1
|
Mahmoudi A, Alavizadeh SH, Hosseini SA, Meidany P, Doagooyan M, Abolhasani Y, Saadat Z, Amani F, Kesharwani P, Gheybi F, Sahebkar A. Harnessing aptamers against COVID-19: A therapeutic strategy. Drug Discov Today 2023; 28:103663. [PMID: 37315763 PMCID: PMC10266562 DOI: 10.1016/j.drudis.2023.103663] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
The novel coronavirus crisis caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) was a global pandemic. Although various therapeutic approaches were developed over the past 2 years, novel strategies with more efficient applicability are required to target new variants. Aptamers are single-stranded (ss)RNA or DNA oligonucleotides capable of folding into unique 3D structures with robust binding affinity to a wide variety of targets following structural recognition. Aptamer-based theranostics have proven excellent capability for diagnosing and treating various viral infections. Herein, we review the current status and future perspective of the potential of aptamers as COVID-19 therapies.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Atefeh Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Pouria Meidany
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maham Doagooyan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Yasaman Abolhasani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Zakieh Saadat
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Fatemeh Amani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Gharaibeh L, Alshaer W, Wehaibi S, Al Buqain R, Alqudah DA, Al-Kadash A, Al-Azzawi H, Awidi A, Bustanji Y. Fabrication of aptamer-guided siRNA loaded lipopolyplexes for gene silencing of notch 1 in MDA-mb-231 triple negative breast cancer cell line. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Zhang C, Zhao Y, Zhang E, Jiang M, Zhi D, Chen H, Cui S, Zhen Y, Cui J, Zhang S. Co-delivery of paclitaxel and anti-VEGF siRNA by tripeptide lipid nanoparticle to enhance the anti-tumor activity for lung cancer therapy. Drug Deliv 2021; 27:1397-1411. [PMID: 33096948 PMCID: PMC7594708 DOI: 10.1080/10717544.2020.1827085] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The combination of chemotherapeutic drug paclitaxel (PTX) and VEGF siRNA could inhibit cancer development with synergistic efficacy. However, efficient and safe delivery systems with high encapsulation efficiency of PTX and a long-time release of drugs are urgently needed. In this study, novel nanoparticles (PTX/siRNA/FALS) were constructed by using tripeptide lipid (L), sucrose laurate (S), and folate-PEG2000-DSPE (FA) to co-deliver PTX and siRNA. The cancer cell targeting nanoparticle carrier (PTX/siRNA/FALS) showed anticipated PTX encapsulation efficiency, siRNA retardation ability, improved cell uptake and sustained and controlled drug release. It led to significant anti-tumor activity in vitro and in vivo by efficient inhibition of VEGF expression and induction of cancer cell apoptosis. Importantly, the biocompatibility of the carriers and low dosage of PTX required for effective therapy greatly reduced the toxicity to mice. The targeting nanoparticles show potential as an effective co-delivery platform for RNAi and chemotherapy drugs, aiming to improve the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Chuanmin Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Enxia Zhang
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Meilin Jiang
- College of Postgraduate, Jinzhou Medical University, Jinzhou, China
| | - Defu Zhi
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Huiying Chen
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Shaohui Cui
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| |
Collapse
|
4
|
Perepelyuk M, Sacko K, Thangavel K, Shoyele SA. Evaluation of MUC1-Aptamer Functionalized Hybrid Nanoparticles for Targeted Delivery of miRNA-29b to Nonsmall Cell Lung Cancer. Mol Pharm 2018; 15:985-993. [PMID: 29432024 DOI: 10.1021/acs.molpharmaceut.7b00900] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The objective of this study was to evaluate the therapeutic efficacy and pharmacokinetic study of mucin1-aptamer functionalized miRNA-29b-loaded hybrid nanoparticles (MAFMILHNs) in lung tumor-bearing SCID mice. MAFMILHNs were manufactured using an isoelectric point based nanotechnology. They were then fully characterized for particle size, loading capacity, zeta potential, and encapsulation efficiency. The ability of MAFMILHNs to downregulate oncoprotein DNMT3B both at the cellular level and in vivo was monitored using Western blot, while the effect of the downregulation of DNMT3B on tumor growth was assessed using bioluminescence. Results indicate that the presence of MUC1-aptamer conjugated to the surface of the nanoparticles enhanced the selective delivery of miRNA-29b to tumor cells and tissues. Further, the downregulation of DNMT3B by MAFMILHNs resulted in the inhibition of tumor growth in mouse models.
