1
|
Ruseska I, Tucak-Smajić A, Zimmer A. Elucidating the uptake and trafficking of nanostructured lipid carriers as delivery systems for miRNA. Eur J Pharm Sci 2025; 204:106973. [PMID: 39603431 DOI: 10.1016/j.ejps.2024.106973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Cationic nanostructured lipid carriers (cNLCs) represent promising non-viral carriers for nucleic acids, such as miRNAs, forming stable self-assembled miRNA complexes due to electrostatic interactions. Prepared by high-pressure homogenization, cNLC formulations, both with and without Nile Red dye demonstrated stable particle sizes in the range of 100-120 nm and positive surface charges (>30 mV), which are necessary for effective cellular uptake. The miRNA complexes formed at mass ratios of 1:2.5 and 1:5 showed similar stability and size, with positive zeta potentials, as well as high cell viability (> 80 %) in 3T3-L1 and MCF-7 cell lines. The cellular uptake studies of miRNA:cNLC complexes in both cell lines revealed that uptake was time- and concentration-dependent, with rapid initial uptake in 30 min and a zig-zag pattern over 24 h. To elucidate the endocytosis mechanism of miRNA:cNLC complexes, 3T3-L1 and MCF-7 cells were incubated with different inhibitors (chlorpromazine, 5-[N-ethyl-N-isopropyl] amiloride, dynasore, nystatin, or sodium azide with 2-deoxy-d-glucose). Results showed significant inhibition of uptake at low temperatures and with ATP depletion, suggesting endocytosis, particularly macropinocytosis, as the main uptake mechanism in 3T3-L1 cells. In MCF-7 cells, the uptake was less inhibited by the substances, indicating the need for more specific methods to fully decipher the endocytic mechanisms involved. Confocal laser scanning microscopy images revealed that the complexes are internalized in vesicles, and are primarily localized in the juxtanuclear region, suggesting trafficking through the endolysosomal system. Colocalization study with LysoTracker™ Green DND-26 showed significant colocalization of miRNA:cNLC complexes with lysosomes in 3T3-L1 cells, indicating trafficking through the endolysosomal system. In MCF-7 cells, colocalization was lower, suggesting macropinocytosis as the primary uptake mechanism. Additional studies showed partial colocalization between labeled NLCs and miRNA, indicating that about 50 % of miRNA is released from NLCs within 30 min post-transfection.
Collapse
Affiliation(s)
- Ivana Ruseska
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010, Graz, Austria
| | - Amina Tucak-Smajić
- Department of Pharmaceutical Technology, University of Sarajevo - Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Andreas Zimmer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010, Graz, Austria.
| |
Collapse
|
2
|
Mobasher M, Ansari R, Castejon AM, Barar J, Omidi Y. Advanced nanoscale delivery systems for mRNA-based vaccines. Biochim Biophys Acta Gen Subj 2024; 1868:130558. [PMID: 38185238 DOI: 10.1016/j.bbagen.2024.130558] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The effectiveness of messenger RNA (mRNA) vaccines, especially those designed for COVID-19, relies heavily on sophisticated delivery systems that ensure efficient delivery of mRNA to target cells. A variety of nanoscale vaccine delivery systems (VDSs) have been explored for this purpose, including lipid nanoparticles (LNPs), liposomes, and polymeric nanoparticles made from biocompatible polymers such as poly(lactic-co-glycolic acid), as well as viral vectors and lipid-polymer hybrid complexes. Among these, LNPs are particularly notable for their efficiency in encapsulating and protecting mRNA. These nanoscale VDSs can be engineered to enhance stability and facilitate uptake by cells. The choice of delivery system depends on factors like the specific mRNA vaccine, target cell types, stability requirements, and desired immune response. In this review, we shed light on recent advances in delivery mechanisms for self-amplifying RNA (saRNA) vaccines, emphasizing groundbreaking studies on nanoscale delivery systems aimed at improving the efficacy and safety of mRNA/saRNA vaccines.
Collapse
Affiliation(s)
- Maha Mobasher
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Rais Ansari
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Ana M Castejon
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
3
|
Prileszky TA, Furst EM. Magnetite nanoparticles program the assembly, response, and reconfiguration of structured emulsions. SOFT MATTER 2019; 15:1529-1538. [PMID: 30488941 DOI: 10.1039/c8sm01931b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Endoskeletal droplets-non-spherical emulsion droplets that respond to external stimuli with shape change-are modified with ferromagnetic iron oxide nanoparticles to make them susceptible to magnetic fields. The resulting droplets can be manipulated using static or oscillating magnetic fields, each producing a different response. Static fields control the orientation and position of the droplets, important in driving assembly into organized structures. Oscillating fields are shown to cause magnetic hyperthermia in ferrofluid nanoparticles, leading to droplet heating and forcing droplet reconfiguration. We demonstrate the use of static and dynamic fields to affect the organization and stability of endoskeletal droplets and their assemblies, producing highly-tunable programmable colloids that adapt to changing environmental conditions.
