1
|
Kuo YC, Rajesh R. Nerve growth factor-loaded heparinized cationic solid lipid nanoparticles for regulating membrane charge of induced pluripotent stem cells during differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:680-689. [PMID: 28532079 DOI: 10.1016/j.msec.2017.03.303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 01/12/2023]
Abstract
Nerve growth factor (NGF)-loaded heparinized cationic solid lipid nanoparticles (NGF-loaded HCSLNs) were developed using heparin-stearic acid conjugate, cacao butter, cholesterol, stearylamine (SA), and esterquat 1 (EQ 1). The effect of cationic lipids and lipid matrix composition on the particle size, particle structure, surface molecular composition, chemical structure, electrophoretic mobility, and zeta potential of HCSLNs was investigated. The effect of HCSLNs on the membrane charge of induced pluripotent stem cells (iPSCs) was also studied. The results indicated that the average diameter of HCSLNs was 90-240nm and the particle size of HCSLNs with EQ 1 was smaller than that with SA. The zeta potential and electrophoresis analysis showed that HCSLNs with SA had a positively charged potential and HCSLNs with EQ 1 had a negatively charged potential at pH7.4. The high-resolution transmission electron microscope confirmed the loading of NGF on the surface of HCSLNs. Differentiation of iPSCs using NGF-loaded HCSLNs with EQ 1 exhibited higher absolute values of the electrophoretic mobility and zeta potential than differentiation using NGF-loaded HCSLNs with SA. The immunochemical staining of neuronal nuclei revealed that NGF-loaded HCSLNs can be used for differentiation of iPSCs into neurons. NGF-loaded HCSLNs with EQ 1 had higher viability of iPSCs than NGF-loaded HCSLNs with SA. NGF-loaded HCSLNs with EQ 1 may be promising formulation to regulate the membrane charge of iPSCs during neuronal differentiation.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China.
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| |
Collapse
|
2
|
Aparicio-Blanco J, Martín-Sabroso C, Torres-Suárez AI. In vitro screening of nanomedicines through the blood brain barrier: A critical review. Biomaterials 2016; 103:229-255. [PMID: 27392291 DOI: 10.1016/j.biomaterials.2016.06.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/16/2022]
Abstract
The blood-brain barrier accounts for the high attrition rate of the treatments of most brain disorders, which therefore remain one of the greatest health-care challenges of the twenty first century. Against this background of hindrance to brain delivery, nanomedicine takes advantage of the assembly at the nanoscale of available biomaterials to provide a delivery platform with potential to raising brain levels of either imaging or therapeutic agents. Nevertheless, to prevent later failure due to ineffective drug levels at the target site, researchers have been endeavoring to develop a battery of in vitro screening procedures that can predict earlier in the drug discovery process the ability of these cutting-edge drug delivery platforms to cross the blood-brain barrier for biomedical purposes. This review provides an in-depth analysis of the currently available in vitro blood-brain barrier models (both cell-based and non-cell-based) with the focus on their suitability for understanding the biological brain distribution of forthcoming nanomedicines. The relationship between experimental factors and underlying physiological assumptions that would ultimately lead to a more predictive capacity of their in vivo performance, and those methods already assayed for the evaluation of the brain distribution of nanomedicines are comprehensively discussed.
Collapse
Affiliation(s)
- Juan Aparicio-Blanco
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Cristina Martín-Sabroso
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Ana-Isabel Torres-Suárez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain; University Institute of Industrial Pharmacy, Complutense University, 28040, Madrid, Spain.
