1
|
Shao L, Shi R, Zhao Y, Liu H, Lu A, Ma J, Cai Y, Fuksenko T, Pelayo A, Shah NN, Kochenderfer JN, Norberg SM, Hinrichs C, Highfill SL, Somerville RP, Panch SR, Jin P, Stroncek DF. Genome-wide profiling of retroviral DNA integration and its effect on clinical pre-infusion CAR T-cell products. J Transl Med 2022; 20:514. [DOI: 10.1186/s12967-022-03729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Clinical CAR T-cell therapy using integrating vector systems represents a promising approach for the treatment of hematological malignancies. Lentiviral and γ-retroviral vectors are the most commonly used vectors in the manufacturing process. However, the integration pattern of these viral vectors and subsequent effect on CAR T-cell products is still unclear.
Methods
We used a modified viral integration sites analysis (VISA) pipeline to evaluate viral integration events around the whole genome in pre-infusion CAR T-cell products. We compared the differences of integration pattern between lentiviral and γ-retroviral products. We also explored whether the integration sites correlated with clinical outcomes.
Results
We found that γ-retroviral vectors were more likely to insert than lentiviral vectors into promoter, untranslated, and exon regions, while lentiviral vector integration sites were more likely to occur in intron and intergenic regions. Some integration events affected gene expression at the transcriptional and post-transcriptional level. Moreover, γ-retroviral vectors showed a stronger impact on the host transcriptome. Analysis of individuals with different clinical outcomes revealed genes with differential enrichment of integration events. These genes may affect biological functions by interrupting amino acid sequences and generating abnormal proteins, instead of by affecting mRNA expression. These results suggest that vector integration is associated with CAR T-cell efficacy and clinical responses.
Conclusion
We found differences in integration patterns, insertion hotspots and effects on gene expression vary between lentiviral and γ-retroviral vectors used in CAR T-cell products and established a foundation upon which we can conduct further analyses.
Collapse
|
2
|
HDAC inhibition prevents transgene expression downregulation and loss-of-function in T-cell-receptor-transduced T cells. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:352-363. [PMID: 33614916 PMCID: PMC7878989 DOI: 10.1016/j.omto.2021.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/20/2021] [Indexed: 01/22/2023]
Abstract
T cells that are gene-modified with tumor-specific T cell receptors are a promising treatment for metastatic melanoma patients. In a clinical trial, we treated seven metastatic melanoma patients with autologous T cells transduced to express a tyrosinase-reactive T cell receptor (TCR) (TIL 1383I) and a truncated CD34 molecule as a selection marker. We followed transgene expression in the TCR-transduced T cells after infusion and observed that both lentiviral- and retroviral-transduced T cells lost transgene expression over time, so that by 4 weeks post-transfer, few T cells expressed either lentiviral or retroviral transgenes. Transgene expression was reactivated by stimulation with anti-CD3/anti-CD28 beads and cytokines. TCR-transduced T cell lentiviral and retroviral transgene expression was also downregulated in vitro when T cells were cultured without cytokines. Transduced T cells cultured with interleukin (IL)-15 maintained transgene expression. Culturing gene-modified T cells in the presence of histone deacetylase (HDAC) inhibitors maintained transgene expression and functional TCR-transduced T cell responses to tumor. These results implicate epigenetic processes in the loss of transgene expression in lentiviral- and retroviral-transduced T cells.
Collapse
|
3
|
Capsid Lattice Destabilization Leads to Premature Loss of the Viral Genome and Integrase Enzyme during HIV-1 Infection. J Virol 2020; 95:JVI.00984-20. [PMID: 33115869 DOI: 10.1128/jvi.00984-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/24/2020] [Indexed: 01/28/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein forms a conical lattice around the viral ribonucleoprotein complex (vRNP) consisting of a dimeric viral genome and associated proteins, together constituting the viral core. Upon entry into target cells, the viral core undergoes a process termed uncoating, during which CA molecules are shed from the lattice. Although the timing and degree of uncoating are important for reverse transcription and integration, the molecular basis of this phenomenon remains unclear. Using complementary approaches, we assessed the impact of core destabilization on the intrinsic stability of the CA lattice in vitro and fates of viral core components in infected cells. We found that substitutions in CA can impact the intrinsic stability of the CA lattice in vitro in the absence of vRNPs, which mirrored findings from an assessment of CA stability in virions. Altering CA stability tended to increase the propensity to form morphologically aberrant particles, in which the vRNPs were mislocalized between the CA lattice and the viral lipid envelope. Importantly, destabilization of the CA lattice led to premature dissociation of CA from vRNPs in target cells, which was accompanied by proteasomal-independent losses of the viral genome and integrase enzyme. Overall, our studies show that the CA lattice protects the vRNP from untimely degradation in target cells and provide the mechanistic basis of how CA stability influences reverse transcription.IMPORTANCE The human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein forms a conical lattice around the viral RNA genome and the associated viral enzymes and proteins, together constituting the viral core. Upon infection of a new cell, viral cores are released into the cytoplasm where they undergo a process termed "uncoating," i.e., shedding of CA molecules from the conical lattice. Although proper and timely uncoating has been shown to be important for reverse transcription, the molecular mechanisms that link these two events remain poorly understood. In this study, we show that destabilization of the CA lattice leads to premature dissociation of CA from viral cores, which exposes the viral genome and the integrase enzyme for degradation in target cells. Thus, our studies demonstrate that the CA lattice protects the viral ribonucleoprotein complexes from untimely degradation in target cells and provide the first causal link between how CA stability affects reverse transcription.