Collapse
Affiliation(s)
- Maryna Perepelyuk
- Department of Pharmaceutical Sciences, College of Pharmacy , Thomas Jefferson University , Philadelphia , Pennsylvania 19107 , United States
| | - Koita Sacko
- Department of Pharmaceutical Sciences, College of Pharmacy , Thomas Jefferson University , Philadelphia , Pennsylvania 19107 , United States
| | - Karthik Thangavel
- Department of Pharmaceutical Sciences, College of Pharmacy , Thomas Jefferson University , Philadelphia , Pennsylvania 19107 , United States
| | - Sunday A Shoyele
- Department of Pharmaceutical Sciences, College of Pharmacy , Thomas Jefferson University , Philadelphia , Pennsylvania 19107 , United States
| |
Collapse
|
5
|
Yang Z, Tian L, Liu J, Huang G. Construction and evaluation in vitro and in vivo of tedizolid phosphate loaded cationic liposomes. J Liposome Res 2017; 28:322-330. [PMID: 28920493 DOI: 10.1080/08982104.2017.1380665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
First, the SA-TDZA-Lips were prepared by reverse-phase evaporation method. Then, the drug release behaviour was evaluated by dynamic membrane dialysis in vitro and the preliminary safety was evaluated by haemolysis method. Finally, with tedizolid phosphate injection (TDZA-Inj) and tedizolid phosphate loaded liposomes (TDZA-Lips) as the control groups, the pharmacokinetic characteristic and tissues distribution of SA-TDZA-Lips were evaluated after intravenous injection. As a result, the stearylamine modified tedizolid phosphate liposomal delivery system was constructed successfully and the particle size was 194.9 ± 2.93 nm. The encapsulation efficiency (EE) was 53.52 ± 2.18%. The in vitro release of SA-TDZA-Lips was in accordance with Weibull equation. And there was no haemolysis happened, which indicated good preliminary safety for injection. The results of pharmacokinetics showed that the t1/2β increased by 0.74 times and 0.51 times higher than that of TDZA-Inj group and TDZA-Lips group, respectively. The MRT of SA-TDZA-Lips was 1.30 and 1.09 times higher than that of TDZA-Inj group and TDZA-Lips group, respectively. The AUC was 2.40 times and 0.23 times higher than that of TDZA-Inj group and TDZA-Lips group, respectively. The tissue distribution results showed that the relative uptake rate (Re) of TDZA in the lung was 1.527, which indicated the targeting. In conclusion, the SA-TDZA-Lips prepared in this study had several advantages like positive charge, strong cell affinity, prolonged circulation time in vivo, sustained release effect, and increased drug concentration in lungs. All advantages above provided significant clinical value of application for the treatment of bacterial pneumonia with tedizolid phosphate.