| |
Collapse
|
3
|
Gomes MJ, Fernandes C, Martins S, Borges F, Sarmento B. Tailoring Lipid and Polymeric Nanoparticles as siRNA Carriers towards the Blood-Brain Barrier - from Targeting to Safe Administration. J Neuroimmune Pharmacol 2016; 12:107-119. [PMID: 27209050 DOI: 10.1007/s11481-016-9685-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/09/2016] [Indexed: 01/25/2023]
Abstract
Blood-brain barrier is a tightly packed layer of endothelial cells surrounding the brain that acts as the main obstacle for drugs enter the central nervous system (CNS), due to its unique features, as tight junctions and drug efflux systems. Therefore, since the incidence of CNS disorders is increasing worldwide, medical therapeutics need to be improved. Consequently, aiming to surpass blood-brain barrier and overcome CNS disabilities, silencing P-glycoprotein as a drug efflux transporter at brain endothelial cells through siRNA is considered a promising approach. For siRNA enzymatic protection and efficient delivery to its target, two different nanoparticles platforms, solid lipid (SLN) and poly-lactic-co-glycolic (PLGA) nanoparticles were used in this study. Polymeric PLGA nanoparticles were around 115 nm in size and had 50 % of siRNA association efficiency, while SLN presented 150 nm and association efficiency close to 52 %. Their surface was functionalized with a peptide-binding transferrin receptor, in a site-oriented manner confirmed by NMR, and their targeting ability against human brain endothelial cells was successfully demonstrated by fluorescence microscopy and flow cytometry. The interaction of modified nanoparticles with brain endothelial cells increased 3-fold compared to non-modified lipid nanoparticles, and 4-fold compared to non-modified PLGA nanoparticles, respectively. These nanosystems, which were also demonstrated to be safe for human brain endothelial cells, without significant cytotoxicity, bring a new hopeful breath to the future of brain diseases therapies.
Collapse
Affiliation(s)
- Maria João Gomes
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Biocarrier Group, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Carlos Fernandes
- CIQUP/Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - Susana Martins
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, -5230, Odense, DK, Denmark
| | - Fernanda Borges
- CIQUP/Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - Bruno Sarmento
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- INEB, Instituto de Engenharia Biomédica, Biocarrier Group, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, CESPU, Rua Central de Gandra, 1317, 4585-116, Gandra, Portugal.
| |
Collapse
|
4
|
Zhang K, Li P, He Y, Bo X, Li X, Li D, Chen H, Xu H. Synergistic retention strategy of RGD active targeting and radiofrequency-enhanced permeability for intensified RF & chemotherapy synergistic tumor treatment. Biomaterials 2016; 99:34-46. [PMID: 27209261 DOI: 10.1016/j.biomaterials.2016.05.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022]
Abstract
Despite gaining increasing attention, chelation of multiple active targeting ligands greatly increase the formation probability of protein corona, disabling active targeting. To overcome it, a synergistic retention strategy of RGD-mediated active targeting and radiofrequency (RF) electromagnetic field-enhanced permeability has been proposed here. It is validated that such a special synergistic retention strategy can promote more poly lactic-co-glycolic acid (PLGA)-based capsules encapsulating camptothecin (CPT) and solid DL-menthol (DLM) to enter and retain in tumor in vitro and in vivo upon exposure to RF irradiation, receiving an above 8 fold enhancement in HeLa retention. Moreover, the PLGA-based capsules can respond RF field to trigger the entrapped DLM to generate solid-liquid-gas (SLG) tri-phase transformation for enhancing RF ablation and CPT release. Therefore, depending on the enhanced RF ablation and released CPT and the validated synergistic retention effect, the inhibitory outcome for tumor growth has gained an over 10-fold improvement, realizing RF ablation & chemotherapy synergistic treatment against HeLa solid tumor, which indicates a significant promise in clinical RF ablation.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yan-chang-zhong Road, Shanghai, 200072, PR China; Ultrasound Research and Education Institute, Tongji University School of Medicine, 301 Yan-hang-zhong Road, Shanghai, 200072, PR China
| | - Pei Li
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yan-chang-zhong Road, Shanghai, 200072, PR China; Ultrasound Research and Education Institute, Tongji University School of Medicine, 301 Yan-hang-zhong Road, Shanghai, 200072, PR China
| | - Yaping He
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yan-chang-zhong Road, Shanghai, 200072, PR China; Ultrasound Research and Education Institute, Tongji University School of Medicine, 301 Yan-hang-zhong Road, Shanghai, 200072, PR China
| | - Xiaowan Bo
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yan-chang-zhong Road, Shanghai, 200072, PR China
| | - Xiaolong Li
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yan-chang-zhong Road, Shanghai, 200072, PR China
| | - Dandan Li
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yan-chang-zhong Road, Shanghai, 200072, PR China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai, 200050, PR China.
| | - Huixiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yan-chang-zhong Road, Shanghai, 200072, PR China; Ultrasound Research and Education Institute, Tongji University School of Medicine, 301 Yan-hang-zhong Road, Shanghai, 200072, PR China.
