1
|
Pharmacological properties of indirubin and its derivatives. Biomed Pharmacother 2022; 151:113112. [PMID: 35598366 DOI: 10.1016/j.biopha.2022.113112] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/23/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Indirubin is the main bioactive component of the traditional Chinese medicine Indigo naturalis and is a bisindole alkaloid. Multiple studies have shown that indirubin exhibits good anticancer, anti-inflammatory and neuroprotective properties. METHODS The purpose of this review is to provide a summary of the pharmacological mechanisms of indirubin and its derivatives. RESULTS Indirubin and its derivatives exert anticancer effects by regulating the expression of cyclin-dependent kinases (CDKs), GSK-3β, Bax, Bcl-2, C-MYC, matrix metalloproteinases (MMPs), and focal adhesion kinase (FAK) through the PI3K/AKT/mTOR, nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK), JAK/signal transducer and activator of transcription 3 (STAT3) pathways and other signaling pathways. We also reviewed the anti-inflammatory and neuroprotective properties of indirubin and its derivatives. CONCLUSION The findings of recent studies assessing indirubin and its derivatives suggest that these compounds can be used as potential drugs to treat tumors, inflammation, neuropathy and bacterial infection.
Collapse
|
2
|
Czapka A, Grune C, Schädel P, Bachmann V, Scheuer K, Dirauf M, Weber C, Skaltsounis AL, Jandt KD, Schubert US, Fischer D, Werz O. Drug delivery of 6-bromoindirubin-3'-glycerol-oxime ether employing poly(D,L-lactide-co-glycolide)-based nanoencapsulation techniques with sustainable solvents. J Nanobiotechnology 2022; 20:5. [PMID: 34983538 PMCID: PMC8725458 DOI: 10.1186/s12951-021-01179-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Insufficient solubility and stability of bioactive small molecules as well as poor biocompatibility may cause low bioavailability and are common obstacles in drug development. One example of such problematic molecules is 6-bromoindirubin-3'-glycerol-oxime ether (6BIGOE), a hydrophobic indirubin derivative. 6BIGOE potently modulates the release of inflammatory cytokines and lipid mediators from isolated human monocytes through inhibition of glycogen synthase kinase-3 in a favorable fashion. However, 6BIGOE suffers from poor solubility and short half-lives in biological aqueous environment and exerts cytotoxic effects in various mammalian cells. In order to overcome the poor water solubility, instability and cytotoxicity of 6BIGOE, we applied encapsulation into poly(D,L-lactide-co-glycolide) (PLGA)-based nanoparticles by employing formulation methods using the sustainable solvents Cyrene™ or 400 g/mol poly(ethylene glycol) as suitable technology for efficient drug delivery of 6BIGOE. RESULTS For all preparation techniques the physicochemical characterization of 6BIGOE-loaded nanoparticles revealed comparable crystallinity, sizes of about 230 nm with low polydispersity, negative zeta potentials around - 15 to - 25 mV, and biphasic release profiles over up to 24 h. Nanoparticles with improved cellular uptake and the ability to mask cytotoxic effects of 6BIGOE were obtained as shown in human monocytes over 48 h as well as in a shell-less hen's egg model. Intriguingly, encapsulation into these nanoparticles fully retains the anti-inflammatory properties of 6BIGOE, that is, favorable modulation of the release of inflammation-relevant cytokines and lipid mediators from human monocytes. CONCLUSIONS Our formulation method of PLGA-based nanoparticles by applying sustainable, non-toxic solvents is a feasible nanotechnology that circumvents the poor bioavailability and biocompatibility of the cargo 6BIGOE. This technology yields favorable drug delivery systems for efficient interference with inflammatory processes, with improved pharmacotherapeutic potential.
Collapse
Affiliation(s)
- Anna Czapka
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Christian Grune
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany
| | - Patrick Schädel
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Vivien Bachmann
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Karl Scheuer
- Chair of Materials Science (CMS), Faculty of Physics and Astronomy, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
| | - Michael Dirauf
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacy, Division of Pharmacognosy and Natural Products Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Klaus D Jandt
- Chair of Materials Science (CMS), Faculty of Physics and Astronomy, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Dagmar Fischer
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.