Collapse
Affiliation(s)
- Zhenlei Yang
- a School of Pharmaceutical Sciences , Shandong University , Jinan , PR China
| | - Liu Tian
- a School of Pharmaceutical Sciences , Shandong University , Jinan , PR China
| | - Jingjing Liu
- a School of Pharmaceutical Sciences , Shandong University , Jinan , PR China
| | - Guihua Huang
- a School of Pharmaceutical Sciences , Shandong University , Jinan , PR China
| |
Collapse
|
6
|
Li F, Zhao Y, Mao C, Kong Y, Ming X. RGD-Modified Albumin Nanoconjugates for Targeted Delivery of a Porphyrin Photosensitizer. Mol Pharm 2017; 14:2793-2804. [PMID: 28700237 DOI: 10.1021/acs.molpharmaceut.7b00321] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Advances in photodynamic therapy of cancer have been restrained by lack of cancer specificity and side effects to normal tissues. Molecularly targeted photodynamic therapy can achieve higher cancer specificity by combination of active cancer targeting and localized laser activation. We aimed to use albumin as a carrier to prepare targeted nanoconjugates that are selective to cancer cells and smaller than conventional nanoparticles for superior tumor penetration. IRDye 700DX (IR700), a porphyrin photosensitizer, was covalently conjugated to human serum albumin that was also linked with tumor-targeting RGD peptides. With multiple IR700 and RGD molecules in a single albumin molecule, the resultant nanoconjugates demonstrated monodispersed and uniform size distribution with a diameter of 10.9 nm. These targeted nanoconjugates showed 121-fold increase in cellular delivery of IR700 into TOV21G ovarian cancer cells compared to control nanoconjugates. Mechanistic studies revealed that the integrin specific cellular delivery was achieved through dynamin-mediated caveolae-dependent endocytosis pathways. They produced massive cell killing in TOV21G cells at low nanomolar concentrations upon light irradiation, while NIH/3T3 cells that do not express integrin αvβ3 were not affected. Because of their small size, targeted albumin nanoconjugates could penetrate tumor spheroids of SKOV-3 ovarian cancer cells and produced strong phototoxicity in this 3-D model. Owing to their cancer-specific delivery and small size, these targeted nanoconjugates may become an effective drug delivery system for enabling molecularly targeted photodynamic therapy of cancer.
Collapse
Affiliation(s)
- Fang Li
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine , Winston-Salem, North Carolina 27157, United States.,School of Pharmacy, Jiangsu Vocational College of Medicine , Yancheng 224005, China
| | - Yan Zhao
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine , Winston-Salem, North Carolina 27157, United States
| | - Chengqiong Mao
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine , Winston-Salem, North Carolina 27157, United States
| | - Yi Kong
- School of Life Science and Technology, China Pharmaceutical University , Nanjing 210009, China
| | - Xin Ming
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine , Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
7
|
Rengaswamy V, Zimmer D, Süss R, Rössler J. RGD liposome-protamine-siRNA (LPR) nanoparticles targeting PAX3-FOXO1 for alveolar rhabdomyosarcoma therapy. J Control Release 2016; 235:319-327. [PMID: 27261335 DOI: 10.1016/j.jconrel.2016.05.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 11/30/2022]
Abstract
Alveolar rhabdomyosarcoma (ARMS) are aggressive soft tissue tumors harboring specific fusion transcripts, notably PAX3-FOXO1 (P3F). Current therapy concepts result in unsatisfactory survival rates making the search for innovative approaches necessary: targeting PAX3-FOXO1 could be a promising strategy. In this study, we developed integrin receptor-targeted Lipid-Protamine-siRNA (LPR) nanoparticles using the RGD peptide and validated target specificity as well as their post-silencing effects. We demonstrate that RGD-LPRs are specific to ARMS in vitro and in vivo. Loaded with siRNA directed against the breakpoint of P3F, these particles efficiently down regulated the fusion transcript and inhibited cell proliferation, but did not induce substantial apoptosis. In a xenograft ARMS model, LPR nanoparticles targeting P3F showed statistically significant tumor growth delay as well as inhibition of tumor initiation when injected in parallel with the tumor cells. These findings suggest that RGD-LPR targeting P3F are promising to be highly effective in the setting of minimal residual disease for ARMS.