| |
Collapse
|
5
|
Dual targeting of solid lipid nanoparticles grafted with 83-14 MAb and anti-EGF receptor for malignant brain tumor therapy. Life Sci 2016; 146:222-31. [DOI: 10.1016/j.lfs.2016.01.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 11/23/2022]
|
6
|
Kuo YC, Wang IH. Enhanced delivery of etoposide across the blood–brain barrier to restrain brain tumor growth using melanotransferrin antibody- and tamoxifen-conjugated solid lipid nanoparticles. J Drug Target 2016; 24:645-54. [DOI: 10.3109/1061186x.2015.1132223] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| | - I-Hsin Wang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| |
Collapse
|
7
|
Rigon RB, Oyafuso MH, Fujimura AT, Gonçalez ML, do Prado AH, Gremião MPD, Chorilli M. Nanotechnology-Based Drug Delivery Systems for Melanoma Antitumoral Therapy: A Review. BIOMED RESEARCH INTERNATIONAL 2015; 2015:841817. [PMID: 26078967 PMCID: PMC4442269 DOI: 10.1155/2015/841817] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 12/11/2022]
Abstract
Melanoma (MEL) is a less common type of skin cancer, but it is more aggressive with a high mortality rate. The World Cancer Research Fund International (GLOBOCAN 2012) estimates that there were 230,000 new cases of MEL in the world in 2012. Conventional MEL treatment includes surgery and chemotherapy, but many of the chemotherapeutic agents used present undesirable properties. Drug delivery systems are an alternative strategy by which to carry antineoplastic agents. Encapsulated drugs are advantageous due to such properties as high stability, better bioavailability, controlled drug release, a long blood circulation time, selective organ or tissue distribution, a lower total required dose, and minimal toxic side effects. This review of scientific research supports applying a nanotechnology-based drug delivery system for MEL therapy.
Collapse
Affiliation(s)
- Roberta Balansin Rigon
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University, 14801-902 Araraquara, SP, Brazil
| | - Márcia Helena Oyafuso
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University, 14801-902 Araraquara, SP, Brazil
| | - Andressa Terumi Fujimura
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University, 14801-902 Araraquara, SP, Brazil
| | - Maíra Lima Gonçalez
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University, 14801-902 Araraquara, SP, Brazil
| | - Alice Haddad do Prado
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University, 14801-902 Araraquara, SP, Brazil
| | - Maria Palmira Daflon Gremião
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University, 14801-902 Araraquara, SP, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University, 14801-902 Araraquara, SP, Brazil
| |
Collapse
|
8
|
Kuo YC, Shih-Huang CY. Solid lipid nanoparticles with surface antibody for targeting the brain and inhibiting lymphatic phagocytosis. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2014.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Kuo YC, Wang LJ. Transferrin-grafted catanionic solid lipid nanoparticles for targeting delivery of saquinavir to the brain. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2013.09.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Kuo YC, Hong TY. Delivering etoposide to the brain using catanionic solid lipid nanoparticles with surface 5-HT-moduline. Int J Pharm 2014; 465:132-42. [DOI: 10.1016/j.ijpharm.2014.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/24/2014] [Accepted: 02/07/2014] [Indexed: 11/25/2022]
|
11
|
Kumar L, Verma S, Prasad DN, Bhardwaj A, Vaidya B, Jain AK. Nanotechnology: a magic bullet for HIV AIDS treatment. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 43:71-86. [PMID: 24564348 DOI: 10.3109/21691401.2014.883400] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human immunodeficiency virus (HIV) infection has become devastating in last a few years. Nearly 7400 new infection cases are coming every day. Highly active antiretroviral therapy (HAART), which involves combination of at least three antiretroviral (ARV) drugs, has been used to extend the life span of the HIV-infected patients. HAART has played an important role to reduce mortality rate in the developed countries but in the developing countries condition is still worst with millions of people being infected by this disease. For the improvement of the situation, nanotechnology-based drug system has been explored for the HIV therapeutics. Nanosystems used for HIV therapeutics offer some unique advantage like enhancement of bioavailability, water solubility, stability, and targeting ability of ARV drugs. Main nanotechnology-based systems explored for HIV therapeutics are liposomes, nanoparticles, niosomes, polymeric micelles, and dendrimers. Present manuscript reviews conventional method of HIV therapeutics and recent advances in the field of nanotechnology-based systems for treatment of HIV-AIDS.