Collapse
Affiliation(s)
- Tamás A Prileszky
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| | | |
Collapse
|
4
|
Teixeira HF, Bruxel F, Fraga M, Schuh RS, Zorzi GK, Matte U, Fattal E. Cationic nanoemulsions as nucleic acids delivery systems. Int J Pharm 2017; 534:356-367. [DOI: 10.1016/j.ijpharm.2017.10.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
|
5
|
Schuh RS, de Carvalho TG, Giugliani R, Matte U, Baldo G, Teixeira HF. Gene editing of MPS I human fibroblasts by co-delivery of a CRISPR/Cas9 plasmid and a donor oligonucleotide using nanoemulsions as nonviral carriers. Eur J Pharm Biopharm 2017; 122:158-166. [PMID: 29122734 DOI: 10.1016/j.ejpb.2017.10.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/16/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is an inherited disease caused by the deficiency of alpha-L-iduronidase (IDUA). This study shows the use of nanoemulsions co-complexed with the plasmid of CRISPR/Cas9 system and a donor oligonucleotide aiming at MPS I gene editing in vitro. Nanoemulsions composed of MCT, DOPE, DOTAP, DSPE-PEG, and water were prepared by high-pressure homogenization. The DNA was complexed by adsorption (NA) or encapsulation (NE) of preformed DNA/DOTAP complexes with nanoemulsions at +4/-1 charge ratio. The incubation in pure DMEM or supplemented with serum showed that the complexation with DNA was stable after 1 h of incubation, but the complexes tended to release the adsorbed DNA after 24 h of incubation, while the encapsulated DNA remained complexed in the oil core of the nanoemulsions even 48 h after incubation with DMEM. The treatment of MPS I patient's fibroblasts homozygous for the p.Trp402∗ mutation led to a significant increase in IDUA activity at 2, 15, and 30 days when compared to MPS I untreated fibroblasts. Flow cytometry and confocal microscopy demonstrated that there was a reduction in the area of lysosomes to values similar to normal, an indicator of correction of the cellular phenotype. These results show that the nanoemulsions co-complexed with the CRISPR/Cas9 system and a donor oligonucleotide could effectively transfect MPS I p.Trp402∗ patient's fibroblasts, as well as enable the production of IDUA, and represent a potential new treatment option for MPS I.
Collapse
Affiliation(s)
- Roselena Silvestri Schuh
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil; Centro de Terapia Gênica - Hospital de Clinicas de Porto Alegre, R. Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Talita Giacomet de Carvalho
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil; Centro de Terapia Gênica - Hospital de Clinicas de Porto Alegre, R. Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil; Centro de Terapia Gênica - Hospital de Clinicas de Porto Alegre, R. Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Ursula Matte
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil; Centro de Terapia Gênica - Hospital de Clinicas de Porto Alegre, R. Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil; Centro de Terapia Gênica - Hospital de Clinicas de Porto Alegre, R. Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Fraga M, de Carvalho TG, Bidone J, Schuh RS, Matte U, Teixeira HF. Factors influencing transfection efficiency of pIDUA/nanoemulsion complexes in a mucopolysaccharidosis type I murine model. Int J Nanomedicine 2017; 12:2061-2067. [PMID: 28352175 PMCID: PMC5358998 DOI: 10.2147/ijn.s121558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is an autosomal disease caused by alpha-l-iduronidase (IDUA) deficiency. This study used IDUA knockout mice as a model to evaluate whether parameters such as dose of plasmid and time of treatment could influence the transfection efficiency of complexes formed with PEGylated cationic nanoemulsions and plasmid (pIDUA), which contains the gene that encodes for IDUA. Formulations were composed of medium chain triglycerides, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(amino[polyethylene glycol]-2000), 1,2-dioleoyl-sn-glycero-3-trimethylammonium propane (DOTAP), glycerol, and water and were prepared by the adsorption or encapsulation of preformed pIDUA–DOTAP complexes by high-pressure homogenization. A progressive increase in IDUA expression was observed with an increase in the dose and time of transfection for mice treated with both complexes (adsorbed and encapsulated), especially in the liver. Regardless of the complex administered, a significant increase in IDUA activity was detected in lungs and liver compared with nontreated MPS I when a dose of 60 μg was administered and IDUA activity was measured 7 days postadministration. Tissue sections of major organs showed no presence of cell necrosis, inflammatory infiltrate, or an increase in apoptosis. Furthermore, immunohistochemistry for CD68 showed no difference in the number of macrophage cells in treated and nontreated animals, indicating the absence of inflammatory reaction caused by the treatment. The data set obtained in this study allowed establishing that factors such as dose and time can influence transfection efficiency in different degrees and that these complexes did not lead to any lethal effect in the MPS I murine model used.