- Division of Pharmaceutical Technology, Department for Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany.
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.
| |
Collapse
|
3
|
Park JS, Jung IA, Choi HS, Kim DH, Choi HI, Bae EH, Ma SK, Kim SW. Anti-fibrotic effect of 6-bromo-indirubin-3'-oxime (6-BIO) via regulation of activator protein-1 (AP-1) and specificity protein-1 (SP-1) transcription factors in kidney cells. Biomed Pharmacother 2022; 145:112402. [PMID: 34773763 DOI: 10.1016/j.biopha.2021.112402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
PAI-1 and CTGF are overexpressed in kidney diseases and cause fibrosis of the lungs, liver, and kidneys. We used a rat model of unilateral ureteral obstruction (UUO) to investigate whether 6-BIO, a glycogen synthase kinase-3β inhibitor, attenuated fibrosis by inhibiting PAI-1 and CTGF in vivo. Additionally, TGFβ-induced cellular fibrosis was observed in vitro using the human kidney proximal tubular epithelial cells (HK-2), and rat interstitial fibroblasts (NRK49F). Expression of fibrosis-related proteins and signaling molecules such as PAI-1, CTGF, TGFβ, αSMA, SMAD, and MAPK were determined in HK-2 and NRK49F cells using immunoblotting. To identify the transcription factors that regulate the expression of PAI-1 and CTGF the promoter activities of AP-1 and SP-1 were analyzed using luciferase assays. Confocal microscopy was used to observe the co-localization of AP-1 and SP-1 to PAI-1 and CTGF. Expression of PAI-1, CTGF, TGFβ, and α-SMA increased in UUO model as well as in TGFβ-treated HK-2 and NRK49F cells. Furthermore, UUO and TGFβ treatment induced the activation of P-SMAD2/3, SMAD4, P-ERK 1/2, P-P38, and P-JNK MAPK signaling pathways. PAI-1, CTGF, AP-1 and SP-1 promoter activity increased in response to TGFβ treatment. However, treatment with 6-BIO decreased the expression of proteins and signaling pathways associated with fibrosis in UUO model as well as in TGFβ-treated HK-2 and NRK49F cells. Moreover, 6-BIO treatment attenuated the expression of PAI-1 and CTGF as well as the promoter activities of AP-1 and SP-1, thereby regulating the SMAD and MAPK signaling pathways, and subsequently exerting anti-fibrotic effects on kidney cells.
Collapse
Affiliation(s)
- Jung Sun Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - In Ae Jung
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Hong Sang Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Dong-Hyun Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Hoon In Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea.
| |
Collapse
|
4
|
Wang H, Wang Z, Wei C, Wang J, Xu Y, Bai G, Yao Q, Zhang L, Chen Y. Anticancer potential of indirubins in medicinal chemistry: Biological activity, structural modification, and structure-activity relationship. Eur J Med Chem 2021; 223:113652. [PMID: 34161865 DOI: 10.1016/j.ejmech.2021.113652] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Indirubin is the crucial ingredient of Danggui Longhui Wan and Qing-Dai, traditional Chinese medicine herbal formulas used for the therapy of chronic myelocytic leukemia in China for hundreds of years. Although the monomeric indirubin has been used in China for the treatment human chronic myelocytic leukemia. However, due to low water solubility, poor pharmacokinetic properties and low therapeutic effects are the major obstacle, and had significantly limited its clinical application. Consequently, the attractive anticancer profile of indirubin has enthused numerous researchers to discover novel indirubin derivatives with improved pharmacodynamic activity as well as good pharmacokinetic property. In this paper, we comprehensively review the recent progress of anticancer potential of indirubins, structural modification and structure-activity relationship, which may provide useful direction for the further development of novel indirubins with improved pharmacological profiles for the treatment of various types of cancer.
