapse
Affiliation(s)
- Javad Bagheri
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Basic Medical Sciences, Faculty of Medicine, Islamic Azad University, Mashhad, Iran
| | - Nasim Alipour
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Basic Medical Sciences, Faculty of Medicine, Islamic Azad University, Mashhad, Iran
| | - Amir Delavar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Raheleh Baradaran
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Alireza Salimi
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Rahimi Anbarkeh
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
10
|
Wang B, Li Z, An W, Fan G, Li D, Qin L. Duct ligation/de-ligation model: exploring mechanisms for salivary gland injury and regeneration. Front Cell Dev Biol 2024; 12:1399934. [PMID: 38983787 PMCID: PMC11231214 DOI: 10.3389/fcell.2024.1399934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Sialadenitis and sialadenitis-induced sialopathy are typically caused by obstruction of the salivary gland ducts. Atrophy of the salivary glands in experimental animals caused by duct ligation exhibits a histopathology similar to that of salivary gland sialadenitis. Therefore, a variety of duct ligation/de-ligation models have been commonly employed to study salivary gland injury and regeneration. Duct ligation is mainly characterised by apoptosis and activation of different signaling pathways in parenchymal cells, which eventually leads to gland atrophy and progressive dysfunction. By contrast, duct de-ligation can initiate the recovery of gland structure and function by regenerating the secretory tissue. This review summarizes the animal duct ligation/de-ligation models that have been used for the examination of pathological fundamentals in salivary disorders, in order to unravel the pathological changes and underlying mechanisms involved in salivary gland injury and regeneration. These experimental models have contributed to developing effective and curative strategies for gland dysfunction and providing plausible solutions for overcoming salivary disorders.
Collapse
Affiliation(s)
- Bin Wang
- Department of Head and Neck Oncology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Zhilin Li
- Department of Head and Neck Oncology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Wei An
- Department of Oral and Maxillofacial Surgery, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Gaiping Fan
- Department of Head and Neck Oncology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Dezhi Li
- Department of Head and Neck Oncology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- Department of Head and Neck Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lizheng Qin
- Department of Oral and Maxillofacial and Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Fioretto BS, Rosa I, Tani A, Andreucci E, Romano E, Sgambati E, Manetti M. Blockade of Sialylation with Decrease in Polysialic Acid Levels Counteracts Transforming Growth Factor β1-Induced Skin Fibroblast-to-Myofibroblast Transition. Cells 2024; 13:1067. [PMID: 38920695 PMCID: PMC11201575 DOI: 10.3390/cells13121067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Aberrant sialylation with overexpression of the homopolymeric glycan polysialic acid (polySia) was recently reported in fibroblasts from fibrotic skin lesions. Yet, whether such a rise in polySia levels or sialylation in general may be functionally implicated in profibrotic activation of fibroblasts and their transition to myofibroblasts remains unknown. Therefore, we herein explored whether inhibition of sialylation could interfere with the process of skin fibroblast-to-myofibroblast transition induced by the master profibrotic mediator transforming growth factor β1 (TGFβ1). Adult human skin fibroblasts were pretreated with the competitive pan-sialyltransferase inhibitor 3-Fax-peracetyl-Neu5Ac (3-Fax) before stimulation with recombinant human TGFβ1, and then analyzed for polySia expression, cell viability, proliferation, migratory ability, and acquisition of myofibroblast-like morphofunctional features. Skin fibroblast stimulation with TGFβ1 resulted in overexpression of polySia, which was effectively blunted by 3-Fax pre-administration. Pretreatment with 3-Fax efficiently lessened TGFβ1-induced skin fibroblast proliferation, migration, changes in cell morphology, and phenotypic and functional differentiation into myofibroblasts, as testified by a significant reduction in FAP, ACTA2, COL1A1, COL1A2, and FN1 gene expression, and α-smooth muscle actin, N-cadherin, COL1A1, and FN-EDA protein levels, as well as a reduced contractile capability. Moreover, skin fibroblasts pre-administered with 3-Fax displayed a significant decrease in Smad3-dependent canonical TGFβ1 signaling. Collectively, our in vitro findings demonstrate for the first time that aberrant sialylation with increased polySia levels has a functional role in skin fibroblast-to-myofibroblast transition and suggest that competitive sialyltransferase inhibition might offer new therapeutic opportunities against skin fibrosis.
Collapse
Affiliation(s)
- Bianca Saveria Fioretto
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (A.T.)
| | - Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (A.T.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Alessia Tani
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (A.T.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Elena Andreucci
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Eloisa Romano
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy;
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (A.T.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
12
|
Mao M, Ahrens L, Luka J, Contreras F, Kurkina T, Bienstein M, Sárria Pereira de Passos M, Schirinzi G, Mehn D, Valsesia A, Desmet C, Serra MÁ, Gilliland D, Schwaneberg U. Material-specific binding peptides empower sustainable innovations in plant health, biocatalysis, medicine and microplastic quantification. Chem Soc Rev 2024; 53:6445-6510. [PMID: 38747901 DOI: 10.1039/d2cs00991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.
Collapse
Affiliation(s)
- Maochao Mao
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Leon Ahrens
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Julian Luka
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Francisca Contreras
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Tetiana Kurkina
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Marian Bienstein
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | | | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrea Valsesia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
13
|
Hunter C, Derksen T, Makhsous S, Doll M, Perez SR, Scott NE, Willis LM. Site-specific immobilization of the endosialidase reveals QSOX2 is a novel polysialylated protein. Glycobiology 2024; 34:cwae026. [PMID: 38489772 PMCID: PMC11031136 DOI: 10.1093/glycob/cwae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024] Open
Abstract
Polysialic acid (polySia) is a linear polymer of α2,8-linked sialic acid residues that is of fundamental biological interest due to its pivotal roles in the regulation of the nervous, immune, and reproductive systems in healthy human adults. PolySia is also dysregulated in several chronic diseases, including cancers and mental health disorders. However, the mechanisms underpinning polySia biology in health and disease remain largely unknown. The polySia-specific hydrolase, endoneuraminidase NF (EndoN), and the catalytically inactive polySia lectin EndoNDM, have been extensively used for studying polySia. However, EndoN is heat stable and remains associated with cells after washing. When studying polySia in systems with multiple polysialylated species, the residual EndoN that cannot be removed confounds data interpretation. We developed a strategy for site-specific immobilization of EndoN on streptavidin-coated magnetic beads. We showed that immobilizing EndoN allows for effective removal of the enzyme from samples, while retaining hydrolase activity. We used the same strategy to immobilize the polySia lectin EndoNDM, which enabled the enrichment of polysialylated proteins from complex mixtures such as serum for their identification via mass spectrometry. We used this methodology to identify a novel polysialylated protein, QSOX2, which is secreted from the breast cancer cell line MCF-7. This method of site-specific immobilization can be utilized for other enzymes and lectins to yield insight into glycobiology.
Collapse
Affiliation(s)
- Carmanah Hunter
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Tahlia Derksen
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Sogand Makhsous
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Matt Doll
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Samantha Rodriguez Perez
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Lisa M Willis
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
14
|
Yin Z, Zhu L, Gao M, Yu D, Zhang Z, Zhu L, Zhan X. Effects of In Vitro Fermentation of Polysialic Acid and Sialic Acid on Gut Microbial Community Composition and Metabolites in Healthy Humans. Foods 2024; 13:481. [PMID: 38338616 PMCID: PMC10855092 DOI: 10.3390/foods13030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The influence of polysialic acid (PSA) and sialic acid (SA) on the gut microbial community composition and metabolites in healthy humans was investigated using a bionic gastrointestinal reactor. The results indicated that PSA and SA significantly changed the gut microbiota and metabolites to different degrees. PSA can increase the relative abundances of Faecalibacterium and Allisonella, whereas SA can increase those of Bifidobacterium and Megamonas. Both can significantly increase the content of short-chain fatty acids. The results of metabolome analysis showed that PSA can upregulate ergosterol peroxide and gallic acid and downregulate the harmful metabolite N-acetylputrescine. SA can upregulate 4-pyridoxic acid and lipoic acid. PSA and SA affect gut microbiota and metabolites in different ways and have positive effects on human health. These results will provide a reference for the further development of PSA- and SA-related functional foods and health products.
Collapse
Affiliation(s)
- Zhongwei Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Y.); (L.Z.); (M.G.); (D.Y.); (Z.Z.); (L.Z.)
| | - Li Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Y.); (L.Z.); (M.G.); (D.Y.); (Z.Z.); (L.Z.)
- A & F Biotech. Ltd., Burnaby, BC V5A 3P6, Canada
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Y.); (L.Z.); (M.G.); (D.Y.); (Z.Z.); (L.Z.)
| | - Dan Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Y.); (L.Z.); (M.G.); (D.Y.); (Z.Z.); (L.Z.)
| | - Zijian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Y.); (L.Z.); (M.G.); (D.Y.); (Z.Z.); (L.Z.)
| | - Ling Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Y.); (L.Z.); (M.G.); (D.Y.); (Z.Z.); (L.Z.)
