1
|
Gabellier L, Bret C, Bossis G, Cartron G, Moreaux J. DNA Repair Expression Profiling to Identify High-Risk Cytogenetically Normal Acute Myeloid Leukemia and Define New Therapeutic Targets. Cancers (Basel) 2020; 12:cancers12102874. [PMID: 33036275 PMCID: PMC7599826 DOI: 10.3390/cancers12102874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/26/2020] [Accepted: 10/02/2020] [Indexed: 11/16/2022] Open
Abstract
Cytogenetically normal acute myeloid leukemias (CN-AML) represent about 50% of total adult AML. Despite the well-known prognosis role of gene mutations such as NPM1 mutations of FLT3 internal tandem duplication (FLT3-ITD), clinical outcomes remain heterogeneous in this subset of AML. Given the role of genomic instability in leukemogenesis, expression analysis of DNA repair genes might be relevant to sharpen prognosis evaluation in CN-AML. A publicly available gene expression profile dataset from two independent cohorts of patients with CN-AML were analyzed (GSE12417). We investigated the prognostic value of 175 genes involved in DNA repair. Among these genes, 23 were associated with a prognostic value. The prognostic information provided by these genes was summed in a DNA repair score, allowing to define a group of patients (n = 87; 53.7%) with poor median overall survival (OS) of 233 days (95% CI: 184-260). These results were confirmed in two validation cohorts. In multivariate Cox analysis, the DNA repair score, NPM1, and FLT3-ITD mutational status remained independent prognosis factors in CN-AML. Combining these parameters allowed the identification of three risk groups with different clinical outcomes in both training and validation cohorts. Combined with NPM1 and FLT3 mutational status, our GE-based DNA repair score might be used as a biomarker to predict outcomes for patients with CN-AML. DNA repair score has the potential to identify CN-AML patients whose tumor cells are dependent on specific DNA repair pathways to design new therapeutic avenues.
Collapse
Affiliation(s)
- Ludovic Gabellier
- Département d’Hématologie Clinique, CHU Montpellier, University of Montpellier, 34395 Montpellier, France; (L.G.); (G.C.)
- UFR de Médecine, University of Montpellier, 34003 Montpellier, France;
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, 34090 Montpellier, France;
| | - Caroline Bret
- UFR de Médecine, University of Montpellier, 34003 Montpellier, France;
- CHU Montpellier, Department of Biological Hematology, 34395 Montpellier, France
- Institute of Human Genetics, IGH, CNRS, University of Montpellier, 34395 Montpellier, France
| | - Guillaume Bossis
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, 34090 Montpellier, France;
- Equipe Labellisée Ligue Contre le Cancer, 75013 Paris, France
| | - Guillaume Cartron
- Département d’Hématologie Clinique, CHU Montpellier, University of Montpellier, 34395 Montpellier, France; (L.G.); (G.C.)
- UFR de Médecine, University of Montpellier, 34003 Montpellier, France;
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, 34090 Montpellier, France;
| | - Jérôme Moreaux
- UFR de Médecine, University of Montpellier, 34003 Montpellier, France;
- CHU Montpellier, Department of Biological Hematology, 34395 Montpellier, France
- Institute of Human Genetics, IGH, CNRS, University of Montpellier, 34395 Montpellier, France
- Institut Universitaire de France (IUF), 75005 Paris, France
- Correspondence:
| |
Collapse
|
2
|
Rahimian E, Amini A, Alikarami F, Pezeshki SMS, Saki N, Safa M. DNA repair pathways as guardians of the genome: Therapeutic potential and possible prognostic role in hematologic neoplasms. DNA Repair (Amst) 2020; 96:102951. [PMID: 32971475 DOI: 10.1016/j.dnarep.2020.102951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
DNA repair pathways, which are also identified as guardians of the genome, protect cells from frequent damage that can lead to DNA breaks. The most deleterious types of damage are double-strand breaks (DSBs), which are repaired by homologous recombination (HR) and non-homologous end joining (NHEJ). Single strand breaks (SSBs) can be corrected through base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Failure to restore DNA lesions or inappropriately repaired DNA damage culminates in genomic instability and changes in the regulation of cellular functions. Intriguingly, particular mutations and translocations are accompanied by special types of leukemia. Besides, expression patterns of certain repair genes are altered in different hematologic malignancies. Moreover, analysis of mutations in key mediators of DNA damage repair (DDR) pathways, as well as investigation of their expression and function, may provide us with emerging biomarkers of response/resistance to treatment. Therefore, defective DDR pathways can offer a rational starting point for developing DNA repair-targeted drugs. In this review, we address genetic alterations and gene/protein expression changes, as well as provide an overview of DNA repair pathways.
Collapse
Affiliation(s)
- Elahe Rahimian
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alikarami
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA 19104, USA
| | - Seyed Mohammad Sadegh Pezeshki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Santos EDM, Santos HBDP, de Matos FR, Machado RA, Coletta RD, Galvão HC, Freitas RDA. Clinicopathological significance of SNPs in
RAD51
and
XRCC3
in oral and oropharyngeal carcinomas. Oral Dis 2018; 25:54-63. [DOI: 10.1111/odi.12943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/05/2018] [Accepted: 07/14/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Edilmar de Moura Santos
- Department of Dentistry Federal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| | | | | | - Renato Assis Machado
- Department of Oral Diagnosis, Dental School University of Campinas Piracicaba São Paulo Brazil
| | - Ricardo D. Coletta
- Department of Oral Diagnosis, Dental School University of Campinas Piracicaba São Paulo Brazil
| | - Hébel Cavalcanti Galvão
- Department of Dentistry Federal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| | | |
Collapse
|
4
|
Esposito MT, So CWE. DNA damage accumulation and repair defects in acute myeloid leukemia: implications for pathogenesis, disease progression, and chemotherapy resistance. Chromosoma 2014; 123:545-61. [PMID: 25112726 DOI: 10.1007/s00412-014-0482-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/15/2022]
Abstract
DNA damage repair mechanisms are vital to maintain genomic integrity. Mutations in genes involved in the DNA damage response (DDR) can increase the risk of developing cancer. In recent years, a variety of polymorphisms in DDR genes have been associated with increased risk of developing acute myeloid leukemia (AML) or of disease relapse. Moreover, a growing body of literature has indicated that epigenetic silencing of DDR genes could contribute to the leukemogenic process. In addition, a variety of AML oncogenes have been shown to induce replication and oxidative stress leading to accumulation of DNA damage, which affects the balance between proliferation and differentiation. Conversely, upregulation of DDR genes can provide AML cells with escape mechanisms to the DDR anticancer barrier and induce chemotherapy resistance. The current review summarizes the DDR pathways in the context of AML and describes how aberrant DNA damage response can affect AML pathogenesis, disease progression, and resistance to standard chemotherapy, and how defects in DDR pathways may provide a new avenue for personalized therapeutic strategies in AML.
Collapse
Affiliation(s)
- Maria Teresa Esposito
- Leukemia and Stem Cell Biology Group, Department of Hematological Medicine, King's College London, Denmark Hill campus, SE5 9NU, London, UK
| | | |
Collapse
|