Collapse
Affiliation(s)
- Venkatesh Rengaswamy
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Doris Zimmer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy and Freiburger, Materialforschungszentrum (FMF), University of Freiburg, Germany
| | - Regine Süss
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy and Freiburger, Materialforschungszentrum (FMF), University of Freiburg, Germany
| | - Jochen Rössler
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
8
|
Perepelyuk M, Thangavel C, Liu Y, Den RB, Lu B, Snook AE, Shoyele SA. Biodistribution and Pharmacokinetics Study of siRNA-loaded Anti-NTSR1-mAb-functionalized Novel Hybrid Nanoparticles in a Metastatic Orthotopic Murine Lung Cancer Model. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e282. [PMID: 26812654 PMCID: PMC5012553 DOI: 10.1038/mtna.2015.56] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/07/2015] [Indexed: 11/09/2022]
Abstract
Small interfering RNA (siRNA) is effective in silencing critical molecular pathways in cancer. The use of this tool as a treatment modality is limited by lack of an intelligent carrier system to enhance the preferential delivery of this molecule to specific targets in vivo. In the present study, the in vivo behavior of novel anti-NTSR1-mAb-functionalized antimutant K-ras siRNA-loaded hybrid nanoparticles, delivered by i.p. injection to non-small-cell lung cancer in mice models, was investigated and compared to that of a naked siRNA formulation. The siRNA in anti-NTSR1-mAb-functionalized hybrid nanoparticles was preferentially accumulated in tumor-bearing lungs and metastasized tumor for at least 48 hours while the naked siRNA formulation showed lack of preferential accumulation in all of the organs monitored. The plasma terminal half-life of nanoparticle-delivered siRNA was 11 times higher (17-1.5 hours) than that of the naked siRNA formulation. The mean residence time and AUClast were 3.4 and 33 times higher than the corresponding naked siRNA formulation, respectively. High-performance liquid chromatography analysis showed that the hybrid nanoparticle carrier system protected the encapsulated siRNA against degradation in vivo. Our novel anti-NTSR1-mAb-functionalized hybrid nanoparticles provide a useful platform for in vivo targeting of siRNA for both experimental and clinical purposes.
Collapse
Affiliation(s)
- Maryna Perepelyuk
- Department of Pharmaceutical Science, College of Pharmacy, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Yi Liu
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Robert B Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Bo Lu
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sunday A Shoyele
- Department of Pharmaceutical Science, College of Pharmacy, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Enhancing the pharmacokinetic/pharmacodynamic properties of therapeutic nucleotides using lipid nanoparticle systems. Future Med Chem 2015; 7:1751-69. [PMID: 26399560 DOI: 10.4155/fmc.15.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although activity has been reported in vivo, free nucleic acid-based drugs are rapidly degraded and cleared following systemic administration. To address these challenges and improve the potency and bioavailability of genetic drugs, significant efforts have been made to develop effective delivery systems of which lipid nanoparticles (LNP) represent the most advanced technology currently available. In this review, we will describe and discuss the improvements to the pharmacokinetic and pharmacodynamic properties of nucleic acid-based drugs mediated by LNP delivery. It is envisioned that the significant improvements in potency and safety, largely driven by the development of LNP encapsulated siRNA drugs, will be translatable to other types of genetic drugs and enable the rapid development of potent molecular tools and drugs.
Collapse
|
10
|
Chitosan coated vancomycin hydrochloride liposomes: Characterizations and evaluation. Int J Pharm 2015; 495:508-515. [PMID: 26325316 DOI: 10.1016/j.ijpharm.2015.08.085] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/11/2015] [Accepted: 08/26/2015] [Indexed: 11/21/2022]
Abstract
The present work evaluated the feasibility of chitosan coated liposomes (c-Lips) for the intravenous delivery of vancomycin hydrochloride (VANH), a water-soluble antibiotic for the treatment of gram-positive bacterial infections like osteomyelitis, arthritis, endocarditis, pneumonia, etc. The objective of this research was to develop a suitable drug delivery system in vivo which could improve therapeutic efficacy and decrease side effects especially nephrotoxicity. Firstly, the vancomycin hydrochloride liposomes (VANH-Lips) were prepared by modified reverse phase evaporation method, then the chitosan wrapped vancomycin hydrochloride liposomes (c-VANH-Lips) nanosuspension was formulated by the method of electrostatic deposition. Based on the optimized results of single-factor screening experiment, the c-VANH-Lips were found to be relatively uniform in size (220.40 ± 3.56 nm) with a narrow polydispersity index (PI) (0.21 ± 0.03) and a positive zeta potential (25.7 ± 1.12 mV). The average drug entrapment efficiency (EE) and drug loading (DL) were 32.65 ± 0.59% and 2.18 ± 0.04%, respectively. The in vitro release profile of c-VANH-Lips possessed a sustained release Characterization and the release behavior was in accordance with the Weibull equation. Hemolysis experiments showed that its intravenous injection had preliminary safety. In vivo, after intravenous injection to mice, c-VANH-Lips showed a longer retention time and higher AUC values compared with the VANH injection (VANH-Inj) and VANH-Lips. In addition, biodistribution results clearly demonstrated that c-VANH-Lips preferentially decreased the drug distribution in kidney of mice after intravenous injection. These results revealed that injectable c-VANH-Lips may serve as a promising carrier for VANH to increase therapeutic efficacy on gram-positive bacterial infections and reduce nephrotoxicity, which provides significantly clinical value for long-term use of VANH.