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Y.); (L.Z.); (M.G.); (D.Y.); (Z.Z.); (L.Z.)
| |
Collapse
|
15
|
Liu S, Zhao F, Xu K, Cao M, Sohail M, Li B, Zhang X. Harnessing aptamers for the biosensing of cell surface glycans - A review. Anal Chim Acta 2024; 1288:342044. [PMID: 38220315 DOI: 10.1016/j.aca.2023.342044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 01/16/2024]
Abstract
Cell surface glycans (CSGs) are essential for cell recognition, adhesion, and invasion, and they also serve as disease biomarkers. Traditional CSG recognition using lectins has limitations such as limited specificity, low stability, high cytotoxicity, and multivalent binding. Aptamers, known for their specific binding capacity to target molecules, are increasingly being employed in the biosensing of CSGs. Aptamers offer the advantage of high flexibility, small size, straightforward modification, and monovalent recognition, enabling their integration into the profiling of CSGs on living cells. In this review, we summarize representative examples of aptamer-based CSG biosensing and identify two strategies for harnessing aptamers in CSG detection: direct recognition based on aptamer-CSG binding and indirect recognition through protein localization. These strategies enable the generation of diverse signals including fluorescence, electrochemical, photoacoustic, and electrochemiluminescence signals for CSG detection. The advantages, challenges, and future perspectives of using aptamers for CSG biosensing are also discussed.
Collapse
Affiliation(s)
- Sirui Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Furong Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Ke Xu
- Department of Cardiology, Nanjing Yuhua Hospital, Nanjing, 210012, China
| | - Min Cao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Muhammad Sohail
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
16
|
Chen LM, Beck P, van Ede J, Pronk M, van Loosdrecht MCM, Lin Y. Anionic extracellular polymeric substances extracted from seawater-adapted aerobic granular sludge. Appl Microbiol Biotechnol 2024; 108:144. [PMID: 38231410 DOI: 10.1007/s00253-023-12954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024]
Abstract
Anionic polymers, such as heparin, have been widely applied in the chemical and medical fields, particularly for binding proteins (e.g., fibroblast growth factor 2 (FGF-2) and histones). However, the current animal-based production of heparin brings great risks, including resource shortages and product contamination. Recently, anionic compounds, nonulosonic acids (NulOs), and sulfated glycoconjugates were discovered in the extracellular polymeric substances (EPS) of aerobic granular sludge (AGS). Given the prevalence of anionic polymers, in marine biofilms, it was hypothesized that the EPS from AGS grown under seawater condition could serve as a raw material for producing the alternatives to heparin. This study aimed to isolate and enrich the anionic fractions of EPS and evaluate their potential application in the chemical and medical fields. The AGS was grown in a lab-scale reactor fed with acetate, under the seawater condition (35 g/L sea salt). The EPS was extracted with an alkaline solution at 80 °C and fractionated by size exclusion chromatography. Its protein binding capacity was evaluated by native gel electrophoresis. It was found that the two highest molecular weight fractions (438- > 14,320 kDa) were enriched with NulO and sulfate-containing glycoconjugates. The enriched fractions can strongly bind the two histones involved in sepsis and a model protein used for purification by heparin-column. These findings demonstrated possibilities for the application of the extracted EPS and open up a novel strategy for resource recovery. KEY POINTS: • High MW EPS from seawater-adapted AGS are dominant with sulfated groups and NulOs • Fifty-eight percent of the EPS is high MW of 68-14,320 kDa • EPS and its fractions can bind histones and fibroblast growth factor 2.
Collapse
Affiliation(s)
- Le Min Chen
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
| | - Paula Beck
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Jitske van Ede
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
- Royal HaskoningDHV, Laan 1914 35, Amersfoort, 3800, AL, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| |
Collapse
|
17
|
Hatanaka R, Hane M, Hayakawa K, Morishita S, Ohno S, Yamaguchi Y, Wu D, Kitajima K, Sato C. Identification of a buried β-strand as a novel disease-related motif in the human polysialyltransferases. J Biol Chem 2024; 300:105564. [PMID: 38103644 PMCID: PMC10828065 DOI: 10.1016/j.jbc.2023.105564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
The polysialyltransferases ST8SIA2 and ST8SIA4 and their product, polysialic acid (polySia), are known to be related to cancers and mental disorders. ST8SIA2 and ST8SIA4 have conserved amino acid (AA) sequence motifs essential for the synthesis of the polySia structures on the neural cell adhesion molecule. To search for a new motif in the polysialyltransferases, we adopted the in silico Individual Meta Random Forest program that can predict disease-related AA substitutions. The Individual Meta Random Forest program predicted a new eight-amino-acids sequence motif consisting of highly pathogenic AA residues, thus designated as the pathogenic (P) motif. A series of alanine point mutation experiments in the pathogenic motif (P motif) showed that most P motif mutants lost the polysialylation activity without changing the proper enzyme expression levels or localization in the Golgi. In addition, we evaluated the enzyme stability of the P motif mutants using newly established calculations of mutation energy, demonstrating that the subtle change of the conformational energy regulates the activity. In the AlphaFold2 model, we found that the P motif was a buried β-strand underneath the known surface motifs unique to ST8SIA2 and ST8SIA4. Taken together, the P motif is a novel buried β-strand that regulates the full activity of polysialyltransferases from the inside of the molecule.
Collapse
Affiliation(s)
- Rina Hatanaka
- Integrated Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Masaya Hane
- Integrated Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kaito Hayakawa
- Integrated Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sayo Morishita
- Integrated Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shiho Ohno
- Division of Structural Biology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Biology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Di Wu
- Integrated Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ken Kitajima
- Integrated Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Chihiro Sato
- Integrated Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| |
Collapse
|
18
|
Lu B, Liao SM, Liu XH, Liang SJ, Huang J, Lin M, Meng L, Wang QY, Huang RB, Zhou GP. The NMR studies of CMP inhibition of polysialylation. J Enzyme Inhib Med Chem 2023; 38:2248411. [PMID: 37615033 PMCID: PMC10453990 DOI: 10.1080/14756366.2023.2248411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/22/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
The overexpression of polysialic acid (polySia) on neural cell adhesion molecules (NCAM) promotes hypersialylation, and thus benefits cancer cell migration and invasion. It has been proposed that the binding between the polysialyltransferase domain (PSTD) and CMP-Sia needs to be inhibited in order to block the effects of hypersialylation. In this study, CMP was confirmed to be a competitive inhibitor of polysialyltransferases (polySTs) in the presence of CMP-Sia and triSia (oligosialic acid trimer) based on the interactional features between molecules. The further NMR analysis suggested that polysialylation could be partially inhibited when CMP-Sia and polySia co-exist in solution. In addition, an unexpecting finding is that CMP-Sia plays a role in reducing the gathering extent of polySia chains on the PSTD, and may benefit for the inhibition of polysialylation. The findings in this study may provide new insight into the optimal design of the drug and inhibitor for cancer treatment.
Collapse
Affiliation(s)
- Bo Lu
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Si-Ming Liao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xue-Hui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shi-Jie Liang
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Jun Huang
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Mei Lin
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Li Meng
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Qing-Yan Wang
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Ri-Bo Huang
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
- Rocky Mount Life Sciences Institute, Rocky Mount, NC, USA
| | - Guo-Ping Zhou
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
- Rocky Mount Life Sciences Institute, Rocky Mount, NC, USA
| |
Collapse
|
19
|
Khan L, Derksen T, Redmond D, Storek J, Durand C, Gniadecki R, Korman B, Cohen Tervaert JW, D'Aubeterre A, Osman MS, Willis LM. The cancer-associated glycan polysialic acid is dysregulated in systemic sclerosis and is associated with fibrosis. J Autoimmun 2023; 140:103110. [PMID: 37742510 DOI: 10.1016/j.jaut.2023.103110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/26/2023]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is a rare but deadly disease characterized by autoimmunity, vasculopathy, and fibrosis. Fibrotic complications associated with SSc correlate with severe morbidity and mortality. Previous studies in SSc have identified fibroblasts as the primary drivers of fibrosis; however, the mechanism(s) promoting this are not well understood. Aberrant glycosylation, particularly polysialylation (polySia), has been described as a prominent feature of aggressive cancers. Inspired by this observation, we aimed to determine if polySia is dysregulated in various forms of SSc. METHODS All patients with SSc met the 2013 ACR/EULAR. Patients were sub-classified into limited cutaneous (lSSc, N = 5 or 46 patients for polySia quantification in the dermis or serum; respectively), diffuse cutaneous (dSSc, N = 11 or 18 patients for polySia quantification in the dermis or serum; respectively), or patients with dSSc treated with an autologous stem cell transplantation (post-ASCT, N = 4 patients for quantification in the dermis). Dermal polySia levels were measured via immunofluorescence microscopy in 10 μm dermal sections, quantified in each group (healthy volunteers (HC), lSSc, dSSc, and post-ASCT) and correlated with skin fibrosis (via the modified Rodnan skin score (mRSS)). Similarly, serum polySia was quantified in each group, and correlated with the mRSS. RESULTS Dermal polySia levels were highest in patients with dSSc (compared to HC < 0.001), and correlated with the degree of fibrosis in all of the groups (P = 0.008). Serum polySia was higher in all SSc groups (p < 0.001) and correlated with the severity of mRSS (p < 0.0001). CONCLUSION Polysia is more abundant in the skin and sera from patients with SSc and correlates with the degree of skin fibrosis. The aberrant expression of polySia highlights its potential use as a biomarker in patients with progressive forms of SSc. Dysregulated polySia levels in SSc further emphasizes the cancer-like phenotype present in SSc, which may promote fibrosis and immune dysregulation.