Collapse
|
4
|
Macpherson AM, Barry SC, Ricciardelli C, Oehler MK. Epithelial Ovarian Cancer and the Immune System: Biology, Interactions, Challenges and Potential Advances for Immunotherapy. J Clin Med 2020; 9:E2967. [PMID: 32937961 PMCID: PMC7564553 DOI: 10.3390/jcm9092967] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in the understanding of immune function and the interactions with tumour cells have led to the development of various cancer immunotherapies and strategies for specific cancer types. However, despite some stunning successes with some malignancies such as melanomas and lung cancer, most patients receive little or no benefit from immunotherapy, which has been attributed to the tumour microenvironment and immune evasion. Although the US Food and Drug Administration have approved immunotherapies for some cancers, to date, only the anti-angiogenic antibody bevacizumab is approved for the treatment of epithelial ovarian cancer. Immunotherapeutic strategies for ovarian cancer are still under development and being tested in numerous clinical trials. A detailed understanding of the interactions between cancer and the immune system is vital for optimisation of immunotherapies either alone or when combined with chemotherapy and other therapies. This article, in two main parts, provides an overview of: (1) components of the normal immune system and current knowledge regarding tumour immunology, biology and their interactions; (2) strategies, and targets, together with challenges and potential innovative approaches for cancer immunotherapy, with attention given to epithelial ovarian cancer.
Collapse
Affiliation(s)
- Anne M. Macpherson
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Simon C. Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide 5005, Australia;
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Martin K. Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, Australia
| |
Collapse
|
5
|
Straetemans T, Janssen A, Jansen K, Doorn R, Aarts T, van Muyden ADD, Simonis M, Bergboer J, de Witte M, Sebestyen Z, Kuball J. TEG001 Insert Integrity from Vector Producer Cells until Medicinal Product. Mol Ther 2019; 28:561-571. [PMID: 31882320 DOI: 10.1016/j.ymthe.2019.11.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Despite extensive usage of gene therapy medicinal products (GTMPs) in clinical studies and recent approval of chimeric antigen receptor (CAR) T cell therapy, little information has been made available on the precise molecular characterization and possible variations in terms of insert integrity and vector copy numbers of different GTMPs during the complete production chain. Within this context, we characterize αβT cells engineered to express a defined γδT cell engineered to express a defined γδT receptor (TEG) currently used in a first-in-human clinical study (NTR6541). Utilizing targeted locus amplification in combination with next generation sequencing for the vector producer clone and TEG001 products, we report on five single-nucleotide variants and nine intact vector copies integrated in the producer clone. The vector copy number in TEG001 cells was on average a factor 0.72 (SD 0.11) below that of the producer cell clone. All nucleotide variants were transferred to TEG001 without having an effect on cellular proliferation during extensive in vitro culture. Based on an environmental risk assessment of the five nucleotide variants present in the non-coding viral region of the TEG001 insert, there was no altered environmental impact of TEG001 cells. We conclude that TEG001 cells do not have an increased risk for malignant transformation in vivo.
Collapse
Affiliation(s)
- Trudy Straetemans
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Anke Janssen
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Koen Jansen
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ruud Doorn
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Tineke Aarts
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Anna D D van Muyden
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | | | - Moniek de Witte
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Zsolt Sebestyen
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jurgen Kuball
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Read DF, Atindaana E, Pyaram K, Yang F, Emery S, Cheong A, Nakama KR, Burnett C, Larragoite ET, Battivelli E, Verdin E, Planelles V, Chang CH, Telesnitsky A, Kidd JM. Stable integrant-specific differences in bimodal HIV-1 expression patterns revealed by high-throughput analysis. PLoS Pathog 2019; 15:e1007903. [PMID: 31584995 PMCID: PMC6795456 DOI: 10.1371/journal.ppat.1007903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/16/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
HIV-1 gene expression is regulated by host and viral factors that interact with viral motifs and is influenced by proviral integration sites. Here, expression variation among integrants was followed for hundreds of individual proviral clones within polyclonal populations throughout successive rounds of virus and cultured cell replication, with limited findings using CD4+ cells from donor blood consistent with observations in immortalized cells. Tracking clonal behavior by proviral “zip codes” indicated that mutational inactivation during reverse transcription was rare, while clonal expansion and proviral expression states varied widely. By sorting for provirus expression using a GFP reporter in the nef open reading frame, distinct clone-specific variation in on/off proportions were observed that spanned three orders of magnitude. Tracking GFP phenotypes over time revealed that as cells divided, their progeny alternated between HIV transcriptional activity and non-activity. Despite these phenotypic oscillations, the overall GFP+ population within each clone was remarkably stable, with clones maintaining clone-specific equilibrium mixtures of GFP+ and GFP- cells. Integration sites were analyzed for correlations between genomic features and the