Collapse
Affiliation(s)
- Michelle Fraga
- Pharmaceutical Sciences Graduate Program, Universidade Federal do Rio Grande do Sul; Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre
| | - Talita Giacomet de Carvalho
- Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre; Genetics and Molecular Biology Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliana Bidone
- Pharmaceutical Sciences Graduate Program, Universidade Federal do Rio Grande do Sul
| | - Roselena Silvestri Schuh
- Pharmaceutical Sciences Graduate Program, Universidade Federal do Rio Grande do Sul; Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre
| | - Ursula Matte
- Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre; Genetics and Molecular Biology Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | |
Collapse
|
7
|
Schuh RS, Baldo G, Teixeira HF. Nanotechnology applied to treatment of mucopolysaccharidoses. Expert Opin Drug Deliv 2016; 13:1709-1718. [DOI: 10.1080/17425247.2016.1202235] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Roselena S. Schuh
- Programa de Pós-Graduação em Ciências Farmacêuticas da UFRGS, Faculdade de Farmácia, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Programa de Pós-Graduação em Genética e Biologia Molecular da UFRGS, Departamento de Fisiologia, Porto Alegre, RS, Brazil
| | - Helder F. Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas da UFRGS, Faculdade de Farmácia, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Morais ARDV, Alencar ÉDN, Xavier Júnior FH, Oliveira CMD, Marcelino HR, Barratt G, Fessi H, Egito ESTD, Elaissari A. Freeze-drying of emulsified systems: A review. Int J Pharm 2016; 503:102-14. [DOI: 10.1016/j.ijpharm.2016.02.047] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/16/2016] [Accepted: 02/29/2016] [Indexed: 12/13/2022]
|
9
|
Dehshahri A, Sadeghpour H. Surface decorations of poly(amidoamine) dendrimer by various pendant moieties for improved delivery of nucleic acid materials. Colloids Surf B Biointerfaces 2015; 132:85-102. [PMID: 26022400 DOI: 10.1016/j.colsurfb.2015.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
|
10
|
Tavri S, Vezeridis A, Cui W, Mattrey RF. In Vivo Transfection and Detection of Gene Expression of Stem Cells Preloaded with DNA-carrying Microbubbles. Radiology 2015; 276:518-25. [PMID: 25811427 DOI: 10.1148/radiol.15141380] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE To determine whether (a) stem cells loaded with DNA-carrying microbubbles (MBs) can be transfected in vivo, (b) the cells remain alive to express the gene, and (c) gene expression is sufficiently robust to be detected in vivo. MATERIALS AND METHODS The study was approved by the Institutional Animal Care and Use Committee. Cationic MBs were prepared, characterized, and loaded with pLuciferase green fluorescent protein (GFP) plasmid. Loading was confirmed with SYBR Gold staining (Life Technologies, Carlsbad, Calif). C17.2 cells were loaded with the DNA-carrying MBs. Two hundred thousand cells suspended in 20 μL phosphate-buffered saline were mixed with 200 μL Matrigel (BD Biosciences, San Jose, Calif) and injected in both flanks of eight nude mice. One of the Matrigel (BD Biosciences) injections contained 50 000 cells pretransfected in vitro by using lipofectamine as a positive control. Nine flanks were exposed to 2.25-MHz ultrasonic pulses at 50% duty cycle for 1 minute at 1 W/cm(2) (n = 3) or 2 W/cm(2) (n = 6), and six flanks served as the negative control. Two days later, bioluminescent images were acquired in each mouse every 3 minutes for 1 hour after the intraperitoneal injection of d-luciferin (Perkin Elmer, Waltham, Mass). Differences between groups were assessed by using the nonparametric Kruskal-Wallis test with Wilcoxon rank sum tests for follow-up comparisons. Mice were then killed, plugs were explanted, and alternate sections were stained with hematoxylin-eosin or stained for GFP expression. RESULTS Mean DNA-loaded MB diameter ± standard deviation was 2.87 μm ± 1.69 with the DNA associated with the MB shell. C17.2 cells were associated with 2-4 MBs each, and more than 90% were viable. Peak background subtracted bioluminescent signal was fourfold higher when cells were exposed to 2 W/cm(2) pulses as compared with 1 W/cm(2) pulses (P = .02) and negative controls (P = .002). Histologic examination showed cells within the Matrigel (BD Biosciences) with robust GFP expression only after 2 W/cm(2) ultrasound exposure and lipofectamine transfection. CONCLUSION Stem cells loaded with DNA-carrying MBs can be transfected in vivo with ultrasonic pulses and remain alive to demonstrate robust gene expression.