Collapse
Affiliation(s)
- Hezhen Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Zhiyuan Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Chunyong Wei
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Jing Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Yingshu Xu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Guohui Bai
- Key Laboratory of Oral Disease of Higher Schools in Guizhou Province, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| | - Qizheng Yao
- School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, PR China.
| | - Lei Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| |
Collapse
|
5
|
Indirubin-3'-monoxime induces paraptosis in MDA-MB-231 breast cancer cells by transmitting Ca 2+ from endoplasmic reticulum to mitochondria. Arch Biochem Biophys 2020; 698:108723. [PMID: 33321111 DOI: 10.1016/j.abb.2020.108723] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Indirubin-3'-monoxime (I3M) induces cell death in many cancer cells; however, whether I3M regulates paraptosis is unclear. The present study aimed to investigate I3M-induced paraptosis. METHODS We treated various cancer cells with I3M, and measured vacuole formation (a paraptosis marker) and the regulating signaling pathway such as endoplasmic reticulum (ER) stress, reactive oxygen species, and proteasomal dysfunction. RESULTS We found that I3M induced small vacuole formation in MDA-MB-231 breast cancer cells and transient knockdown of eIF2α and CHOP significantly downregulated vacuolation in the ER and mitochondria, as well as cell death in response to I3M, indicating that I3M-meditaed paraptosis was upregulated by ER stress. Moreover, I3M accumulated ubiquitinylated proteins via proteasome dysfunction, which stimulated ER stress-mediated Ca2+ release. A Ca2+ chelator significantly downregulated vacuolation in the ER and mitochondria as well as cell death, suggesting that Ca2+ was a key regulator in I3M-induced paraptosis. Our results also revealed that Ca2+ finally transited in mitochondria through mitochondrial Ca2+ uniporter (MCU), causing I3M-mediated paraptosis; however, the paraptosis was completely inhibited by, ruthenium red, an MCU inhibitor. CONCLUSION I3M induced proteasomal dysfunction-mediated ER stress and subsequently promoted Ca2+ release, which was accumulated in the mitochondria via MCU, thus causing paraptosis in MDA-MB-231 breast cancer cells.
Collapse
|
6
|
Zhang X, Castanotto D, Nam S, Horne D, Stein C. 6BIO Enhances Oligonucleotide Activity in Cells: A Potential Combinatorial Anti-androgen Receptor Therapy in Prostate Cancer Cells. Mol Ther 2017; 25:79-91. [PMID: 28129131 DOI: 10.1016/j.ymthe.2016.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 12/22/2022] Open
Abstract
Approximately 15%-25% of men diagnosed with prostate cancer do not survive their disease. The American Cancer Society estimated that for the year 2016 the number of prostate cancer deaths will be 26,120. Thus, there is a critical need for novel approaches to treat this deadly disease. Using high-throughput small-molecule screening, we found that the small molecule 6-bromo-indirubin-3'-oxime (6BIO) significantly improves the targeting of antisense oligonucleotides (ASOs) delivered by gymnosis (i.e., in the absence of any transfection reagents) in both the cell cytoplasm and the nucleus. Furthermore, as a single agent, 6BIO had the unexpected ability to simultaneously downregulate androgen receptor (AR) expression and AR signaling in prostate cancer cells. This includes downregulating levels of the AR-V7, a drug-resistance-related AR splice variant that is important in the progression of prostate cancer. Combining 6BIO and an anti-AR oligonucleotide (AR-ASO) can augment the downregulation of AR expression. We also demonstrated that 6BIO enhances ASO function and represses AR expression through the inhibition of the two main glycogen synthase kinase 3 (GSK-3) isoforms: GSK-3α and GSK-3β activity. Our findings provide a rationale for the use of 6BIO as a single agent or as part of a combinatorial ASO-based therapy in the treatment of human prostate cancer.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Departments of Medical Oncology and Experimental Therapeutics and Molecular and Cellular Biology, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Daniela Castanotto
- Departments of Medical Oncology and Experimental Therapeutics and Molecular and Cellular Biology, City of Hope Medical Center, Duarte, CA 91010, USA; Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA.