Collapse
Affiliation(s)
- Lamia Khan
- Faculty of Medicine & Dentistry, Division of Rheumatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tahlia Derksen
- Faculty of Science, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Desiree Redmond
- Faculty of Medicine & Dentistry, Division of Rheumatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Jan Storek
- University of Calgary, Calgary, AB, Canada
| | | | - Robert Gniadecki
- Faculty of Medicine & Dentistry, Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Benjamin Korman
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jan Willem Cohen Tervaert
- Faculty of Medicine & Dentistry, Division of Rheumatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Ana D'Aubeterre
- Faculty of Science, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Mohammed S Osman
- Faculty of Medicine & Dentistry, Division of Rheumatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| | - Lisa M Willis
- Faculty of Science, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada; Faculty of Medicine & Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
20
|
Harduin-Lepers A. The vertebrate sialylation machinery: structure-function and molecular evolution of GT-29 sialyltransferases. Glycoconj J 2023; 40:473-492. [PMID: 37247156 PMCID: PMC10225777 DOI: 10.1007/s10719-023-10123-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/09/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
Every eukaryotic cell is covered with a thick layer of complex carbohydrates with essential roles in their social life. In Deuterostoma, sialic acids present at the outermost positions of glycans of glycoconjugates are known to be key players in cellular interactions including host-pathogen interactions. Their negative charge and hydrophilic properties enable their roles in various normal and pathological states and their expression is altered in many diseases including cancers. Sialylation of glycoproteins and glycolipids is orchestrated by the regulated expression of twenty sialyltransferases in human tissues with distinct enzymatic characteristics and preferences for substrates and linkages formed. However, still very little is known on the functional organization of sialyltransferases in the Golgi apparatus and how the sialylation machinery is finely regulated to provide the ad hoc sialome to the cell. This review summarizes current knowledge on sialyltransferases, their structure-function relationships, molecular evolution, and their implications in human biology.
Collapse
Affiliation(s)
- Anne Harduin-Lepers
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
21
|
Humpfle L, Hachem NE, Simon P, Weinhold B, Galuska SP, Middendorff R. Knockout of the polysialyltransferases ST8SiaII and ST8SiaIV leads to a dilatation of rete testis during postnatal development. Front Physiol 2023; 14:1240296. [PMID: 37520830 PMCID: PMC10382229 DOI: 10.3389/fphys.2023.1240296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Polysialic acid (polySia) is a carbohydrate polymer that modulates several cellular processes, such as migration, proliferation and differentiation processes. In the brain, its essential impact during postnatal development is well known. However, in most other polySia positive organs, only its localization has been described so far. For instance, in the murine epididymis, smooth muscle cells of the epididymal duct are polysialylated during the first 2 weeks of postnatal development. To understand the role of polySia during the development of the epididymis, the consequences of its loss were investigated in postnatal polySia knockout mice. As expected, no polysialylation was visible in the absence of the polysialyltransferases ST8SiaII and ST8SiaIV. Interestingly, cGMP-dependent protein kinase I (PGK1), which is essentially involved in smooth muscle cell relaxation, was not detectable in peritubular smooth muscle cells when tissue sections of polySia knockout mice were analyzed by immunohistochemistry. In contrast to this signaling molecule, the structural proteins smooth muscle actin (SMA) and calponin were expressed. As shown before, in the duct system of the testis, even the expression of these structural proteins was impaired due to the loss of polySia. We now found that the rete testis, connecting the duct system of the testis and epididymis, was extensively dilated. The obtained data suggest that less differentiated smooth muscle cells of the testis and epididymis result in disturbed contractility and thus, fluid transport within the duct system visible in the enlarged rete testis.
Collapse
Affiliation(s)
- Luisa Humpfle
- Institute of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Nadim E. Hachem
- Institute of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Peter Simon
- Institute of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Giessen, Germany
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Birgit Weinhold
- Institute of Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
22
|
Gretenkort L, Thiesler H, Hildebrandt H. Neuroimmunomodulatory properties of polysialic acid. Glycoconj J 2023; 40:277-294. [PMID: 37171513 DOI: 10.1007/s10719-023-10120-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/16/2022] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Polymeric sialic acid (polysialic acid, polySia) is a remarkable posttranslational modification of only few select proteins. The major, and most prominent polySia protein carrier is the neural cell adhesion molecule NCAM. Here, the key functions of polySia are to regulate interactions of NCAM and to balance cellular interactions in brain development and plasticity. During recent years, however, increasing evidence points towards a role of polySia in the modulation of immune responses. These immunomodulatory functions can be mediated by polySia on proteins other than NCAM, presented either on the cell surface or released into the extracellular space. This perspective review summarizes our current knowledge and addresses major open questions on polySia and polySia receptors in modulating innate immune responses in the brain.
Collapse
Affiliation(s)
- Lina Gretenkort
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Hauke Thiesler
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Herbert Hildebrandt
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
23
|
Jin MY, Weaver TE, Farris A, Gupta M, Abd-Elsayed A. Neuromodulation for Peripheral Nerve Regeneration: Systematic Review of Mechanisms and In Vivo Highlights. Biomedicines 2023; 11:biomedicines11041145. [PMID: 37189763 DOI: 10.3390/biomedicines11041145] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
While denervation can occur with aging, peripheral nerve injuries are debilitating and often leads to a loss of function and neuropathic pain. Although injured peripheral nerves can regenerate and reinnervate their targets, this process is slow and directionless. There is some evidence supporting the use of neuromodulation to enhance the regeneration of peripheral nerves. This systematic review reported on the underlying mechanisms that allow neuromodulation to aid peripheral nerve regeneration and highlighted important in vivo studies that demonstrate its efficacy. Studies were identified from PubMed (inception through September 2022) and the results were synthesized qualitatively. Included studies were required to contain content related to peripheral nerve regeneration and some form of neuromodulation. Studies reporting in vivo highlights were subject to a risk of bias assessment using the Cochrane Risk of Bias tool. The results of 52 studies indicate that neuromodulation enhances natural peripheral nerve regeneration processes, but still requires other interventions (e.g., conduits) to control the direction of reinnervation. Additional human studies are warranted to verify the applicability of animal studies and to determine how neuromodulation can be optimized for the greatest functional restoration.
Collapse
Affiliation(s)
- Max Y Jin
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tristan E Weaver
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH 43214, USA
| | - Adam Farris
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH 43214, USA
| | - Mayank Gupta
- Kansas Pain Management & Neuroscience Research Center, Overland Park, KS 66210, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
24
|
Eidenberger L, Kogelmann B, Steinkellner H. Plant-based biopharmaceutical engineering. NATURE REVIEWS BIOENGINEERING 2023; 1:426-439. [PMID: 37317690 PMCID: PMC10030082 DOI: 10.1038/s44222-023-00044-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/24/2023]
Abstract
Plants can be engineered to recombinantly produce high-quality proteins such as therapeutic proteins and vaccines, also known as molecular farming. Molecular farming can be established in various settings with minimal cold-chain requirements and could thus ensure rapid and global-scale deployment of biopharmaceuticals, promoting equitable access to pharmaceuticals. State of the art plant-based engineering relies on rationally assembled genetic circuits, engineered to enable the high-throughput and rapid expression of multimeric proteins with complex post-translational modifications. In this Review, we discuss the design of expression hosts and vectors, including Nicotiana benthamiana, viral elements and transient expression vectors, for the production of biopharmaceuticals in plants. We examine engineering of post-translational modifications and highlight the plant-based expression of monoclonal antibodies and nanoparticles, such as virus-like particles and protein bodies. Techno-economic analyses suggest a cost advantage of molecular farming compared with mammalian cell-based protein production systems. However, regulatory challenges remain to be addressed to enable the widespread translation of plant-based biopharmaceuticals.