Collapse
Affiliation(s)
- Sidhartha Tavri
- From the Department of Radiology, University of California-San Diego, 200 W Arbor Dr, San Diego, CA 92103
| | - Alexander Vezeridis
- From the Department of Radiology, University of California-San Diego, 200 W Arbor Dr, San Diego, CA 92103
| | - Wenjin Cui
- From the Department of Radiology, University of California-San Diego, 200 W Arbor Dr, San Diego, CA 92103
| | - Robert F Mattrey
- From the Department of Radiology, University of California-San Diego, 200 W Arbor Dr, San Diego, CA 92103
| |
Collapse
|
11
|
Lipid nanoparticles as carriers for RNAi against viral infections: current status and future perspectives. BIOMED RESEARCH INTERNATIONAL 2014; 2014:161794. [PMID: 25184135 PMCID: PMC4145386 DOI: 10.1155/2014/161794] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 12/15/2022]
Abstract
The efforts made to develop RNAi-based therapies have led to productive research in the field of infections in humans, such as hepatitis C virus (HCV), hepatitis B virus (HBV), human immunodeficiency virus (HIV), human cytomegalovirus (HCMV), herpetic keratitis, human papillomavirus, or influenza virus. Naked RNAi molecules are rapidly digested by nucleases in the serum, and due to their negative surface charge, entry into the cell cytoplasm is also hampered, which makes necessary the use of delivery systems to exploit the full potential of RNAi therapeutics. Lipid nanoparticles (LNP) represent one of the most widely used delivery systems for in vivo application of RNAi due to their relative safety and simplicity of production, joint with the enhanced payload and protection of encapsulated RNAs. Moreover, LNP may be functionalized to reach target cells, and they may be used to combine RNAi molecules with conventional drug substances to reduce resistance or improve efficiency. This review features the current application of LNP in RNAi mediated therapy against viral infections and aims to explore possible future lines of action in this field.
Collapse
|
12
|
Rodríguez-Gascón A, del Pozo-Rodríguez A, Solinís MÁ. Development of nucleic acid vaccines: use of self-amplifying RNA in lipid nanoparticles. Int J Nanomedicine 2014; 9:1833-43. [PMID: 24748793 PMCID: PMC3986288 DOI: 10.2147/ijn.s39810] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Self-amplifying RNA or RNA replicon is a form of nucleic acid-based vaccine derived from either positive-strand or negative-strand RNA viruses. The gene sequences encoding structural proteins in these RNA viruses are replaced by mRNA encoding antigens of interest as well as by RNA polymerase for replication and transcription. This kind of vaccine has been successfully assayed with many different antigens as vaccines candidates, and has been shown to be potent in several animal species, including mice, nonhuman primates, and humans. A key challenge to realizing the broad potential of self-amplifying vaccines is the need for safe and effective delivery methods. Ideally, an RNA nanocarrier should provide protection from blood nucleases and extended blood circulation, which ultimately would increase the possibility of reaching the target tissue. The delivery system must then be internalized by the target cell and, upon receptor-mediated endocytosis, must be able to escape from the endosomal compartment into the cell cytoplasm, where the RNA machinery is located, while avoiding degradation by lysosomal enzymes. Further, delivery systems for systemic administration ought to be well tolerated upon administration. They should be safe, enabling the multiadministration treatment modalities required for improved clinical outcomes and, from a developmental point of view, production of large batches with reproducible specifications is also desirable. In this review, the concept of self-amplifying RNA vaccines and the most promising lipid-based delivery systems are discussed.