Collapse
|
11
|
Liposomes for systematic delivery of vancomycin hydrochloride to decrease nephrotoxicity: Characterization and evaluation. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2014.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
12
|
Draz MS, Fang BA, Zhang P, Hu Z, Gu S, Weng KC, Gray JW, Chen FF. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Am J Cancer Res 2014; 4:872-92. [PMID: 25057313 PMCID: PMC4107289 DOI: 10.7150/thno.9404] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/27/2014] [Indexed: 12/17/2022] Open
Abstract
RNA interference (RNAi) is an endogenous post-transcriptional gene regulatory mechanism, where non-coding, double-stranded RNA molecules interfere with the expression of certain genes in order to silence it. Since its discovery, this phenomenon has evolved as powerful technology to diagnose and treat diseases at cellular and molecular levels. With a lot of attention, short interfering RNA (siRNA) therapeutics has brought a great hope for treatment of various undruggable diseases, including genetic diseases, cancer, and resistant viral infections. However, the challenge of their systemic delivery and on how they are integrated to exhibit the desired properties and functions remains a key bottleneck for realizing its full potential. Nanoparticles are currently well known to exhibit a number of unique properties that could be strategically tailored into new advanced siRNA delivery systems. This review summarizes the various nanoparticulate systems developed so far in the literature for systemic delivery of siRNA, which include silica and silicon-based nanoparticles, metal and metal oxides nanoparticles, carbon nanotubes, graphene, dendrimers, polymers, cyclodextrins, lipids, hydrogels, and semiconductor nanocrystals. Challenges and barriers to the delivery of siRNA and the role of different nanoparticles to surmount these challenges are also included in the review.
Collapse
|
13
|
Christensen J, Litherland K, Faller T, van de Kerkhof E, Natt F, Hunziker J, Boos J, Beuvink I, Bowman K, Baryza J, Beverly M, Vargeese C, Heudi O, Stoeckli M, Krauser J, Swart P. Biodistribution and metabolism studies of lipid nanoparticle-formulated internally [3H]-labeled siRNA in mice. Drug Metab Dispos 2014; 42:431-40. [PMID: 24389421 DOI: 10.1124/dmd.113.055434] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Absorption, distribution, metabolism, and excretion properties of a small interfering RNA (siRNA) formulated in a lipid nanoparticle (LNP) vehicle were determined in male CD-1 mice following a single intravenous administration of LNP-formulated [(3)H]-SSB siRNA, at a target dose of 2.5 mg/kg. Tissue distribution of the [(3)H]-SSB siRNA was determined using quantitative whole-body autoradiography, and the biostability was determined by both liquid chromatography mass spectrometry (LC-MS) with radiodetection and reverse-transcriptase polymerase chain reaction techniques. Furthermore, the pharmacokinetics and distribution of the cationic lipid (one of the main excipients of the LNP vehicle) were investigated by LC-MS and matrix-assisted laser desorption ionization mass spectrometry imaging techniques, respectively. Following i.v. administration of [(3)H]-SSB siRNA in the LNP vehicle, the concentration of parent guide strand could be determined up to 168 hours p.d. (post dose), which was ascribed to the use of the vehicle. This was significantly longer than what was observed after i.v. administration of the unformulated [(3)H]-SSB siRNA, where no intact parent guide strand could be observed 5 minutes post dosing. The disposition of the siRNA was determined by the pharmacokinetics of the formulated LNP vehicle itself. In this study, the radioactivity was widely distributed throughout the body, and the total radioactivity concentration was determined in selected tissues. The highest concentrations of radioactivity were found in the spleen, liver, esophagus, stomach, adrenal, and seminal vesicle wall. In conclusion, the LNP vehicle was found to drive the kinetics and biodistribution of the SSB siRNA. The renal clearance was significantly reduced and its exposure in plasma significantly increased compared with the unformulated [(3)H]-SSB siRNA.