Collapse
Affiliation(s)
- Lukas Eidenberger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benjamin Kogelmann
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- acib — Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
25
|
Hunter C, Gao Z, Chen HM, Thompson N, Wakarchuk W, Nitz M, Withers SG, Willis LM. Attenuation of Polysialic Acid Biosynthesis in Cells by the Small Molecule Inhibitor 8-Keto-sialic acid. ACS Chem Biol 2023; 18:41-48. [PMID: 36577399 DOI: 10.1021/acschembio.2c00638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sialic acids are key mediators of cell function, particularly with regard to cellular interactions with the surrounding environment. Reagents that modulate the display of specific sialyl glycoforms at the cell surface would be useful biochemical tools and potentially allow for therapeutic intervention in numerous challenging chronic diseases. While multiple strategies are being explored for the control of cell surface sialosides, none that shows high selectivity between sialyltransferases or that targets a specific sialyl glycoform has yet to emerge. Here, we describe a strategy to block the formation of α2,8-linked sialic acid chains (oligo- and polysialic acid) through the use of 8-keto-sialic acid as a chain-terminating metabolic inhibitor that, if incorporated, cannot be elongated. 8-Keto-sialic acid is nontoxic at effective concentrations and serves to block polysialic acid synthesis in cancer cell lines and primary immune cells, with minimal effects on other sialyl glycoforms.
Collapse
Affiliation(s)
- Carmanah Hunter
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Zhizeng Gao
- Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, Canada
| | - Hong-Ming Chen
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, Canada
| | - Nicole Thompson
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Warren Wakarchuk
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, Canada
| | - Lisa M Willis
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| |
Collapse
|
26
|
Fono-Tamo EUK, Kamika I, Dewar JB, Lekota KE. Comparative Genomics Revealed a Potential Threat of Aeromonas rivipollensis G87 Strain and Its Antibiotic Resistance. Antibiotics (Basel) 2023; 12:131. [PMID: 36671332 PMCID: PMC9855013 DOI: 10.3390/antibiotics12010131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Aeromonas rivipollensis is an emerging pathogen linked to a broad range of infections in humans. Due to the inability to accurately differentiate Aeromonas species using conventional techniques, in-depth comparative genomics analysis is imperative to identify them. This study characterized 4 A. rivipollensis strains that were isolated from river water in Johannesburg, South Africa, by whole-genome sequencing (WGS). WGS was carried out, and taxonomic classification was employed to profile virulence and antibiotic resistance (AR). The AR profiles of the A. rivipollensis genomes consisted of betalactams and cephalosporin-resistance genes, while the tetracycline-resistance gene (tetE) was only determined to be in the G87 strain. A mobile genetic element (MGE), transposons TnC, was determined to be in this strain that mediates tetracycline resistance MFS efflux tetE. A pangenomic investigation revealed the G87 strain's unique characteristic, which included immunoglobulin A-binding proteins, extracellular polysialic acid, and exogenous sialic acid as virulence factors. The identified polysialic acid and sialic acid genes can be associated with antiphagocytic and antibactericidal properties, respectively. MGEs such as transposases introduce virulence and AR genes in the A. rivipollensis G87 genome. This study showed that A. rivipollensis is generally resistant to a class of beta-lactams and cephalosporins. MGEs pose a challenge in some of the Aeromonas species strains and are subjected to antibiotics resistance and the acquisition of virulence genes in the ecosystem.
Collapse
Affiliation(s)
- Esther Ubani K. Fono-Tamo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Johannesburg 1709, South Africa
| | - Ilunga Kamika
- Institute for Nanotechnology and Water Sustainability (iNanoWS), School of Science, College of Science, Engineering and Technology (CSET), University of South Africa, Florida Campus, Johannesburg 1709, South Africa
| | - John Barr Dewar
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Johannesburg 1709, South Africa
| | - Kgaugelo Edward Lekota
- Unit for Environmental Sciences and Management: Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
27
|
Abstract
The proper glycosylation of glycoproteins is important for their structure and function. This is an especially important consideration when choosing a platform to express recombinant glycoproteins destined for therapeutic use. Chinese hamster ovary (CHO) cells have been the choice expression platform for their ability to produce recombinant glycoproteins with glycosylation profiles similar to those observed in humans. However, consistency with glycosylation has been noted as problematic, and sialylation, an important modification in human glycoproteins, has not been achieved to an acceptable degree in CHO cells. Plant biotechnology and glycoengineering has now made it possible to produce therapeutic recombinant glycoproteins in plants with glycosylation profiles observed in humans, including sialylation. Furthermore, the glycosylation profiles of recombinant therapeutic glycoproteins produced in plants are homogenous and consistently reproducible. Here, entirely via transient expression, two therapeutic monoclonal antibodies are produced in glycoengineered Nicotiana benthamiana plants that carry human glycosylation profiles including sialylation.
Collapse
Affiliation(s)
- Adrian Esqueda
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Qiang Chen
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
28
|
Setting the stage for universal pharmacological targeting of the glycocalyx. CURRENT TOPICS IN MEMBRANES 2023; 91:61-88. [PMID: 37080681 DOI: 10.1016/bs.ctm.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
All cells in the human body are covered by a complex meshwork of sugars as well as proteins and lipids to which these sugars are attached, collectively termed the glycocalyx. Over the past few decades, the glycocalyx has been implicated in a range of vital cellular processes in health and disease. Therefore, it has attracted considerable interest as a therapeutic target. Considering its omnipresence and its relevance for various areas of cell biology, the glycocalyx should be a versatile platform for therapeutic intervention, however, the full potential of the glycocalyx as therapeutic target is yet to unfold. This might be attributable to the fact that glycocalyx alterations are currently discussed mainly in the context of specific diseases. In this perspective review, we shift the attention away from a disease-centered view of the glycocalyx, focusing on changes in glycocalyx state. Furthermore, we survey important glycocalyx-targeted drugs currently available and finally discuss future steps. We hope that this approach will inspire a unified, holistic view of the glycocalyx in disease, helping to stimulate novel glycocalyx-targeted therapy strategies.
Collapse
|
29
|
Milk Polysialic Acid Levels Rapidly Decrease in Line with the N-Acetylneuraminic Acid Concentrations during Early Lactation in Dairy Cows. BIOLOGY 2022; 12:biology12010005. [PMID: 36671698 PMCID: PMC9854834 DOI: 10.3390/biology12010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Sialylated milk oligosaccharides and glycoconjugates have several positive effects on the mucosal barrier, the gut microbiome, and an effective immune system. For this reason, they are important biomolecules for mammary gland health and optimal development of offspring. In milk, the major sialic acid, N-acetylneuraminic acid (Neu5Ac), can be attached as monosialyl-residues or as polymers. To investigate the sialylation processes during lactation of German Holstein cows, we analyzed udder tissue in addition to milk at different time points of lactation. The analysis of the milk samples revealed that both the levels of Neu5Ac and its polymer, polysialic acid (polySia), rapidly decreased during the first three days of lactation, and a high interindividual variance was observed. In mature milk, however, the sialylation status remains relatively constant. The results indicate that mammary gland epithelial cells are one source for milk polySia, since immunohistochemistry of udder tissue exhibited strong polySia staining in these cells. Furthermore, both polysialyltransferases, ST8SiaII and ST8SiaIV, are expressed. Based on known functions of monosialyl residues and polySia, we discuss the potential impact of these biomolecules and the consequences of the heterogeneous sialylation status of milk in relation to udder health and offspring health.
Collapse
|
30
|
Braatz D, Cherri M, Tully M, Dimde M, Ma G, Mohammadifar E, Reisbeck F, Ahmadi V, Schirner M, Haag R. Chemical Approaches to Synthetic Drug Delivery Systems for Systemic Applications. Angew Chem Int Ed Engl 2022; 61:e202203942. [PMID: 35575255 PMCID: PMC10091760 DOI: 10.1002/anie.202203942] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/10/2022]
Abstract
Poor water solubility and low bioavailability of active pharmaceutical ingredients (APIs) are major causes of friction in the pharmaceutical industry and represent a formidable hurdle for pharmaceutical drug development. Drug delivery remains the major challenge for the application of new small-molecule drugs as well as biopharmaceuticals. The three challenges for synthetic delivery systems are: (i) controlling drug distribution and clearance in the blood; (ii) solubilizing poorly water-soluble agents, and (iii) selectively targeting specific tissues. Although several polymer-based systems have addressed the first two demands and have been translated into clinical practice, no targeted synthetic drug delivery system has reached the market. This Review is designed to provide a background on the challenges and requirements for the design and translation of new polymer-based delivery systems. This report will focus on chemical approaches to drug delivery for systemic applications.