Collapse
Affiliation(s)
- Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Ana del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| |
Collapse
|
13
|
Bruxel F, Vilela JMC, Andrade MS, Malachias Â, Perez CA, Magalhães-Paniago R, Oliveira MC, Teixeira HF. Investigation of the structural organization of cationic nanoemulsion/antisense oligonucleotide complexes. Colloids Surf B Biointerfaces 2013; 112:530-6. [PMID: 24079942 DOI: 10.1016/j.colsurfb.2013.08.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 11/18/2022]
Abstract
Atomic force microscopy image analysis and energy dispersive X-ray diffraction experiments were used to investigate the structural organization of cationic nanoemulsion/oligonucleotide complexes. Oligonucleotides targeting topoisomerase II gene were adsorbed on cationic nanoemulsions obtained by means of spontaneous emulsification procedure. Topographical analysis by atomic force microscopy allowed the observation of the nanoemulsion/oligonucleotide complexes through three-dimensional high-resolution images. Flattening of the oil droplets was observed, which was reduced in the complexes obtained at high amount of adsorbed oligonucleotides. In such conditions, complexes exhibit droplet size in the 600nm range. The oligonucleotides molecules were detected on the surface of the droplets, preventing their fusion during aggregation. A lamellar structure organization was identified by energy dispersive X-ray diffraction experiments. The presence of the nucleic acid molecules led to a disorganization of the lipid arrangement and an expansion in the lattice spacing, which was proportional to the amount of oligonucleotides added.
Collapse
Affiliation(s)
- Fernanda Bruxel
- Programa de Pós-graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, 90610-000 Porto Alegre, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Physical factors affecting plasmid DNA compaction in stearylamine-containing nanoemulsions intended for gene delivery. Pharmaceuticals (Basel) 2012; 5:643-54. [PMID: 24281666 PMCID: PMC3763655 DOI: 10.3390/ph5060643] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 06/09/2012] [Accepted: 06/13/2012] [Indexed: 11/17/2022] Open
Abstract
Cationic lipids have been used in the development of non-viral gene delivery systems as lipoplexes. Stearylamine, a cationic lipid that presents a primary amine group when in solution, is able to compact genetic material by electrostatic interactions. In dispersed systems such as nanoemulsions this lipid anchors on the oil/water interface confering a positive charge to them. The aim of this work was to evaluate factors that influence DNA compaction in cationic nanoemulsions containing stearylamine. The influence of the stearylamine incorporation phase (water or oil), time of complexation, and different incubation temperatures were studied. The complexation rate was assessed by electrophoresis migration on agarose gel 0.7%, and nanoemulsion and lipoplex characterization was done by Dynamic Light Scattering (DLS). The results demonstrate that the best DNA compaction process occurs after 120 min of complexation, at low temperature (4 ± 1 °C), and after incorporation of the cationic lipid into the aqueous phase. Although the zeta potential of lipoplexes was lower than the results found for basic nanoemulsions, the granulometry did not change. Moreover, it was demonstrated that lipoplexes are suitable vehicles for gene delivery.
Collapse
|
15
|
Fraga M, Bruxel F, Lagranha VL, Teixeira HF, Matte U. Influence of phospholipid composition on cationic emulsions/DNA complexes: physicochemical properties, cytotoxicity, and transfection on Hep G2 cells. Int J Nanomedicine 2011; 6:2213-20. [PMID: 22114484 PMCID: PMC3215161 DOI: 10.2147/ijn.s22335] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Cationic nanoemulsions have been recently considered as potential delivery systems for nucleic acids. This study reports the influence of phospholipids on the properties of cationic nanoemulsions/DNA plasmid complexes. METHODS Nanoemulsions composed of medium-chain triglycerides, stearylamine, egg lecithin or isolated phospholipids, ie, DSPC, DOPC, DSPE, or DOPE, glycerol, and water were prepared by spontaneous emulsification. Gene transfer to Hep G2 cells was analyzed using real-time polymerase chain reaction. RESULTS The procedure resulted in monodispersed nanoemulsions with a droplet size and zeta potential of approximately 250 nm and +50 mV, respectively. The complexation of cationic nanoemulsions with DNA plasmid, analyzed by agarose gel retardation assay, was complete when the complex was obtained at a charge ratio of ≥ 1.0. In these conditions, the complexes were protected from enzymatic degradation by DNase I. The cytotoxicity of the complexes in Hep G2 cells, evaluated by MTT assay, showed that an increasing number of complexes led to progressive toxicity. Higher amounts of reporter DNA were detected for the formulation obtained with the DSPC phospholipid. Complexes containing DSPC and DSPE phospholipids, which have high phase transition temperatures, were less toxic in comparison with the formulations obtained with lecithin, DOPC, and DOPE. CONCLUSION The results show the effect of the DNA/nanoemulsion complexes composition on the toxicity and transfection results.
Collapse
Affiliation(s)
- Michelle Fraga
- Post Graduation Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | |
Collapse
|