epigenetic phenomena described here. Integrants inserted in the sense orientation of genes were more frequently found to be GFP negative than those in the antisense orientation, and clones with high GFP+ proportions were more distal to repressive H3K9me3 peaks than low GFP+ clones. Clones with low frequencies of GFP positivity appeared to expand more rapidly than clones for which most cells were GFP+, even though the tested proviruses were Vpr-. Thus, much of the increase in the GFP- population in these polyclonal pools over time reflected differential clonal expansion. Together, these results underscore the temporal and quantitative variability in HIV-1 gene expression among proviral clones that are conferred in the absence of metabolic or cell-type dependent variability, and shed light on cell-intrinsic layers of regulation that affect HIV-1 population dynamics. Very few HIV-1 infected cells persist in patients for more than a couple days, but those that do pose life-long health risks. Strategies designed to eliminate these cells have been based on assumptions about what viral properties allow infected cell survival. However, such approaches for HIV-1 eradication have not yet shown therapeutic promise, possibly because many assumptions about virus persistence are based on studies involving a limited number of infected cell types, the averaged behavior of cells in diverse populations, or snapshot views. Here, we developed a high-throughput approach to study hundreds of distinct HIV-1 infected cells and their progeny over time in an unbiased way. This revealed that each virus established its own pattern of gene expression that, upon infected cell division, was stably transmitted to all progeny cells. Expression patterns consisted of alternating waves of activity and inactivity, with the extent of activity differing among infected cell families over a 1000-fold range. The dynamics and variability among infected cells and within complex populations that the work here revealed has not previously been evident, and may help establish more accurate correlates of persistent HIV-1 infection.
Collapse
Affiliation(s)
- David F. Read
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Edmond Atindaana
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell & Molecular Biology, University of Ghana, Legon, Greater Accra Region, Ghana
| | - Kalyani Pyaram
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Feng Yang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sarah Emery
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Anna Cheong
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Katherine R. Nakama
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Cleo Burnett
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Erin T. Larragoite
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Emilie Battivelli
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Eric Verdin
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Vicente Planelles
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (C-HC); (AT); (JMK)
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (C-HC); (AT); (JMK)
| | - Jeffrey M. Kidd
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (C-HC); (AT); (JMK)
| |
Collapse
|
7
|
Minarovits J, Niller HH. Truncated oncoproteins of retroviruses and hepatitis B virus: A lesson in contrasts. INFECTION GENETICS AND EVOLUTION 2019; 73:342-357. [DOI: 10.1016/j.meegid.2019.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
|
8
|
A Novel Phenotype Links HIV-1 Capsid Stability to cGAS-Mediated DNA Sensing. J Virol 2019; 93:JVI.00706-19. [PMID: 31167922 DOI: 10.1128/jvi.00706-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/19/2019] [Indexed: 01/27/2023] Open
Abstract
The HIV-1 capsid executes essential functions that are regulated by capsid stability and host factors. In contrast to increasing knowledge on functional roles of capsid-interacting host proteins during postentry steps, less is known about capsid stability and its impact on intracellular events. Here, using the antiviral compound PF-3450074 (PF74) as a probe for capsid function, we uncovered a novel phenotype of capsid stability that has a profound effect on innate sensing of viral DNA by the DNA sensor cGAS. A single mutation, R143A, in the capsid protein conferred resistance to high concentrations of PF74, without affecting capsid binding to PF74. A cell-free assay showed that the R143A mutant partially counteracted the capsid-destabilizing activity of PF74, pointing to capsid stabilization as a resistance mechanism for the R143A mutant. In monocytic THP-1 cells, the R143A virus, but not the wild-type virus, suppressed cGAS-dependent innate immune activation. These results suggest that capsid stabilization improves the shielding of viral DNA from innate sensing. We found that a naturally occurring transmitted founder (T/F) variant shares the same properties as the R143A mutant with respect to PF74 resistance and DNA sensing. Imaging assays revealed delayed uncoating kinetics of this T/F variant and the R143A mutant. All these phenotypes of this T/F variant were controlled by a genetic polymorphism located at the trimeric interface between capsid hexamers, thus linking these capsid-dependent properties. Overall, this work functionally connects capsid stability to innate sensing of viral DNA and reveals naturally occurring phenotypic variation in HIV-1 capsid stability.IMPORTANCE The HIV-1 capsid, which is made from individual viral capsid proteins (CA), is a target for a number of antiviral compounds, including the small-molecule inhibitor PF74. In the present study, we utilized PF74 to identify a transmitted/founder (T/F) strain that shows increased capsid stability. Interestingly, PF74-resistant variants prevented cGAS-dependent innate immune activation under a condition where the other T/F strains induced type I interferon. These observations thus reveal a new CA-specific phenotype that couples capsid stability to viral DNA recognition by cytosolic DNA sensors.