Collapse
Affiliation(s)
- Lalit Kumar
- Department of Pharmaceutics, Shivalik College of Pharmacy , Punjab , India
| | | | | | | | | | | |
Collapse
|
12
|
Chen YC, Chiang CF, Chen LF, Liang PC, Hsieh WY, Lin WL. Polymersomes conjugated with des-octanoyl ghrelin and folate as a BBB-penetrating cancer cell-targeting delivery system. Biomaterials 2014; 35:4066-81. [PMID: 24513319 DOI: 10.1016/j.biomaterials.2014.01.042] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/17/2014] [Indexed: 12/11/2022]
Abstract
Chemotherapy for brain cancer tumors remains a big challenge for clinical medicine due to the inability to transport sufficient drug across the blood-brain barrier (BBB) and the poor penetration of drug into the tumors. To effectively treat brain tumors and reduce side effects on normal tissues, both des-octanoyl ghrelin and folate conjugated with polymersomal doxorubicin (GFP-D) was developed in this study to help transport across the BBB and target the tumor as well. The size measurements revealed that this BBB-penetrating cancer cell-targeting GFP-D was about 85 nm. In-vitro experiments with a BBB model and C6 glioma cells demonstrated that GFP-D owned a robust penetrating-targeting function for drug delivery. In C6 cell viability tests, GFP-D exhibited an inhibitory effect significantly different from the unmodified polymersomal doxorubicin (P-D). In-vivo antitumor experiments showed that GFP-D performed a much better anti-glioma effect and presented a significant improvement in the overall survival of the tumor-bearing mice as compared to the treatments with free doxorubicin (Dox), liposomal doxorubicin (L-D), P-D, or single ligand conjugated P-D. In addition, Cy 5.5 was used as a probe to investigate the delivery property of this penetrating-targeting delivery system. The overall experimental results indicate that this BBB-penetrating cancer cell-targeting GFP is a highly potential nanocarrier for the treatment of brain tumors.
Collapse
Affiliation(s)
- Yung-Chu Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Biomedical Technology and Device Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chi-Feng Chiang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Li-Fang Chen
- Divison of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Chin Liang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Yuan Hsieh
- Biomedical Technology and Device Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan.
| | - Win-Li Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Division of Medical Engineering Research, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
13
|
Kuo YC, Wang CC. Cationic solid lipid nanoparticles with cholesterol-mediated surface layer for transporting saquinavir to the brain. Biotechnol Prog 2013; 30:198-206. [PMID: 24167123 DOI: 10.1002/btpr.1834] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 10/23/2013] [Indexed: 11/08/2022]
Abstract
Cholesterol-mediated cationic solid lipid nanoparticles (CSLNs) were formulated with esterquat 1 (EQ 1) and stearylamine as positively charged external layers on hydrophobic internal cores of cacao butter. These CSLNs were employed to deliver saquinavir (SQV) to the brain. The permeability of SQV across the blood-brain barrier (BBB) using SQV-loaded CSLNs (SQV-CSLNs) was estimated with an in vitro model of a monolayer of human brain-microvascular endothelial cells (HBMECs) regulated by human astrocytes. The results revealed that the average diameter of SQV-CSLNs diminished when the weight percentage of cholesterol and EQ 1 increased. The morphological images indicated a uniform size of SQV-CSLNs with compact lipid structure. In addition, an increasing weight percentage of cholesterol and EQ 1 enhanced the zeta potential of SQV-CSLNs. The fluorescent staining demonstrated that HBMECs could internalize SQV-CSLNs. An increase in the weight percentage of cholesterol and EQ 1 also promoted the uptake of SQV-CSLNs by HBMECs. Moreover, a high content of cholesterol and EQ 1 in SQV-CSLNs increased the BBB permeability of SQV. The cholesterol-mediated SQV-CSLNs can be an efficacious drug delivery system for brain-targeting delivery of antiviral agents.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Dept. of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, 62102, Republic of China
| | | |
Collapse
|
14
|
Kuo YC, Ko HF. Targeting delivery of saquinavir to the brain using 83-14 monoclonal antibody-grafted solid lipid nanoparticles. Biomaterials 2013; 34:4818-30. [DOI: 10.1016/j.biomaterials.2013.03.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