| | - Sangkil Nam
- Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Cy Stein
- Departments of Medical Oncology and Experimental Therapeutics and Molecular and Cellular Biology, City of Hope Medical Center, Duarte, CA 91010, USA; Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
7
|
Indirubin-3-Oxime Effectively Prevents 6OHDA-Induced Neurotoxicity in PC12 Cells via Activating MEF2D Through the Inhibition of GSK3β. J Mol Neurosci 2015; 57:561-70. [PMID: 26346600 DOI: 10.1007/s12031-015-0638-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
Abstract
Indirubin-3-oxime (I3O), a synthetic derivative of indirubin, was originally designed as potent inhibitors of cyclin-dependent kinases (CDKs) and glycogen synthase kinase 3β (GSK3β) for leukemia therapy. In the current study, we have shown, for the first time, that I3O prevented 6-hydroxydopamine (6OHDA)-induced neuronal apoptosis and intracellular reactive oxygen species accumulation in PC12 cells in a concentration-dependent manner. GSK3β inhibitors but not CDK5 inhibitors reduced the neurotoxicity induced by 6OHDA. Moreover, the activation of GSK3β was observed after 6OHDA treatment. Furthermore, 6OHDA substantially decreased the transcriptional activity of myocyte enhancer factor 2D (MEF2D), a transcription factor that plays an important role in dopaminergic neuron survival, and reduced nuclear localized MEF2D expression. Interestingly, indirubin-3-oxime and GSK3β inhibitors prevented 6OHDA-induced dysregulation of MEF2D. In addition, short hairpin RNA-mediated decrease of MEF2D expression significantly abolished the neuroprotective effects of indirubin-3-oxime. Collectively, our results strongly suggested that indirubin-3-oxime prevented 6OHDA-induced neurotoxicity via activating MEF2D, possibly through the inhibition of GSK3β. In view of the capability of indirubin-3-oxime to cross the blood-brain barrier, our findings further indicated that indirubin-3-oxime might be a novel drug candidate for neurodegenerative disorders, including Parkinson's disease in particular.
Collapse
|
8
|
Wang L, Li X, Liu X, Lu K, Chen NA, Li P, Lv X, Wang X. Enhancing effects of indirubin on the arsenic disulfide-induced apoptosis of human diffuse large B-cell lymphoma cells. Oncol Lett 2015; 9:1940-1946. [PMID: 25789073 PMCID: PMC4356417 DOI: 10.3892/ol.2015.2941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 01/16/2015] [Indexed: 01/01/2023] Open
Abstract
The aim of the present study was to investigate the indirubin-enhanced effects of arsenic disulfide (As2S2) on the proliferation and apoptosis of diffuse large B-cell lymphoma (DLBCL) cells in order to identify an optimum combination therapy. The human DLBCL cells, LY1 and LY8, were treated with different concentrations of indirubin for 24, 48 and 72 h. Next, the cells were treated with 10 μM As2S2 or a combination of 10 μM As2S2 and 20 μM indirubin for 48 h. Cell proliferation inhibition was detected using cell counting kit-8 and cell apoptosis was determined using flow cytometry. The expression levels of Bcl-2, Bcl-2-associated X protein (Bax) and caspase-3 were analyzed by quantitative polymerase chain reaction (qPCR) and western blotting. The DLBCL cell viability exhibited no significant changes at 24, 48 or 72 h with increasing indirubin concentration. In addition, the apoptotic rates of the LY1 and LY8 cells demonstrated no noticeable effects at 48 h with increasing indirubin concentration. Following treatment with the combination of indirubin and As2S2, the inhibitory and apoptotic rates of the cells were notably increased compared with those of the As2S2-treated group. The qPCR results revealed that indirubin alone had no enhancing effect upon the Bax/Bcl-2 mRNA expression ratio and caspase-3 mRNA expression. Western blot analysis revealed that indirubin alone had an enhancing effect upon the Bax/Bcl-2 protein ratio and procaspase-3 protein expression. In addition, the results demonstrated that the 21-KDa Bax protein was proteolytically cleaved into an 18-KDa Bax in the DLBCL cells treated with the combination of indirubin and As2S2. Indirubin alone did not inhibit proliferation or induce the apoptosis of the LY1 and LY8 cells. However, the combination of indirubin and As2S2 yielded enhancing effects. Therefore, the results of the present study demonstrated that with regard to antitumor activities, As2S2 served as the principal drug, whereas indirubin served as the adjuvant drug. The enhancing effect was due, in part, to the induction of the mitochondrial apoptotic pathway, which involves the cleavage of Bax.