Collapse
|
9
|
Jang YH, Park YS, Nam JS, Yang Y, Lee JE, Lee KH, Kang M, Chialastri A, Noh H, Park J, Lee JS, Lim KI. Nanotopography-based engineering of retroviral DNA integration patterns. NANOSCALE 2019; 11:5693-5704. [PMID: 30865198 DOI: 10.1039/c8nr07029f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Controlling the interactions between cells and viruses is critical for treating infected patients, preventing viral infections, and improving virus-based therapeutics. Chemical methods using small molecules and biological methods using proteins and nucleic acids are employed for achieving this control, albeit with limitations. We found, for the first time, that retroviral DNA integration patterns in the human genome, the result of complicated interactions between cells and viruses, can be engineered by adapting cells to the defined nanotopography of silica bead monolayers. Compared with cells on a flat glass surface, cells on beads with the highest curvature harbored retroviral DNAs at genomic sites near transcriptional start sites and CpG islands during infections at more than 50% higher frequencies. Furthermore, cells on the same type of bead layers contained retroviral DNAs in the genomic regions near cis-regulatory elements at frequencies that were 2.6-fold higher than that of cells on flat glass surfaces. Systems-level genetic network analysis showed that for cells on nanobeads with the highest curvature, the genes that would be affected by cis-regulatory elements near the retroviral integration sites perform biological functions related to chromatin structure and antiviral activities. Our unexpected observations suggest that novel engineering approaches based on materials with specific nanotopography can improve control over viral events.
Collapse
Affiliation(s)
- Yoon-Ha Jang
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, 04310, South Korea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Achuthan V, Perreira JM, Sowd GA, Puray-Chavez M, McDougall WM, Paulucci-Holthauzen A, Wu X, Fadel HJ, Poeschla EM, Multani AS, Hughes SH, Sarafianos SG, Brass AL, Engelman AN. Capsid-CPSF6 Interaction Licenses Nuclear HIV-1 Trafficking to Sites of Viral DNA Integration. Cell Host Microbe 2018; 24:392-404.e8. [PMID: 30173955 PMCID: PMC6368089 DOI: 10.1016/j.chom.2018.08.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/22/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
Abstract
HIV-1 integration into the host genome favors actively transcribed genes. Prior work indicated that the nuclear periphery provides the architectural basis for integration site selection, with viral capsid-binding host cofactor CPSF6 and viral integrase-binding cofactor LEDGF/p75 contributing to selection of individual sites. Here, by investigating the early phase of infection, we determine that HIV-1 traffics throughout the nucleus for integration. CPSF6-capsid interactions allow the virus to bypass peripheral heterochromatin and penetrate the nuclear structure for integration. Loss of interaction with CPSF6 dramatically alters virus localization toward the nuclear periphery and integration into transcriptionally repressed lamina-associated heterochromatin, while loss of LEDGF/p75 does not significantly affect intranuclear HIV-1 localization. Thus, CPSF6 serves as a master regulator of HIV-1 intranuclear localization by trafficking viral preintegration complexes away from heterochromatin at the periphery toward gene-dense chromosomal regions within the nuclear interior.
Collapse
Affiliation(s)
- Vasudevan Achuthan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jill M Perreira
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Gregory A Sowd
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Maritza Puray-Chavez
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - William M McDougall
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | - Xiaolin Wu
- Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Hind J Fadel
- Division of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Eric M Poeschla
- Division of Infectious Diseases, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Asha S Multani
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephen H Hughes
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Stefan G Sarafianos
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Abraham L Brass
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA; Gastroenterology Division, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Anderson M, Kashanchi F, Jacobson S. Role of Exosomes in Human Retroviral Mediated Disorders. J Neuroimmune Pharmacol 2018; 13:279-291. [PMID: 29656370 DOI: 10.1007/s11481-018-9784-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023]
Abstract
Retroviruses comprise an ancient and varied group of viruses with the unique ability to integrate DNA from an RNA transcript into the genome, a subset of which are able to integrate in humans. The timing of these integrations during human history has dictated whether these viruses have remained exogenous and given rise to various human diseases or have become inseparable from the host genome (endogenous retroviruses). Given the ability of retroviruses to integrate into the host and subsequently co-opt host cellular process for viral propagation, retroviruses have been shown to be closely associated with several cellular processes including exosome formation. Exosomes are 30-150 nm unilamellar extracellular vesicles that originate from intraluminal vesicles (ILVs) that form in the endosomal compartment. Exosomes have been shown to be important in intercellular communication and immune cell function. Almost every cell type studied has been shown to produce these types of vesicles, with the cell type dictating the contents, which include proteins, mRNA, and miRNAs. Importantly, recent evidence has shown that infection by viruses, including retroviruses, alter the contents and subsequent function of produced exosomes. In this review, we will discuss the important retroviruses associated with human health and disease. Furthermore, we will delve into the impact of exosome formation and manipulation by integrated retroviruses on human health, survival, and human retroviral disease pathogenesis.