Collapse
Affiliation(s)
- Daniel Braatz
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Mariam Cherri
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Michael Tully
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Mathias Dimde
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Guoxin Ma
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Ehsan Mohammadifar
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Felix Reisbeck
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Vahid Ahmadi
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Michael Schirner
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Rainer Haag
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| |
Collapse
|
31
|
The Graphical Studies of the Major Molecular Interactions for Neural Cell Adhesion Molecule (NCAM) Polysialylation by Incorporating Wenxiang Diagram into NMR Spectroscopy. Int J Mol Sci 2022; 23:ijms232315128. [PMID: 36499451 PMCID: PMC9736422 DOI: 10.3390/ijms232315128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Polysialylation is a process of polysialic acid (polySia) addition to neural cell adhesion molecule (NCAM), which is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. Polysialylation can be catalyzed by two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST). It has been proposed that two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs, are possible binding sites for the intermolecular interactions of polyST-NCAM and polyST-polySia, respectively, as well as the intramolecular interaction of PSTD-PBR. In this study, Chou's wenxiang diagrams of the PSTD and PBR are used to determine the key amino acids of these intermolecular and intramolecular interactions, and thus it may be helpful for the identification of the crucial amino acids in the polyST and for the understanding of the molecular mechanism of NCAM polysialylation by incorporating the wenxiang diagram and molecular modeling into NMR spectroscopy.
Collapse
|
32
|
Xu S, Zhao M, Gu Z, Lu H, Liu Z. Photothermal Therapy of Neuroblastoma via Polysialic Acid-Targeting Nanomissiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201671. [PMID: 36161701 DOI: 10.1002/smll.202201671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/06/2022] [Indexed: 06/16/2023]
Abstract
Exploring new targets and developing novel targeted therapies are urgently needed for neuroblastoma therapy. Polysialic acid (polySia), a linear homopolymer of sialic acid units that correlates well with tumor progression and poor prognosis, has emerged as a potential target for neuroblastoma. However, the lack of polySia-specific binding reagents has severely limited the development of polySia-targeting therapeutics for neuroblastoma. Herein, the construction of polySia-targeting nanomissiles via molecular imprinting for the photothermal therapy of neuroblastoma is reported. Oligosialic acid (oligoSia) containing 3-4 units is considered as a characteristic structure for the recognition of polySia, while oligoSia containing 4-7 units digested from polySia is employed as the template. Via boronate-affinity controllable oriented surface imprinting, oligoSia-imprinted nanoparticles (oSia-MIP) are prepared. The oSia-MIP allows for specifically recognizing polySia and targeting polySia overexpressed neuroblastoma cells in vitro and in vivo. oSia-MIP loaded with indocyanine green is prepared and experimentally demonstrated to be a potent targeted photothermal therapeutic for neuroblastoma. Equipping the core substrate with functional entities, the developed polySia targeting nanoplatform can be accommodated to various therapeutic modalities, holding great promise for neuroblastoma targeted therapy.
Collapse
Affiliation(s)
- Shuxin Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Menghuan Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Zikuan Gu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Haifeng Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| |
Collapse
|
33
|
Gagiannis D, Scheil A, Gagiannis S, Hackenbroch C, Horstkorte R, Steinestel K. No Impact of PolySia-NCAM Expression on Treatment Response in Neuroendocrine Neoplasms of the Lung. Cancers (Basel) 2022; 14:cancers14184376. [PMID: 36139538 PMCID: PMC9497169 DOI: 10.3390/cancers14184376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Polysialic acids (polySia) are localized on the neuronal cell adhesion molecule (NCAM). They are expressed on numerous tumors of neural crest origin. These include lung neuroendocrine tumors such as atypical carcinoid, large cell neuroendocrine and small cell carcinomas. Interfering with polySia is considered a potential approach in the development of tumor therapies. In this study, we investigated whether polySia expression has an impact on disease progression, treatment response, and prognosis. To this end, tissue samples from 28 patients were analyzed by immunohistochemistry for polySia-NCAM presence. In conclusion, NCAM-polySia is not very useful as a prognostic factor for poor disease outcome. However, it is still interesting as a therarpeutic target for individual tumor therapy, as a majority of patients (78.6%) showed a strong staining signal for NCAM-polySia. Abstract Background: Polysialic acids (abbr. polySia) are found on numerous tumors, including neuroendocrine lung tumors. They have previously been shown to impact metastatic potential, as they can influence the signaling and adhesion properties of neuronal cell adhesion molecules (abbr. NCAM) and other cell adhesion molecules. Therefore, the aim of this small pilot study was to analyze whether there was a correlation between polySia-NCAM expression and specific clinical or histopathologic characteristics, and if polySia-NCAM expression had an impact on treatment response, disease progression and prognosis of lung neuroendocrine neoplasms. Methods: This work was based on an analysis of 28 digitized patient records and corresponding patient samples. The response to therapy was radiologically determined at the time of diagnosis and at certain intervals during therapy following the current RECIST1.1 and volumetric sphere calculation. To analyze whether polySia-NCAM expression had prognostic relevance, polySia-NCAM-positive and -negative cases were compared in a Kaplan-Meier survival analysis. Findings: A majority of 78.6% lung neuroendocrine neoplasms showed a strong staining signal for polySia-NCAM. There was a significant correlation between expression and histopathological grade (p = 0.0140), since carcinoids were less likely polySia-NCAM-positive compared to small cell lung carcinoma (abbr. SCLC) and large cell neuroendocrine carcinomas of the lung (abbr. LCNEC). There was no significant association between polySia-NCAM expression and clinical characteristics (age: p = 0.3405; gender: p = 0.6730; smoking history: p = 0.1145; ECOG: p = 0.1756, UICC8 stage: p = 0.1182) or radiologically determined disease progression, regardless of the criteria used to categorize response (RECIST 1.1: p = 0.0759; sphere: p = 0.0580). Furthermore, polySia-NCAM expression did not affect progression-free survival (p = 0.4198) or overall survival (p = 0.6918). Interpretation: PolySia-NCAM expression was more common in high-grade compared to low-grade neuroendocrine neoplasms of the lung; however, this small pilot study failed to show an association between polySia-NCAM expression and response to therapy.
Collapse
Affiliation(s)
- Daniel Gagiannis
- Department of Pulmonology, Bundeswehrkrankenhaus Ulm, 89081 Ulm, Germany
- Correspondence: ; Tel.: +49-731-1710-2901; Fax: +49-731-1710-2908
| | - Anna Scheil
- Department of Pulmonology, Bundeswehrkrankenhaus Ulm, 89081 Ulm, Germany
| | - Sarah Gagiannis
- Department of Neurology, Bundeswehrkrankenhaus Ulm, 89081 Ulm, Germany
| | | | - Ruediger Horstkorte
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Konrad Steinestel
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, 89081 Ulm, Germany
| |
Collapse
|
34
|
Rosa P, Scibetta S, Pepe G, Mangino G, Capocci L, Moons SJ, Boltje TJ, Fazi F, Petrozza V, Di Pardo A, Maglione V, Calogero A. Polysialic Acid Sustains the Hypoxia-Induced Migration and Undifferentiated State of Human Glioblastoma Cells. Int J Mol Sci 2022; 23:ijms23179563. [PMID: 36076963 PMCID: PMC9455737 DOI: 10.3390/ijms23179563] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 12/15/2022] Open
Abstract
Gliomas are the most common primary malignant brain tumors. Glioblastoma, IDH-wildtype (GBM, CNS WHO grade 4) is the most aggressive form of glioma and is characterized by extensive hypoxic areas that strongly correlate with tumor malignancy. Hypoxia promotes several processes, including stemness, migration, invasion, angiogenesis, and radio- and chemoresistance, that have direct impacts on treatment failure. Thus, there is still an increasing need to identify novel targets to limit GBM relapse. Polysialic acid (PSA) is a carbohydrate composed of a linear polymer of α2,8-linked sialic acids, primarily attached to the Neural Cell Adhesion Molecule (NCAM). It is considered an oncodevelopmental antigen that is re-expressed in various tumors. High levels of PSA-NCAM are associated with high-grade and poorly differentiated tumors. Here, we investigated the effect of PSA inhibition in GBM cells under low oxygen concentrations. Our main results highlight the way in which hypoxia stimulates polysialylation in U87-MG cells and in a GBM primary culture. By lowering PSA levels with the sialic acid analog, F-NANA, we also inhibited GBM cell migration and interfered with their differentiation influenced by the hypoxic microenvironment. Our findings suggest that PSA may represent a possible molecular target for the development of alternative pharmacological strategies to manage a devastating tumor like GBM.