|
15
|
Kuo YC, Shih-Huang CY. Solid lipid nanoparticles carrying chemotherapeutic drug across the blood–brain barrier through insulin receptor-mediated pathway. J Drug Target 2013; 21:730-8. [DOI: 10.3109/1061186x.2013.812094] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Kuo YC, Wang CC. Cationic solid lipid nanoparticles with primary and quaternary amines for release of saquinavir and biocompatibility with endothelia. Colloids Surf B Biointerfaces 2013; 101:101-5. [DOI: 10.1016/j.colsurfb.2012.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/01/2012] [Accepted: 06/06/2012] [Indexed: 11/16/2022]
|
17
|
Montenegro L, Ottimo S, Puglisi G, Castelli F, Sarpietro MG. Idebenone Loaded Solid Lipid Nanoparticles Interact with Biomembrane Models: Calorimetric Evidence. Mol Pharm 2012; 9:2534-41. [DOI: 10.1021/mp300149w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lucia Montenegro
- Department
of Drug Sciences, University of Catania,
V.le A. Doria 6, 95125 Catania, Italy
| | - Sara Ottimo
- Department
of Drug Sciences, University of Catania,
V.le A. Doria 6, 95125 Catania, Italy
| | - Giovanni Puglisi
- Department
of Drug Sciences, University of Catania,
V.le A. Doria 6, 95125 Catania, Italy
| | - Francesco Castelli
- Department
of Drug Sciences, University of Catania,
V.le A. Doria 6, 95125 Catania, Italy
| | - Maria Grazia Sarpietro
- Department
of Drug Sciences, University of Catania,
V.le A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
18
|
Kuo YC, Lu CH. Modulation of efflux proteins by electromagnetic field for delivering azidothymidine and saquinavir into the brain. Colloids Surf B Biointerfaces 2012; 91:291-5. [DOI: 10.1016/j.colsurfb.2011.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/09/2011] [Accepted: 11/11/2011] [Indexed: 11/29/2022]
|
19
|
Expression of ornithine decarboxylase during the transport of saquinavir across the blood–brain barrier using composite polymeric nanocarriers under an electromagnetic field. Colloids Surf B Biointerfaces 2011; 88:627-34. [DOI: 10.1016/j.colsurfb.2011.07.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/22/2011] [Accepted: 07/26/2011] [Indexed: 01/03/2023]
|
20
|
Kuo YC, Chung CY. Solid lipid nanoparticles comprising internal Compritol 888 ATO, tripalmitin and cacao butter for encapsulating and releasing stavudine, delavirdine and saquinavir. Colloids Surf B Biointerfaces 2011; 88:682-90. [DOI: 10.1016/j.colsurfb.2011.07.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
|
21
|
Kuo YC, Yu HW. Polyethyleneimine/poly-(γ-glutamic acid)/poly(lactide-co-glycolide) nanoparticles for loading and releasing antiretroviral drug. Colloids Surf B Biointerfaces 2011; 88:158-64. [DOI: 10.1016/j.colsurfb.2011.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/21/2011] [Accepted: 06/21/2011] [Indexed: 01/21/2023]
|
22
|
Kuo YC, Lee CL. Methylmethacrylate-sulfopropylmethacrylate nanoparticles with surface RMP-7 for targeting delivery of antiretroviral drugs across the blood-brain barrier. Colloids Surf B Biointerfaces 2011; 90:75-82. [PMID: 22024400 DOI: 10.1016/j.colsurfb.2011.09.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 09/29/2011] [Indexed: 10/16/2022]
Abstract
This study investigates the capability of methylmethacrylate-sulfopropylmethacrylate (MMA-SPM) nanoparticles (NPs) with grafted RMP-7 (RMP-7/MMA-SPM NPs) to deliver stavudine (D4T), delavirdine (DLV), and saquinavir (SQV) across the blood-brain barrier (BBB). The permeability coefficients of the three drugs across the BBB were evaluated by a co-culture model containing human brain-microvascular endothelial cells and human astrocytes. An increase in the concentration of ammonium persulfate (APS), the polymerization initiator, enhanced the particle size of drug-loaded RMP-7/MMA-SPM NPs. When the concentration of APS was 0.6%, the average particle diameter was smaller than 50 nm. These spherical drug carriers were uniform in size and displayed a dominant topography of discrete hillocks and deep pits in deposited film. Smaller RMP-7/MMA-SPM NPs yielded a larger drug loading efficiency. The order of drug in the loading efficiency and in the particle uptake was, respectively, D4T>DLV>SQV and D4T>SQV>DLV. Endocytosis of RMP-7/MMA-SPM NPs and tight junction mediation can improve the permeability of D4T, DLV, and SQV across the BBB.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, ROC.