Collapse
Affiliation(s)
- Monique Anderson
- National Institute of Neurological Disorders and Stroke, Neuroimmunology Branch, Viral Immunology Section, National Institutes of Health, Bethesda, MD, 20892, USA. .,Department of Pathology, Molecular and Cellular Basis of Disease Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
| | - Fatah Kashanchi
- National Center for Biodefense and Infectious Disease, Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Steven Jacobson
- National Institute of Neurological Disorders and Stroke, Neuroimmunology Branch, Viral Immunology Section, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
12
|
Rai SK, Sangesland M, Lee M, Esnault C, Cui Y, Chatterjee AG, Levin HL. Host factors that promote retrotransposon integration are similar in distantly related eukaryotes. PLoS Genet 2017; 13:e1006775. [PMID: 29232693 PMCID: PMC5741268 DOI: 10.1371/journal.pgen.1006775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/22/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
Retroviruses and Long Terminal Repeat (LTR)-retrotransposons have distinct patterns of integration sites. The oncogenic potential of retrovirus-based vectors used in gene therapy is dependent on the selection of integration sites associated with promoters. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is studied as a model for oncogenic retroviruses because it integrates into the promoters of stress response genes. Although integrases (INs) encoded by retroviruses and LTR-retrotransposons are responsible for catalyzing the insertion of cDNA into the host genome, it is thought that distinct host factors are required for the efficiency and specificity of integration. We tested this hypothesis with a genome-wide screen of host factors that promote Tf1 integration. By combining an assay for transposition with a genetic assay that measures cDNA recombination we could identify factors that contribute differentially to integration. We utilized this assay to test a collection of 3,004 S. pombe strains with single gene deletions. Using these screens and immunoblot measures of Tf1 proteins, we identified a total of 61 genes that promote integration. The candidate integration factors participate in a range of processes including nuclear transport, transcription, mRNA processing, vesicle transport, chromatin structure and DNA repair. Two candidates, Rhp18 and the NineTeen complex were tested in two-hybrid assays and were found to interact with Tf1 IN. Surprisingly, a number of pathways we identified were found previously to promote integration of the LTR-retrotransposons Ty1 and Ty3 in Saccharomyces cerevisiae, indicating the contribution of host factors to integration are common in distantly related organisms. The DNA repair factors are of particular interest because they may identify the pathways that repair the single stranded gaps flanking the sites of strand transfer following integration of LTR retroelements. Retroviruses and retrotransposons are genetic elements that propagate by integrating into chromosomes of eukaryotic cells. Genetic disorders are being treated with retrovirus-based vectors that integrate corrective genes into the chromosomes of patients. Unfortunately, the vectors can alter expression of adjacent genes and depending on the position of integration, cancer genes can be induced. It is therefore essential that we understand how integration sites are selected. Interestingly, different retroviruses and retrotransposons have different profiles of integration sites. While specific proteins have been identified that select target sites, it’s not known what other cellular factors promote integration. In this paper, we report a comprehensive screen of host factors that promote LTR-retrotransposon integration in the widely-studied yeast, Schizosaccharomyces pombe. Unexpectedly, we found a wide range of pathways and host factors participate in integration. And importantly, we found the cellular processes that promote integration relative to recombination in S. pombe are the same that drive integration of LTR-retrotransposons in the distantly related yeast Saccharomyces cerevisiae. This suggests a specific set of cellular pathways are responsible for integration in a wide range of eukaryotic hosts.
Collapse
Affiliation(s)
- Sudhir Kumar Rai
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Maya Sangesland
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Michael Lee
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Caroline Esnault
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Yujin Cui
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Atreyi Ghatak Chatterjee
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Henry L. Levin
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
13
|
Abstract
Advances in technology have made it possible to analyze integration sites in cells from HIV-infected patients. A significant fraction of infected cells in patients on long-term therapy are clonally expanded; in some cases the integrated viral DNA contributes to the clonal expansion of the infected cells. Although the large majority (>95%) of the HIV proviruses in treated patients are defective, expanded clones can carry replication-competent proviruses, and cells from these clones can release infectious virus. As discussed in this Perspective, it is likely that cells that produce virus are strongly selected against in vivo, and cells with replication competent proviruses expand and survive because only a small fraction of the cells produce virus. These findings have implications for strategies that are intended to eliminate the reservoir of infected cells that has made it almost impossible to cure HIV-infected patients.
Collapse
Affiliation(s)
- Stephen H Hughes
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA.