Collapse
Affiliation(s)
- Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “Sapienza”, Polo Pontino, C.so della Repubblica 79, 04100 Latina, Italy
- Correspondence:
| | - Sofia Scibetta
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “Sapienza”, Polo Pontino, C.so della Repubblica 79, 04100 Latina, Italy
| | - Giuseppe Pepe
- IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, Italy
| | - Giorgio Mangino
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “Sapienza”, Polo Pontino, C.so della Repubblica 79, 04100 Latina, Italy
| | - Luca Capocci
- IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, Italy
| | - Sam J. Moons
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Thomas J. Boltje
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, University of Rome “Sapienza”, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Vincenzo Petrozza
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “Sapienza”, Polo Pontino, C.so della Repubblica 79, 04100 Latina, Italy
- ICOT, Istituto Chirurgico Ortopedico Traumatologico, Via F. Faggiana 1668, 04100 Latina, Italy
| | - Alba Di Pardo
- IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, Italy
| | | | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “Sapienza”, Polo Pontino, C.so della Repubblica 79, 04100 Latina, Italy
- ICOT, Istituto Chirurgico Ortopedico Traumatologico, Via F. Faggiana 1668, 04100 Latina, Italy
| |
Collapse
|
35
|
Soukhtehzari S, Berish RB, Fazli L, Watson PH, Williams KC. The different prognostic significance of polysialic acid and CD56 expression in tumor cells and lymphocytes identified in breast cancer. NPJ Breast Cancer 2022; 8:78. [PMID: 35780131 PMCID: PMC9250520 DOI: 10.1038/s41523-022-00442-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
Protein glycosylation, the attachment of carbohydrates onto proteins, is a fundamental process that alters the biological activity of proteins. Changes to glycosylation states are associated with many forms of cancer including breast cancer. Through immunohistological analysis of breast cancer patient tumors, we have discovered the expression of an atypical glycan-polysialic acid (polySia)-in breast cancer. Notably, we have identified polySia expression in not only tumor cells but also on tumor-infiltrating lymphocytes (TILs) and our study reveals ST8Sia4 as the predominant polysialyltransferase expressed. Evaluation of ST8Sia4 expression in tumor cells identified an association between high expression levels and poor patient outcomes whereas ST8Sia4 expression in infiltrating stromal cells was associated with good patient outcomes. Investigation into CD56, a protein known to be polysialylated, found CD56 and polySia expression on breast tumor cells and TILs. CD56 expression did not positively correlate with polySia expression except in patient tumors which expressed HER2. In these HER2 expressing tumors, CD56 expression was significantly associated with HER2 expression score. Evaluation of CD56 tumor cell expression identified a significant association between CD56 expression and poor patient outcomes. By contrast, CD56 expression on TILs was significantly associated with good clinical outcomes. Tumors with CD56+ TILs were also consistently polySia TIL positive. Interestingly, in tumors where TILs were CD56 low-to-negative, a polySia+ lymphocyte population was still identified and the presence of these lymphocytes was a poor prognostic indicator. Overall, this study provides the first detailed report of polySia and CD56 in breast cancer and demonstrates that the prognostic significance is dependent on the cell type expression within the tumor.
Collapse
Affiliation(s)
- Sepideh Soukhtehzari
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Richard B Berish
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Ladan Fazli
- Vancouver General Hospital and Department of Urologic Sciences, The University of British Columbia, Vancouver, V6H 3Z6, BC, Canada
| | - Peter H Watson
- Deeley Research Centre, BC Cancer Agency, Vancouver Island Centre, University of British Columbia, 2410 Lee Avenue, Victoria, BC, V8R 6V5, Canada
| | - Karla C Williams
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
36
|
Wang B, Li Z, Li J, Shao Q, Qin L. Sialin mediates submandibular gland regeneration ability by affecting polysialic acid synthesis. Oral Dis 2022. [PMID: 35593110 DOI: 10.1111/odi.14256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/27/2022] [Accepted: 05/12/2022] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Sialin is a multifunctional molecule with a well-described role in physiological equilibrium regulation. The aim of this study was to elucidate the role of sialin in salivary glands regeneration. MATERIALS AND METHODS Submandibular gland duct ligation/deligation of rat was performed to develop a rat model of submandibular gland regeneration. Phenotype changes were investigated using western blotting and quantitative real-time polymerase chain reaction, as well as immunohistochemical staining. LV-slc17a5-RNAi vectors were injected into the submandibular glands via retroductal instillation to establish a stable sialin knockdown model. RESULTS Submandibular gland tissue structure could completely restore 28 days after duct deligation, when the duct had been ligated for 7 days. The expression of sialin, polysialic acid, and polysialyltransferase IV was significantly increased on day 0 after duct deligation, and it returned to the level of the control group at day 28. Moreover, sialin knockdown could weakened gland regeneration by reducing polysialic acid synthesis. Supplementing drinking water with polysialic acid precursors (ManNAc) in drinking water could partially rescue submandibular gland regeneration in sialin knockdown rats. CONCLUSION These data indicated that sialin was vital for submandibular gland regeneration which mediated the process of gland regeneration by affecting the polysialic acid synthesis.
Collapse
Affiliation(s)
- Bin Wang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhilin Li
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.,Department of Head and Neck Oncology, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Qi Shao
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.,Department of Oral and Maxillofacial Surgery, Changsha Stomatological Hospital, You Yi Road No.389, Changsha, China
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
37
|
Liu F, Simpson AB, D'Costa E, Bunn FS, van Leeuwen SS. Sialic acid, the secret gift for the brain. Crit Rev Food Sci Nutr 2022; 63:9875-9894. [PMID: 35531941 DOI: 10.1080/10408398.2022.2072270] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The human brain grows rapidly in early life which requires adequate nutrition. Human milk provides optimal nutrition for the developing brain, and breastfeeding significantly improves the cognition development of infants. These benefits have been largely attributed to human milk oligosaccharides (HMOS), associated with sialic acid (Sia). Subsequently, sialylated HMOS present a vital source of exogenous Sia to infants. Sialic acid is a key molecule essential for proper development of gangliosides, and therefore critical in brain development and function. Recent pre-clinical studies suggest dietary supplementation with Sia or sialylated oligosaccharides enhances intelligence and cognition performance in early and later life. Furthermore, emerging evidence suggests the involvement of Sia in brain homeostasis and disbalance correlates with common pathologies such as Alzheimer's disease (AD). Therefore, this review will discuss early brain health and development and the role of Sia in this process. Additionally, studies associating breastfeeding and specific HMOS to benefits in cognitive development are critically assessed. Furthermore, the review will assess studies implying the potential role of HMOS and microbiota in brain development via the gut-brain axis. Finally, the review will summarize recent advances regarding the role of Sia in neurodegenerative disease in later life and potential roles of dietary Sia sources.
Collapse
Affiliation(s)
- Fan Liu
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anna Bella Simpson
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Esmée D'Costa
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fanny Sophia Bunn
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sander S van Leeuwen
- Department of Laboratory Medicine, Sector Human Nutrition and Health, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
38
|
Thiesler H, Küçükerden M, Gretenkort L, Röckle I, Hildebrandt H. News and Views on Polysialic Acid: From Tumor Progression and Brain Development to Psychiatric Disorders, Neurodegeneration, Myelin Repair and Immunomodulation. Front Cell Dev Biol 2022; 10:871757. [PMID: 35617589 PMCID: PMC9013797 DOI: 10.3389/fcell.2022.871757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/08/2022] [Indexed: 12/15/2022] Open
Abstract
Polysialic acid (polySia) is a sugar homopolymer consisting of at least eight glycosidically linked sialic acid units. It is a posttranslational modification of a limited number of proteins with the neural cell adhesion molecule NCAM being the most prominent. As extensively reviewed before, polySia-NCAM is crucial for brain development and synaptic plasticity but also modulates tumor growth and malignancy. Functions of polySia have been attributed to its polyanionic character, its spatial expansion into the extracellular space, and its modulation of NCAM interactions. In this mini-review, we first summarize briefly, how the modulation of NCAM functions by polySia impacts tumor cell growth and leads to malformations during brain development of polySia-deficient mice, with a focus on how the latter may be linked to altered behaviors in the mouse model and to neurodevelopmental predispositions to psychiatric disorders. We then elaborate on the implications of polySia functions in hippocampal plasticity, learning and memory of mice in light of recently described polySia changes related to altered neurogenesis in the aging human brain and in neurodegenerative disease. Furthermore, we highlight recent progress that extends the range of polySia functions across diverse fields of neurobiology such as cortical interneuron development and connectivity, myelination and myelin repair, or the regulation of microglia activity. We discuss possible common and distinct mechanisms that may underlie these seemingly divergent roles of polySia, and provide prospects for new therapeutic approaches building on our improved understanding of polySia functions.
Collapse
Affiliation(s)
| | | | | | | | - Herbert Hildebrandt
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
39
|
Hatanaka R, Araki E, Hane M, Go S, Wu D, Kitajima K, Sato C. The α2,8-sialyltransferase 6 (St8sia6) localizes in the ER and enhances the anchorage-independent cell growth in cancer. Biochem Biophys Res Commun 2022; 608:52-58. [PMID: 35390672 DOI: 10.1016/j.bbrc.2022.03.146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 01/06/2023]
Abstract
Sialylation, the final stage of post-translational modification of proteins, is achieved in the Golgi apparatus and is related to the malignant phenotype of cancer. Disialylation of ganglioside (GD3) by St8sia1 and polysialylation by St8sia2 and 4 have been shown to be related to malignant phenotypes; however, di/oligosialylation by St8sia6 is still unknown. In this study, we analyzed the malignant phenotype of St8sia6 and found that upregulation of St8sia6 in melanoma B16 cells increased anchorage-independent cell growth, which was not due to sialic acid cleavage by a sialidase. Moreover, unlike other sialyltransferases, St8sia6 localized to the endoplasmic reticulum (ER). We found that the localization to the Golgi apparatus could be regulated by swapping experiments using St8sia2; however, the malignant phenotype did not change. These data demonstrate that the enhancement of anchorage-independent cell growth by St8sia6 is not due to its localization of ER, but is due to the expression of the protein itself.
