1
|
Pollyea DA, Winters A, McMahon C, Schwartz M, Jordan CT, Rabinovitch R, Abbott D, Smith CA, Gutman JA. Venetoclax and azacitidine followed by allogeneic transplant results in excellent outcomes and may improve outcomes versus maintenance therapy among newly diagnosed AML patients older than 60. Bone Marrow Transplant 2021; 57:160-166. [PMID: 34645926 DOI: 10.1038/s41409-021-01476-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 11/10/2022]
Abstract
The combination of venetoclax (ven) and azacitidine (aza) has resulted in high response rates in the upfront treatment of AML in patients age > 75 and patients unfit for intensive chemotherapy. Given the poor historical outcomes in patients age ≥ 60 treated with induction chemotherapy, ven/aza has become our institutional preference for the initial treatment of non-core binding factor (CBF) AML patients age ≥ 60. The benefit of allogeneic stem cell transplant (SCT) in patients who achieve response to ven/aza is uncertain. We report outcomes of SCT-eligible patients treated at our center. Between 1/2015 and 1/2020, 119 newly diagnosed non-CBF AML patients age ≥ 60 received ven/aza as initial therapy. 21 patients underwent SCT; 31 additional patients were potentially SCT eligible but deferred SCT. Overall survival (OS) was significantly greater among SCT patients (median survival not reached) versus potentially SCT eligible patients not undergoing SCT (median 518 days) (p = 0.01). Our data suggest that ven/aza followed by SCT in newly diagnosed AML patients older than ≥ 60 results in excellent outcomes and likely improves outcomes over maintenance therapy. Ongoing investigation will further refine the optimal timing of and selection of patients for SCT based on prognostic disease features and response assessments.
Collapse
Affiliation(s)
| | - Amanda Winters
- Division of Hematology, University of Colorado, Denver, USA
| | | | - Marc Schwartz
- Division of Hematology, University of Colorado, Denver, USA
| | - Craig T Jordan
- Division of Hematology, University of Colorado, Denver, USA
| | | | - Diana Abbott
- Division of Hematology, University of Colorado, Denver, USA
| | | | | |
Collapse
|
2
|
A genomics-informed computational biology platform prospectively predicts treatment responses in AML and MDS patients. Blood Adv 2020; 3:1837-1847. [PMID: 31208955 DOI: 10.1182/bloodadvances.2018028316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
Patients with myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML) are generally older and have more comorbidities. Therefore, identifying personalized treatment options for each patient early and accurately is essential. To address this, we developed a computational biology modeling (CBM) and digital drug simulation platform that relies on somatic gene mutations and gene CNVs found in malignant cells of individual patients. Drug treatment simulations based on unique patient-specific disease networks were used to generate treatment predictions. To evaluate the accuracy of the genomics-informed computational platform, we conducted a pilot prospective clinical study (NCT02435550) enrolling confirmed MDS and AML patients. Blinded to the empirically prescribed treatment regimen for each patient, genomic data from 50 evaluable patients were analyzed by CBM to predict patient-specific treatment responses. CBM accurately predicted treatment responses in 55 of 61 (90%) simulations, with 33 of 61 true positives, 22 of 61 true negatives, 3 of 61 false positives, and 3 of 61 false negatives, resulting in a sensitivity of 94%, a specificity of 88%, and an accuracy of 90%. Laboratory validation further confirmed the accuracy of CBM-predicted activated protein networks in 17 of 19 (89%) samples from 11 patients. Somatic mutations in the TET2, IDH1/2, ASXL1, and EZH2 genes were discovered to be highly informative of MDS response to hypomethylating agents. In sum, analyses of patient cancer genomics using the CBM platform can be used to predict precision treatment responses in MDS and AML patients.
Collapse
|
3
|
Alanazi B, Munje CR, Rastogi N, Williamson AJK, Taylor S, Hole PS, Hodges M, Doyle M, Baker S, Gilkes AF, Knapper S, Pierce A, Whetton AD, Darley RL, Tonks A. Integrated nuclear proteomics and transcriptomics identifies S100A4 as a therapeutic target in acute myeloid leukemia. Leukemia 2020; 34:427-440. [PMID: 31611628 PMCID: PMC6995695 DOI: 10.1038/s41375-019-0596-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
Inappropriate localization of proteins can interfere with normal cellular function and drive tumor development. To understand how this contributes to the development of acute myeloid leukemia (AML), we compared the nuclear proteome and transcriptome of AML blasts with normal human CD34+ cells. Analysis of the proteome identified networks and processes that significantly affected transcription regulation including misexpression of 11 transcription factors with seven proteins not previously implicated in AML. Transcriptome analysis identified changes in 40 transcription factors but none of these were predictive of changes at the protein level. The highest differentially expressed protein in AML nuclei compared with normal CD34+ nuclei (not previously implicated in AML) was S100A4. In an extended cohort, we found that over-expression of nuclear S100A4 was highly prevalent in AML (83%; 20/24 AML patients). Knock down of S100A4 in AML cell lines strongly impacted their survival whilst normal hemopoietic stem progenitor cells were unaffected. These data are the first analysis of the nuclear proteome in AML and have identified changes in transcription factor expression or regulation of transcription that would not have been seen at the mRNA level. These data also suggest that S100A4 is essential for AML survival and could be a therapeutic target in AML.