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
14
|
Scholz SJ, Fronza R, Bartholomä CC, Cesana D, Montini E, von Kalle C, Gil-Farina I, Schmidt M. Lentiviral Vector Promoter is Decisive for Aberrant Transcript Formation. Hum Gene Ther 2017; 28:875-885. [PMID: 28825370 DOI: 10.1089/hum.2017.162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lentiviral vectors hold great promise for the genetic correction of various inherited diseases. However, lentiviral vector biology is still not completely understood and warrants the precise decoding of molecular mechanisms underlying integration and post-translational modification. This study investigated a series of self-inactivating (SIN) and full long terminal repeat (LTR) lentiviral vectors that contained different types of promoters with or without a transgene to gain deeper insights in lentiviral target site selection and potential perturbation of cellular gene expression. Using an optimized nonrestrictive linear amplification-mediated polymerase chain reaction (nrLAM-PCR) protocol, vector structure-dependent integration site profiles were observed upon transduction of mouse lin- hematopoietic progenitors in vitro. Initial target site selection mainly depended on the presence of the promoter while being independent of its nature. Despite the increased propensity for read-through transcription of SIN lentiviral vectors, the incidence of viral-cellular fusion transcript formation involving the canonical viral splice donor or cryptic splice sites was reduced in both unselected primary lin- cells and transformed 32D cells. Moreover, the strength of the internal promoter in vectors with SIN LTRs is decisive for in vitro selection and for the abundance of chimeric transcripts, which are decreased by moderately active promoters. These results will help to better understand vector biology and to optimize therapeutic vectors for future gene therapy applications.
Collapse
Affiliation(s)
- Simone J Scholz
- 1 Department of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases , Heidelberg, Germany
| | - Raffaele Fronza
- 1 Department of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases , Heidelberg, Germany .,2 GeneWerk GmbH, Heidelberg, Germany
| | - Cynthia C Bartholomä
- 1 Department of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases , Heidelberg, Germany
| | - Daniela Cesana
- 3 San Raffaele Telethon Institute for Gene Therapy , Milan, Italy
| | - Eugenio Montini
- 3 San Raffaele Telethon Institute for Gene Therapy , Milan, Italy
| | - Christof von Kalle
- 1 Department of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases , Heidelberg, Germany
| | - Irene Gil-Farina
- 1 Department of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases , Heidelberg, Germany
| | - Manfred Schmidt
- 1 Department of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases , Heidelberg, Germany .,2 GeneWerk GmbH, Heidelberg, Germany
| |
Collapse
|
15
|
Suryawanshi GW, Xu S, Xie Y, Chou T, Kim N, Chen ISY, Kim S. Bidirectional Retroviral Integration Site PCR Methodology and Quantitative Data Analysis Workflow. J Vis Exp 2017. [PMID: 28654067 DOI: 10.3791/55812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Integration Site (IS) assays are a critical component of the study of retroviral integration sites and their biological significance. In recent retroviral gene therapy studies, IS assays, in combination with next-generation sequencing, have been used as a cell-tracking tool to characterize clonal stem cell populations sharing the same IS. For the accurate comparison of repopulating stem cell clones within and across different samples, the detection sensitivity, data reproducibility, and high-throughput capacity of the assay are among the most important assay qualities. This work provides a detailed protocol and data analysis workflow for bidirectional IS analysis. The bidirectional assay can simultaneously sequence both upstream and downstream vector-host junctions. Compared to conventional unidirectional IS sequencing approaches, the bidirectional approach significantly improves IS detection rates and the characterization of integration events at both ends of the target DNA. The data analysis pipeline described here accurately identifies and enumerates identical IS sequences through multiple steps of comparison that map IS sequences onto the reference genome and determine sequencing errors. Using an optimized assay procedure, we have recently published the detailed repopulation patterns of thousands of Hematopoietic Stem Cell (HSC) clones following transplant in rhesus macaques, demonstrating for the first time the precise time point of HSC repopulation and the functional heterogeneity of HSCs in the primate system. The following protocol describes the step-by-step experimental procedure and data analysis workflow that accurately identifies and quantifies identical IS sequences.
Collapse
Affiliation(s)
- Gajendra W Suryawanshi
- UCLA AIDS Institute, University of California at Los Angeles (UCLA); Department of Microbiology, Immunology, & Molecular Genetics, University of California at Los Angeles (UCLA)
| | - Song Xu
- Departments of Biomathematics and Mathematics, University of California at Los Angeles (UCLA)
| | - Yiming Xie
- UCLA AIDS Institute, University of California at Los Angeles (UCLA)
| | - Tom Chou
- Departments of Biomathematics and Mathematics, University of California at Los Angeles (UCLA)
| | - Namshin Kim
- Personalized Genomic Medicine Research Center, Division of Strategic Research Groups, Korea Research Institute of Bioscience and Biotechnology
| | - Irvin S Y Chen
- UCLA AIDS Institute, University of California at Los Angeles (UCLA); Department of Medicine, University of California at Los Angeles (UCLA);
| | - Sanggu Kim
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University (OSU);
| |
Collapse
|
16
|
GCN2 phosphorylates HIV-1 integrase and decreases HIV-1 replication by limiting viral integration. Sci Rep 2017; 7:2283. [PMID: 28536474 PMCID: PMC5442153 DOI: 10.1038/s41598-017-02276-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
GCN2 is a serine/threonine kinase involved in cellular stress response related to amino acid starvation. Previously, we showed that GCN2 interacts with HIV-1 integrase and is activated during HIV-1 infection. Herein, we identified HIV-1 integrase as a previously unknown substrate of GCN2 in vitro with a major site of phosphorylation at residue S255 located in the C-terminal domain of HIV-1 integrase. The underlying mechanism was investigated and it appeared that the integrase active site was required in order for GCN2 to target the integrase residue S255. Moreover, various integrases from other retroviruses (e.g. MLV, ASV) were also recognized as a substrate by GCN2. In cells, HIV-1 lentiviral particles harboring mutation at integrase position 255 were affected in their replication. Preventing phosphorylation resulted in an increase in infectivity that correlated with an increase in viral DNA integration. Infectivity of MLV was also higher in cells knocked-out for GCN2 suggesting a conserved mechanism to control viral replication. Altogether, our data suggest that GCN2 may constitute a general guardian of genome stability by regulating foreign DNA integration and as such be part of the antiviral armamentarium of the cell.