Collapse
Affiliation(s)
- Rina Hatanaka
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Erino Araki
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Integrated Glyco-Biomedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Masaya Hane
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Integrated Glyco-Biomedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Shiori Go
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Integrated Glyco-Biomedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Di Wu
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Integrated Glyco-Biomedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Integrated Glyco-Biomedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Integrated Glyco-Biomedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
40
|
Almahayni K, Spiekermann M, Fiore A, Yu G, Pedram K, Möckl L. Small molecule inhibitors of mammalian glycosylation. Matrix Biol Plus 2022; 16:100108. [PMID: 36467541 PMCID: PMC9713294 DOI: 10.1016/j.mbplus.2022.100108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 01/06/2023] Open
Abstract
Glycans are one of the fundamental biopolymers encountered in living systems. Compared to polynucleotide and polypeptide biosynthesis, polysaccharide biosynthesis is a uniquely combinatorial process to which interdependent enzymes with seemingly broad specificities contribute. The resulting intracellular cell surface, and secreted glycans play key roles in health and disease, from embryogenesis to cancer progression. The study and modulation of glycans in cell and organismal biology is aided by small molecule inhibitors of the enzymes involved in glycan biosynthesis. In this review, we survey the arsenal of currently available inhibitors, focusing on agents which have been independently validated in diverse systems. We highlight the utility of these inhibitors and drawbacks to their use, emphasizing the need for innovation for basic research as well as for therapeutic applications.
Collapse
Affiliation(s)
- Karim Almahayni
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Malte Spiekermann
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Antonio Fiore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Guoqiang Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kayvon Pedram
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA,Corresponding authors.
| | - Leonhard Möckl
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany,Corresponding authors.
| |
Collapse
|
41
|
Yin Z, Gao L, Zhu L, Peng X, Zhan X. New high-density fermentation method for producing high molecular weight polysialic acid based on the combination fermentation strategy. Appl Microbiol Biotechnol 2022; 106:2381-2391. [DOI: 10.1007/s00253-022-11874-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 11/29/2022]
|
42
|
Villanueva-Cabello TM, Gutiérrez-Valenzuela LD, Salinas-Marín R, López-Guerrero DV, Martínez-Duncker I. Polysialic Acid in the Immune System. Front Immunol 2022; 12:823637. [PMID: 35222358 PMCID: PMC8873093 DOI: 10.3389/fimmu.2021.823637] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/28/2021] [Indexed: 01/01/2023] Open
Abstract
Polysialic acid (polySia) is a highly regulated polymer of sialic acid (Sia) with such potent biophysical characteristics that when expressed drastically influences the interaction properties of cells. Although much of what is known of polySia in mammals has been elucidated from the study of its role in the central nervous system (CNS), polySia is also expressed in other tissues, including the immune system where it presents dynamic changes during differentiation, maturation, and activation of different types of immune cells of the innate and adaptive response, being involved in key regulatory mechanisms. At least six polySia protein carriers (CCR7, ESL-1, NCAM, NRP2, ST8Sia 2, and ST8Sia 4) are expressed in different types of immune cells, but there is still much to be explored in regard not only to the regulatory mechanisms that determine their expression and the structure of polySia chains but also to the identification of the cis- and trans- ligands of polySia that establish signaling networks. This review summarizes the current knowledge on polySia in the immune system, addressing its biosynthesis, its tools for identification and structural characterization, and its functional roles and therapeutic implications.
Collapse
Affiliation(s)
- Tania M. Villanueva-Cabello
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Lya D. Gutiérrez-Valenzuela
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Roberta Salinas-Marín
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | | | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- *Correspondence: Iván Martínez-Duncker,
| |
Collapse
|
43
|
Sande C, Whitfield C. Capsules and Extracellular Polysaccharides in Escherichia coli and Salmonella. EcoSal Plus 2021; 9:eESP00332020. [PMID: 34910576 PMCID: PMC11163842 DOI: 10.1128/ecosalplus.esp-0033-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022]
Abstract
Escherichia coli and Salmonella isolates produce a range of different polysaccharide structures that play important roles in their biology. E. coli isolates often possess capsular polysaccharides (K antigens), which form a surface structural layer. These possess a wide range of repeat-unit structures. In contrast, only one capsular polymer (Vi antigen) is found in Salmonella, and it is confined to typhoidal serovars. In both genera, capsules are vital virulence determinants and are associated with the avoidance of host immune defenses. Some isolates of these species also produce a largely secreted exopolysaccharide called colanic acid as part of their complex Rcs-regulated phenotypes, but the precise function of this polysaccharide in microbial cell biology is not fully understood. E. coli isolates produce two additional secreted polysaccharides, bacterial cellulose and poly-N-acetylglucosamine, which play important roles in biofilm formation. Cellulose is also produced by Salmonella isolates, but the genes for poly-N-acetylglucosamine synthesis appear to have been lost during its evolution toward enhanced virulence. Here, we discuss the structures, functions, relationships, and sophisticated assembly mechanisms for these important biopolymers.
Collapse
Affiliation(s)
- Caitlin Sande
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
44
|
Vaill M, Chen DY, Diaz S, Varki A. Improved methods to characterize the length and quantity of highly unstable PolySialic acids subject category: (Carbohydrates, chromatographic techniques). Anal Biochem 2021; 635:114426. [PMID: 34687617 DOI: 10.1016/j.ab.2021.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022]
Abstract
Polysialic acid (polySia) is a linear homopolymer of α2-8-linked sialic acids that is highly expressed during early stages of mammalian brain development and modulates a multitude of cellular functions. While degree of polymerization (DP) can affect such functions, currently available methods do not accurately characterize this parameter, because of the instability of the polymer. We developed two improved methods to characterize the DP and total polySia content in biological samples. PolySia chains with exposed reducing termini can be derivatized with DMB for subsequent HPLC analysis. However, application to biological samples of polySia-glycoproteins requires release of polySia chains from the underlying glycan, which is difficult to achieve without concurrent partial hydrolysis of the α2-8-linkages of the polySia chain, affecting its accurate characterization. We report an approach to protect internal α2-8sia linkages of long polySia chains, using previously known esterification conditions that generate stable polylactone structures. Such polylactonized molecules are more stable during acid hydrolysis release and acidic DMB derivatization. Additionally, we used the highly specific Endoneuraminidase-NF enzyme to discriminate polysialic acid and other sialic acid and developed an approach to precisely measure the total content of polySia in a biological sample. These two methods provide improved quantification and characterization of polySia.
Collapse
Affiliation(s)
- Michael Vaill
- Department of Cellular & Molecular Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Glycobiology Research and Training Center (GRTC), University of California, San Diego, La Jolla, CA, USA
| | - Dillon Y Chen
- Department of Cellular & Molecular Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Glycobiology Research and Training Center (GRTC), University of California, San Diego, La Jolla, CA, USA
| | - Sandra Diaz
- Department of Cellular & Molecular Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Glycobiology Research and Training Center (GRTC), University of California, San Diego, La Jolla, CA, USA
| | - Ajit Varki
- Department of Cellular & Molecular Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Glycobiology Research and Training Center (GRTC), University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
45
|
Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021; 13:5203. [PMID: 34680351 PMCID: PMC8534074 DOI: 10.3390/cancers13205203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Glycans linked to surface proteins are the most complex biological macromolecules that play an active role in various cellular mechanisms. This diversity is the basis of cell-cell interaction and communication, cell growth, cell migration, as well as co-stimulatory or inhibitory signaling. Our review describes the importance of neuraminic acid and its derivatives as recognition elements, which are located at the outermost positions of carbohydrate chains linked to specific glycoproteins or glycolipids. Tumor cells, especially from solid tumors, mask themselves by re-expression of hypersialylated neural cell adhesion molecule (NCAM), neuropilin-2 (NRP-2), or synaptic cell adhesion molecule 1 (SynCAM 1) in order to protect themselves against the cytotoxic attack of the also highly sialylated immune effector cells. More particularly, we focus on α-2,8-linked polysialic acid chains, which characterize carrier glycoproteins such as NCAM, NRP-2, or SynCam-1. This characteristic property correlates with an aggressive clinical phenotype and endows them with multiple roles in biological processes that underlie all steps of cancer progression, including regulation of cell-cell and/or cell-extracellular matrix interactions, as well as increased proliferation, migration, reduced apoptosis rate of tumor cells, angiogenesis, and metastasis. Specifically, re-expression of poly/oligo-sialylated adhesion molecules on the surface of tumor cells disrupts their interaction with immune-effector cells and contributes to pathophysiological immune escape. Further, sialylated glycoproteins induce immunoregulatory cytokines and growth factors through interactions with sialic acid-binding immunoglobulin-like lectins. We describe the processes, which modulate the interaction between sialylated carrier glycoproteins and their ligands, and illustrate that sialic acids could be targets of novel therapeutic strategies for treatment of cancer and immune diseases.