| | | |
Collapse
|
23
|
Kuo YC, Lu CH. Regulation of endocytosis into human brain-microvascular endothelial cells by inhibition of efflux proteins. Colloids Surf B Biointerfaces 2011; 87:139-45. [DOI: 10.1016/j.colsurfb.2011.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 04/29/2011] [Accepted: 05/04/2011] [Indexed: 11/26/2022]
|
24
|
Kuo YC, Lin PI, Wang CC. Targeting nevirapine delivery across human brain microvascular endothelial cells using transferrin-grafted poly(lactide-co-glycolide) nanoparticles. Nanomedicine (Lond) 2011; 6:1011-26. [DOI: 10.2217/nnm.11.25] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aims: Poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) were grafted with transferrin (Tf) to enhance the transport of nevirapine (NVP) across human brain microvascular endothelial cells (HBMECs). Methods: NVP-loaded PLGA NPs with surface-grafting Tf (Tf/NVP–PLGA NPs) were incubated with HBMECs and immunochemical staining characterized Tf receptors (TfRs). Results: The polydispersity index of Tf/NVP–PLGA NPs was lower than 0.008. The entrapment efficiency of NVP and loading efficiency of Tf was 20–75% and 15–80%, respectively. Tf slightly retarded the release of NVP from PLGA. Dioctadecyldimethylammonium bromide (DODAB)-stabilized Tf/NVP–PLGA NPs reduced the viability of HBMECs to 70–75%. The secretion of TNF-α was inhibited by Tf and stimulated by DODAB. The permeability of NVP across HBMECs reached maxima at 67% DODAB and 0.1–0.2% Tf. An increase in the concentration of Tf enhanced the uptake of Tf/NVP–PLGA NPs via a TfR-mediated mechanism. Conclusion: Tf/NVP–PLGA NPs are efficacious carriers in targeting delivery across HBMECs for viral therapy.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| | - Pei-I Lin
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| | - Cheng-Chin Wang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| |
Collapse
|
25
|
Catanionic solid lipid nanoparticles carrying doxorubicin for inhibiting the growth of U87MG cells. Colloids Surf B Biointerfaces 2011; 85:131-7. [DOI: 10.1016/j.colsurfb.2011.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/25/2011] [Accepted: 02/01/2011] [Indexed: 11/22/2022]
|
26
|
Kuo YC, Lu CH. Effect of human astrocytes on the characteristics of human brain-microvascular endothelial cells in the blood-brain barrier. Colloids Surf B Biointerfaces 2011; 86:225-31. [PMID: 21524890 DOI: 10.1016/j.colsurfb.2011.04.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 03/28/2011] [Accepted: 04/01/2011] [Indexed: 11/15/2022]
Abstract
A blood-brain barrier (BBB) model in vitro was established by cultivating human brain-microvascular endothelial cells (HBMECs) with the regulation of human astrocytes (HAs) (HBMEC/HA). Astrocyte-conditioned medium (ACM) was employed to constitute a confluent monolayer of HBMECs without directly conjugated HAs. HBMECs exhibited an orientated multiplication on the supporting membrane; while HAs grew in an overlapping fashion. In addition, HBMECs could propagate over the membrane pore, and the end-feet of HAs extended into the membrane pore to improve the integral feature of the BBB. HBMEC/HA demonstrated a high transendothelial electrical resistance (TEER) about 230 Ω cm² and low permeability of propidium iodide (PI) about 4 × 10⁻⁶ cm/s. The order in TEER was HBMEC/HA>HBMECs with 100% ACM>HBMECs with 50% ACM > HBMECs. The reverse order was valid for the permeability of PI and uptake of calcein-AM by HBMECs. The tranwell culture of HBMECs and HAs displays appropriate characteristics of the BBB and can be applied to estimate the delivery efficiency of therapeutic chemicals for the brain-related disease.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC.
| | | |
Collapse
|
27
|
Physicochemical properties of nevirapine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Colloids Surf B Biointerfaces 2011; 83:299-306. [DOI: 10.1016/j.colsurfb.2010.11.037] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/23/2010] [Accepted: 11/28/2010] [Indexed: 11/22/2022]
|
28
|
Inhibition of human brain malignant glioblastoma cells using carmustine-loaded catanionic solid lipid nanoparticles with surface anti-epithelial growth factor receptor. Biomaterials 2011; 32:3340-50. [DOI: 10.1016/j.biomaterials.2011.01.048] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 01/18/2011] [Indexed: 01/09/2023]
|