Collapse
|
17
|
Grawenhoff J, Engelman AN. Retroviral integrase protein and intasome nucleoprotein complex structures. World J Biol Chem 2017; 8:32-44. [PMID: 28289517 PMCID: PMC5329712 DOI: 10.4331/wjbc.v8.i1.32] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/24/2016] [Accepted: 01/14/2017] [Indexed: 02/05/2023] Open
Abstract
Retroviral replication proceeds through the integration of a DNA copy of the viral RNA genome into the host cellular genome, a process that is mediated by the viral integrase (IN) protein. IN catalyzes two distinct chemical reactions: 3’-processing, whereby the viral DNA is recessed by a di- or trinucleotide at its 3’-ends, and strand transfer, in which the processed viral DNA ends are inserted into host chromosomal DNA. Although IN has been studied as a recombinant protein since the 1980s, detailed structural understanding of its catalytic functions awaited high resolution structures of functional IN-DNA complexes or intasomes, initially obtained in 2010 for the spumavirus prototype foamy virus (PFV). Since then, two additional retroviral intasome structures, from the α-retrovirus Rous sarcoma virus (RSV) and β-retrovirus mouse mammary tumor virus (MMTV), have emerged. Here, we briefly review the history of IN structural biology prior to the intasome era, and then compare the intasome structures of PFV, MMTV and RSV in detail. Whereas the PFV intasome is characterized by a tetrameric assembly of IN around the viral DNA ends, the newer structures harbor octameric IN assemblies. Although the higher order architectures of MMTV and RSV intasomes differ from that of the PFV intasome, they possess remarkably similar intasomal core structures. Thus, retroviral integration machineries have adapted evolutionarily to utilize disparate IN elements to construct convergent intasome core structures for catalytic function.
Collapse
|
18
|
Melkova Z, Shankaran P, Madlenakova M, Bodor J. Current views on HIV-1 latency, persistence, and cure. Folia Microbiol (Praha) 2016; 62:73-87. [PMID: 27709447 DOI: 10.1007/s12223-016-0474-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023]
Abstract
HIV-1 infection cannot be cured as it persists in latently infected cells that are targeted neither by the immune system nor by available therapeutic approaches. Consequently, a lifelong therapy suppressing only the actively replicating virus is necessary. The latent reservoir has been defined and characterized in various experimental models and in human patients, allowing research and development of approaches targeting individual steps critical for HIV-1 latency establishment, maintenance, and reactivation. However, additional mechanisms and processes driving the remaining low-level HIV-1 replication in the presence of the suppressive therapy still remain to be identified and targeted. Current approaches toward HIV-1 cure involve namely attempts to reactivate and purge HIV latently infected cells (so-called "shock and kill" strategy), as well as approaches involving gene therapy and/or gene editing and stem cell transplantation aiming at generation of cells resistant to HIV-1. This review summarizes current views and concepts underlying different approaches aiming at functional or sterilizing cure of HIV-1 infection.
Collapse
Affiliation(s)
- Zora Melkova
- Department of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studnickova 7, 128 00, Prague 2, Czech Republic. .,BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50, Vestec, Czech Republic.
| | - Prakash Shankaran
- Department of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studnickova 7, 128 00, Prague 2, Czech Republic
| | - Michaela Madlenakova
- Department of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studnickova 7, 128 00, Prague 2, Czech Republic.,BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Josef Bodor
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50, Vestec, Czech Republic
| |
Collapse
|
19
|
Pasi M, Mornico D, Volant S, Juchet A, Batisse J, Bouchier C, Parissi V, Ruff M, Lavery R, Lavigne M. DNA minicircles clarify the specific role of DNA structure on retroviral integration. Nucleic Acids Res 2016; 44:7830-47. [PMID: 27439712 PMCID: PMC5027509 DOI: 10.1093/nar/gkw651] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/11/2016] [Indexed: 01/26/2023] Open
Abstract
Chromatin regulates the selectivity of retroviral integration into the genome of infected cells. At the nucleosome level, both histones and DNA structure are involved in this regulation. We propose a strategy that allows to specifically study a single factor: the DNA distortion induced by the nucleosome. This strategy relies on mimicking this distortion using DNA minicircles (MCs) having a fixed rotational orientation of DNA curvature, coupled with atomic-resolution modeling. Contrasting MCs with linear DNA fragments having identical sequences enabled us to analyze the impact of DNA distortion on the efficiency and selectivity of integration. We observed a global enhancement of HIV-1 integration in MCs and an enrichment of integration sites in the outward-facing DNA major grooves. Both of these changes are favored by LEDGF/p75, revealing a new, histone-independent role of this integration cofactor. PFV integration is also enhanced in MCs, but is not associated with a periodic redistribution of integration sites, thus highlighting its distinct catalytic properties. MCs help to separate the roles of target DNA structure, histone modifications and integrase (IN) cofactors during retroviral integration and to reveal IN-specific regulation mechanisms.