Collapse
Affiliation(s)
- Bader Alanazi
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Chinmay R Munje
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Namrata Rastogi
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Andrew J K Williamson
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, M20 3LJ, UK
| | - Samuel Taylor
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, M20 3LJ, UK
| | - Paul S Hole
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Marie Hodges
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Michelle Doyle
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Sarah Baker
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Amanda F Gilkes
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Steven Knapper
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Andrew Pierce
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, M20 3LJ, UK
| | - Anthony D Whetton
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, M20 3LJ, UK
| | - Richard L Darley
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Alex Tonks
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK.
| |
Collapse
|
4
|
Pollyea DA. Acute myeloid leukemia drug development in the post-venetoclax era. Am J Hematol 2019; 94:959-962. [PMID: 31179583 DOI: 10.1002/ajh.25556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Daniel A. Pollyea
- Division of HematologyUniversity of Colorado Department of Medicine Aurora Colorado
| |
Collapse
|
5
|
Bargal SA, Rafiee R, Crews KR, Wu H, Cao X, Rubnitz JE, Ribeiro RC, Downing JR, Pounds SB, Lamba JK. Genome-wide association analysis identifies SNPs predictive of in vitro leukemic cell sensitivity to cytarabine in pediatric AML. Oncotarget 2018; 9:34859-34875. [PMID: 30405880 PMCID: PMC6201857 DOI: 10.18632/oncotarget.26163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/08/2018] [Indexed: 12/02/2022] Open
Abstract
Cytarabine has been an integral part of acute myeloid leukemia (AML) chemotherapy for over four decades. However, development of resistance and high rates of relapse is a significant impediment in successfully treating AML. We performed a genome-wide association analysis (GWAS) and identified 113 (83 after adjusting for Linkage Disequilibrium) SNPs associated with in vitro cytarabine chemosensitivity of diagnostic leukemic cells from a cohort of 50 pediatric AML patients (p<10-4). Further evaluation of diagnostic leukemic cell gene-expression identified 19 SNP-gene pairs with a concordant triad of associations: i)SNP genotype with cytarabine sensitivity (p<0.0001), ii) gene-expression with cytarabine sensitivity (p<0.05), and iii) genotype with gene-expression (p<0.1). Two genes from SNP-gene pairs, rs1376041-GPR56 and rs75400242-IGF1R, were functionally validated by siRNA knockdown in AML cell lines. Consistent with association of rs1376041 and gene-expression in AML patients siRNA mediated knock-down of GPR56 increased cytarabine sensitivity of AML cell lines. Similarly for IGF1R, knockdown increased the cytarabine sensitivity of AML cell lines consistent with results in AML patients. Given both IGF1R and GPR56 are promising drug-targets in AML, our results on SNPs driving the expression/function of these genes will not only enhance our understanding of cytarabine resistance but also hold promise in personalizing AML for targeted therapies.
Collapse
Affiliation(s)
- Salma A Bargal
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Roya Rafiee
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Kristine R Crews
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Huiyun Wu
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Xueyuan Cao
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, USA.,Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Raul C Ribeiro
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - James R Downing
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley B Pounds
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Neukirchen J, Lauseker M, Hildebrandt B, Nolting AC, Kaivers J, Kobbe G, Gattermann N, Haas R, Germing U. Cytogenetic clonal evolution in myelodysplastic syndromes is associated with inferior prognosis. Cancer 2017; 123:4608-4616. [PMID: 28746789 DOI: 10.1002/cncr.30917] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND The karyotype of bone marrow cells at the time of diagnosis is a strong prognostic parameter for overall survival as well as acute myeloid leukemia (AML) progression in patients with myelodysplastic syndromes (MDS). However, to the authors' knowledge, few data exist regarding the prognostic impact of cytogenetic clonal evolution during the course of MDS. METHODS The authors evaluated follow-up karyotype analyses in 549 patients from the Dusseldorf MDS Registry. RESULTS Clonal evolution was detectable in 24% of the entire cohort and in 18% of 294 patients receiving best supportive care. The authors noted a clear adverse effect of clonal evolution on the risk of leukemic transformation (hazard ratio, 2.233; P = .036) and overall survival (hazard ratio, 3.677; P<.001). The authors also analyzed the prognostic influence of subclones detectable at the time of diagnosis. Again, such a finding was associated with a significantly shorter overall survival and a higher 5-year-probability of acute myeloid leukemia progression (30% vs 22%). CONCLUSIONS The results of the current study support the belief that follow-up karyotype analyses should be performed, especially in patients with lower-risk and intermediate-risk MDS, to identify those patients who are at higher risk of disease progression and therefore might benefit from earlier or more intensive treatment. Cancer 2017;123:4608-4616. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Judith Neukirchen
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, Dusseldorf, Germany
| | - Michael Lauseker
- Institute for Medical Information Sciences, Biometry and Epidemiology, Ludwig-Maximilians University, Munich, Germany
| | - Barbara Hildebrandt
- Department of Human Genetics, Heinrich-Heine University, Dusseldorf, Germany
| | - Ann-Christin Nolting
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, Dusseldorf, Germany
| | - Jennifer Kaivers
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, Dusseldorf, Germany
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, Dusseldorf, Germany
| | - Norbert Gattermann
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, Dusseldorf, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, Dusseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, Dusseldorf, Germany
| |
Collapse
|