Collapse
Affiliation(s)
- Ling Wang
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China ; Department of Hematology, Taian City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Xianglu Li
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xinyu Liu
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Kang Lu
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - N A Chen
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Peipei Li
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiao Lv
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xin Wang
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China ; Institute of Diagnostics, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
9
|
The novel JAK inhibitor AZD1480 blocks STAT3 and FGFR3 signaling, resulting in suppression of human myeloma cell growth and survival. Leukemia 2010; 25:538-50. [PMID: 21164517 DOI: 10.1038/leu.2010.289] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IL-6 and downstream JAK-dependent signaling pathways have critical roles in the pathophysiology of multiple myeloma (MM). We investigated the effects of a novel small-molecule JAK inhibitor (AZD1480) on IL-6/JAK signal transduction and its biological consequences on the human myeloma-derived cell lines U266 and Kms.11. At low micromolar concentrations, AZD1480 blocks cell proliferation and induces apoptosis of myeloma cell lines. These biological responses to AZD1480 are associated with concomitant inhibition of phosphorylation of JAK2, STAT3 and MAPK signaling proteins. In addition, there is inhibition of expression of STAT3 target genes, particularly Cyclin D2. Examination of a wider variety of myeloma cells (RPMI 8226, OPM-2, NCI-H929, Kms.18, MM1.S and IM-9), as well as primary myeloma cells, showed that AZD1480 has broad efficacy. In contrast, viability of normal peripheral blood (PB) mononuclear cells and CD138(+) cells derived from healthy controls was not significantly inhibited. Importantly, AZD1480 induces cell death of Kms.11 cells grown in the presence of HS-5 bone marrow (BM)-derived stromal cells and inhibits tumor growth in a Kms.11 xenograft mouse model, accompanied with inhibition of phospho-FGFR3, phospho-JAK2, phospho-STAT3 and Cyclin D2 levels. In sum, AZD1480 blocks proliferation, survival, FGFR3 and JAK/STAT3 signaling in myeloma cells cultured alone or cocultured with BM stromal cells, and in vivo. Thus, AZD1480 represents a potential new therapeutic agent for patients with MM.
Collapse
|
10
|
Pharmaceutical inhibition of glycogen synthetase kinase-3β reduces multiple myeloma-induced bone disease in a novel murine plasmacytoma xenograft model. Blood 2010; 117:1641-51. [PMID: 21123822 DOI: 10.1182/blood-2010-09-308171] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Multiple myeloma (MM) is a malignancy of plasma cells that accumulate in the bone marrow. MM is incurable with approximately 100 000 patients currently in the United States and 20 000 new cases diagnosed yearly. The malignancy causes displacement of hematopoiesis and formation of osteolytic bone lesions also known as myeloma bone disease (MBD). At diagnosis, 79% of patients suffer from MBD associated with severe pain and increased mortality. Wnt inhibitors secreted by MM cells inhibit osteogenesis and promote osteoclastogenesis, therefore rapid targeting of Wnt inhibitors is necessary to prevent potentially irreversible effects on the stroma, which could lead to incurable MBD. Inhibition of glycogen synthetase kinase-3β (GSK3β) causes accelerated Wnt signaling and enhanced osteogenesis in mesenchymal stem/progenitor cells, irrespective of the extracellular concentration of Wnt inhibitors. Our primary goal of this study was to evaluate a GSK3β inhibitor (6-bromoindirubin-3'-oxime BIO) for amelioration of bone destruction in a murine model of MBD. When measured using histomorphometry, peritumoral BIO administration improved bone quality at the bone-tumor interface and, surprisingly, increased histologically apparent tumor necrosis. Furthermore, in vitro assays demonstrated a proapoptotic effect on numerous MM cell lines. These preliminary data suggest that pharmaceutical GSK3β inhibition may improve bone quality in myeloma and other malignant bone diseases.
Collapse
|