Collapse
Affiliation(s)
- Marco Pasi
- MMSB UMR5086 University of Lyon I/CNRS, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, Lyon 69367, France
| | - Damien Mornico
- Institut Pasteur-Bioinformatics and Biostatistics Hub-C3BI, USR 3756 IP-CNRS, Paris 75015, France
| | - Stevenn Volant
- Institut Pasteur-Bioinformatics and Biostatistics Hub-C3BI, USR 3756 IP-CNRS, Paris 75015, France
| | - Anna Juchet
- Institut Pasteur, Unité de Virologie Moléculaire et Vaccinologie, UMR 3569 IP-CNRS, Paris 75015, France
| | - Julien Batisse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Dpt de Biologie Structurale Intégrative, UDS, U596 INSERM, UMR7104 CNRS, Illkirch 67400, France
| | - Christiane Bouchier
- Institut Pasteur, PF1, Plate-forme Génomique-Pôle Biomics, Citech, Paris 75015, France
| | - Vincent Parissi
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, UMR 5234 CNRS-Université de Bordeaux, Bordeaux 33000, France
| | - Marc Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Dpt de Biologie Structurale Intégrative, UDS, U596 INSERM, UMR7104 CNRS, Illkirch 67400, France
| | - Richard Lavery
- MMSB UMR5086 University of Lyon I/CNRS, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, Lyon 69367, France
| | - Marc Lavigne
- Institut Pasteur, Unité de Virologie Moléculaire et Vaccinologie, UMR 3569 IP-CNRS, Paris 75015, France
| |
Collapse
|
20
|
Shao W, Shan J, Kearney MF, Wu X, Maldarelli F, Mellors JW, Luke B, Coffin JM, Hughes SH. Retrovirus Integration Database (RID): a public database for retroviral insertion sites into host genomes. Retrovirology 2016; 13:47. [PMID: 27377064 PMCID: PMC4932684 DOI: 10.1186/s12977-016-0277-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/17/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The NCI Retrovirus Integration Database is a MySql-based relational database created for storing and retrieving comprehensive information about retroviral integration sites, primarily, but not exclusively, HIV-1. The database is accessible to the public for submission or extraction of data originating from experiments aimed at collecting information related to retroviral integration sites including: the site of integration into the host genome, the virus family and subtype, the origin of the sample, gene exons/introns associated with integration, and proviral orientation. Information about the references from which the data were collected is also stored in the database. Tools are built into the website that can be used to map the integration sites to UCSC genome browser, to plot the integration site patterns on a chromosome, and to display provirus LTRs in their inserted genome sequence. The website is robust, user friendly, and allows users to query the database and analyze the data dynamically. AVAILABILITY https://rid.ncifcrf.gov ; or http://home.ncifcrf.gov/hivdrp/resources.htm .
Collapse
Affiliation(s)
- Wei Shao
- />Advanced Biomedical Computing Center, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD USA
| | - Jigui Shan
- />Advanced Biomedical Computing Center, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD USA
| | - Mary F. Kearney
- />HIV Dynamics and Replication Program, NCI, Frederick, MD USA
| | - Xiaolin Wu
- />Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD USA
| | | | - John W. Mellors
- />Division of Infectious Disease, University of Pittsburgh, Pittsburgh, PA USA
| | - Brian Luke
- />Advanced Biomedical Computing Center, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD USA
| | - John M. Coffin
- />Department of Molecular Biology and Microbiology, Tufts University, Boston, MA USA
| | | |
Collapse
|
21
|
Lucic B, Lusic M. Connecting HIV-1 integration and transcription: a step toward new treatments. FEBS Lett 2016; 590:1927-39. [PMID: 27224516 DOI: 10.1002/1873-3468.12226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022]
Abstract
Thanks to the current combined antiretroviral therapy (cART), HIV-1 infection has become a manageable although chronic disease. The reason for this lies in the fact that long-lived cellular reservoirs persist in patients on cART. Despite numerous efforts to understand molecular mechanisms that contribute to viral latency, the important question of how and when latency is established remains unanswered. Related to this is the connection between HIV-1 integration and the capacity of the provirus to enter the latent state. In this review, we will give an overview of these nuclear events in the viral life cycle in the light of current therapeutic approaches, which aim to either reactivate the provirus or even excise the proviral DNA from the cellular genome.
Collapse
Affiliation(s)
- Bojana Lucic
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg and German Center for Infection Research (DZIF), Germany
| | - Marina Lusic
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg and German Center for Infection Research (DZIF), Germany
| |
Collapse
|