Collapse
Affiliation(s)
- Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah 11211, Saudi Arabia;
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2418 Hamar, Norway;
| | - Martin R. Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
46
|
Moh ESX, Nishtala K, Iqbal S, Staikopoulos V, Kapur D, Hutchinson MR, Packer NH. Long-term intrathecal administration of morphine vs. baclofen: Differences in CSF glycoconjugate profiles using multiglycomics. Glycobiology 2021; 32:50-59. [PMID: 34969075 DOI: 10.1093/glycob/cwab098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 11/13/2022] Open
Abstract
Opioid use for treatment of persistent pain has increased dramatically over the past two decades, but it has not resulted in improved pain management outcomes. To understand the molecular mechanisms of opioids, molecular signatures that arise from opioid exposure are often sought after, using various analytical methods. In this study, we performed proteomics, and multiglycomics via sequential analysis of polysialic acids, glycosaminoglycans, N-glycans and O-glycans, using the same cerebral spinal fluid (CSF) sample from patients that had long-term (>2 years), intrathecal morphine or baclofen administered via an indwelling pump. Proteomics and N-glycomics signatures between the two treatment groups were highly conserved, while significant differences were observed in polysialic acid, heparan sulfate glycosaminoglycan and O-glycan profiles between the two treatment groups. This represents the first study to investigate the potential relationships between diverse CSF conjugated glycans and long-term intrathecal drug exposure. The unique changes, observed by a sequential analytical workflow, reflect previously undescribed molecular effects of opioid administration and pain management.
Collapse
Affiliation(s)
- Edward S X Moh
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, New South Wales, 2109, Australia.,Department of Molecular Science, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Krishnatej Nishtala
- Department of Molecular Science, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Sameera Iqbal
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, New South Wales, 2109, Australia.,Department of Molecular Science, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Vasiliki Staikopoulos
- ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, South Australia, 5000, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Dilip Kapur
- Pain Management Unit, Flinders Medical Centre, Adelaide, South Australia, 5042, Australia
| | - Mark R Hutchinson
- ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, South Australia, 5000, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Nicolle H Packer
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, New South Wales, 2109, Australia.,Department of Molecular Science, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
47
|
Mindler K, Ostertag E, Stehle T. The polyfunctional polysialic acid: A structural view. Carbohydr Res 2021; 507:108376. [PMID: 34273862 DOI: 10.1016/j.carres.2021.108376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
Polysialic acid (polySia), a homopolymer of α2,8-linked sialic acid residues, modifies a small number of proteins and has central functions in vertebrate signalling. Here, we review the regulatory functions of polySia in signalling processes and the immune system of adult humans, as well as functions based on their chemical properties. The main focus will be on the structure-function relationship of polySia with its interaction partners in humans. Recent studies have indicated that the degree of polymerisation is an important parameter that can guide the regulatory effect of polySia in addition to its binding to target proteins. Therefore, the structures of polySia in solution and bound to interaction partners are compared in order to identify the key factors that define binding specificity.
Collapse
Affiliation(s)
- Katja Mindler
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076, Tübingen, Germany
| | - Elena Ostertag
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076, Tübingen, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
48
|
Lehti TA, Pajunen MI, Jokilammi A, Korja M, Lilie H, Vettenranta K, Finne J. Design of a Cytotoxic Neuroblastoma-Targeting Agent Using an Enzyme Acting on Polysialic Acid Fused to a Toxin. Mol Cancer Ther 2021; 20:1996-2007. [PMID: 34315766 DOI: 10.1158/1535-7163.mct-20-1031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
Polysialic acid, an abundant cell surface component of the developing nervous system, which declines rapidly postnatally to virtual absence in the majority of adult tissues, is highly expressed in some malignant tumors including neuroblastoma. We found that the binding of a noncatalytic endosialidase to polysialic acid causes internalization of the complex from the surface of neuroblastoma kSK-N-SH cells, a subline of SK-N-SH, and leads to a complete relocalization of polysialic acid to the intracellular compartment. The binding and uptake of the endosialidase is polysialic acid-dependent as it is inhibited by free excess ligand or removal of polysialic acid by active endosialidase, and does not happen if catalytic endosialidase is used in place of inactive endosialidase. A fusion protein composed of the noncatalytic endosialidase and the cytotoxic portion of diphtheria toxin was prepared to investigate whether the cellular uptake observed could be used for the specific elimination of polysialic acid-containing cells. The conjugate toxin was found to be toxic to polysialic acid-positive kSK-N-SH with an IC50 of 1.0 nmol/L. Replacing the noncatalytic endosialidase with active endosialidase decreased the activity to the level of nonconjugated toxin. Normal nonmalignant cells were selectively resistant to the toxin conjugate. The results demonstrate that noncatalytic endosialidase induces a quantitative removal and cellular uptake of polysialic acid from the cell surface which, by conjugation with diphtheria toxin fragment, can be exploited for the selective elimination of polysialic acid-containing tumor cells.
Collapse
Affiliation(s)
- Timo A Lehti
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Maria I Pajunen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anne Jokilammi
- Institute of Biomedicine, Cancer Laboratories and Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
| | - Miikka Korja
- Department of Neurosurgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kim Vettenranta
- University of Helsinki and Hospital for Children and Adolescents, Helsinki University Central Hospital, Helsinki, Finland
| | - Jukka Finne
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
49
|
Hachem NE, Humpfle L, Simon P, Kaese M, Weinhold B, Günther J, Galuska SP, Middendorff R. The Loss of Polysialic Acid Impairs the Contractile Phenotype of Peritubular Smooth Muscle Cells in the Postnatal Testis. Cells 2021; 10:1347. [PMID: 34072405 PMCID: PMC8230264 DOI: 10.3390/cells10061347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
In the testis, the germinal epithelium of seminiferous tubules is surrounded by contractile peritubular cells, which are involved in sperm transport. Interestingly, in postnatal testis, polysialic acid (polySia), which is also an essential player for the development of the brain, was observed around the tubules. Western blotting revealed a massive decrease of polySia from postnatal day 1 towards puberty, together with a fundamental reduction of the net-like intertubular polySia. Using polysialyltransferase knockout mice, we investigated the consequences of the loss of polySia in the postnatal testis. Compared to postnatal wild-type animals, polySia knockouts showed slightly reduced smooth muscle actin (SMA) immunostaining of peritubular smooth muscle cells (SMCs), while calponin, marking more differentiated SMCs, dramatically decreased. In contrast, testicular SMA and calponin immunostaining remained unchanged in vascular SMCs in all genotypes. In addition, the cGMP-dependent protein kinase PKG I, a key enzyme of SMC relaxation, was nearly undetectable in the peritubular SMCs. Cell proliferation in the peritubular layer increased significantly in the knockouts, as shown by proliferating cell nuclear anti (PCNA) staining. Taken together, in postnatal testis, the absence of polySia resulted in an impaired differentiation of peritubular, but not vascular, SMCs to a more synthetic phenotype. Thus, polySia might influence the maintenance of a differentiated phenotype of non-vascular SMCs.
Collapse
Affiliation(s)
- Nadim E. Hachem
- Department of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany; (N.E.H.); (L.H.)
| | - Luisa Humpfle
- Department of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany; (N.E.H.); (L.H.)
| | - Peter Simon
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstr. 24, 35392 Giessen, Germany; (P.S.); (M.K.)
| | - Miriam Kaese
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstr. 24, 35392 Giessen, Germany; (P.S.); (M.K.)
| | - Birgit Weinhold
- Institute of Clinical Biochemistry, OE 4340, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany;
| | - Juliane Günther
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Sebastian P. Galuska
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstr. 24, 35392 Giessen, Germany; (P.S.); (M.K.)
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Ralf Middendorff
- Department of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany; (N.E.H.); (L.H.)
| |
Collapse
|
50
|
Role of Glycans on Key Cell Surface Receptors That Regulate Cell Proliferation and Cell Death. Cells 2021; 10:cells10051252. [PMID: 34069424 PMCID: PMC8159107 DOI: 10.3390/cells10051252] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cells undergo proliferation and apoptosis, migration and differentiation via a number of cell surface receptors, most of which are heavily glycosylated. This review discusses receptor glycosylation and the known roles of glycans on the functions of receptors expressed in diverse cell types. We included growth factor receptors that have an intracellular tyrosine kinase domain, growth factor receptors that have a serine/threonine kinase domain, and cell-death-inducing receptors. N- and O-glycans have a wide range of functions including roles in receptor conformation, ligand binding, oligomerization, and activation of signaling cascades. A better understanding of these functions will enable control of cell survival and cell death in diseases such as cancer and in immune responses.
Collapse
|