Collapse
Affiliation(s)
- Jesper Christensen
- Drug Metabolism and Pharmacokinetics (J.C., K.L., T.F., E.v.d.K., O.H., J.K., P.S.), Analytical Sciences (M.S.), and Biologics Center (F.N., J.H., J.Bo., I.B.), Novartis Pharma AG, Novartis Institutes for Biomedical Research, Basel, Switzerland; and Biologics Center, Novartis Pharma AG, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts (K.B., J.B., M.B., C.V.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Albumin-based nanoconjugates for targeted delivery of therapeutic oligonucleotides. Biomaterials 2013; 34:7939-49. [PMID: 23876758 DOI: 10.1016/j.biomaterials.2013.06.066] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/28/2013] [Indexed: 12/20/2022]
Abstract
Nanoparticle-based delivery has become an important strategy to advance siRNA and antisense oligonucleotides into clinical reality. However, limited biodistribution of nanoparticles and the toxicity of some nanocarriers restrict the wider application of this strategy. To address these issues we aimed to construct oligonucleotide delivery systems which are non-cytotoxic and smaller than typical nanoparticles. Thus, a morpholino oligonucleotide was conjugated to a tumor-targeting RGD peptide, and then, multiple RGD-oligo conjugates were linked to a single molecule of human serum albumin via a reductively responsive linkage. The resultant nanoconjugates showed uniform and monodispersed size distribution with a diameter of 13 nm. A single nanoconjugate molecule contains 15 oligonucleotides as well as 15 targeting ligands on the surface of albumin. The nanoparticle demonstrated 61-fold enhancement in receptor-specific cellular delivery of oligonucleotides in integrin-expressing tumor cells compared to the non-targeted control nanoconjugates and were able to robustly enhance functional activity of the oligonucleotide at low nanomolar concentrations without causing cytotoxicity. Due to their small size, the targeted nanoconjugates could penetrate deeply and distribute throughout 3-D tumor spheroids, whereas the conventional nanoparticles with sizes over 300 nm could only deliver to the cells on the surface of the tumor spheroids. As a result of their greater cellular delivery, smaller size, and lack of cytotoxicity compared to conventional nanoparticles, the multivalent nanoconjugates may provide an effective tool for targeting oligonucleotides to tumors and other diseased tissues.
Collapse
|
15
|
Belliveau NM, Huft J, Lin PJ, Chen S, Leung AK, Leaver TJ, Wild AW, Lee JB, Taylor RJ, Tam YK, Hansen CL, Cullis PR. Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for In Vivo Delivery of siRNA. MOLECULAR THERAPY-NUCLEIC ACIDS 2012; 1:e37. [PMID: 23344179 PMCID: PMC3442367 DOI: 10.1038/mtna.2012.28] [Citation(s) in RCA: 446] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Lipid nanoparticles (LNP) are the leading systems for in vivo delivery of small interfering RNA (siRNA) for therapeutic applications. Formulation of LNP siRNA systems requires rapid mixing of solutions containing cationic lipid with solutions containing siRNA. Current formulation procedures employ macroscopic mixing processes to produce systems 70-nm diameter or larger that have variable siRNA encapsulation efficiency, homogeneity, and reproducibility. Here, we show that microfluidic mixing techniques, which permit millisecond mixing at the nanoliter scale, can reproducibly generate limit size LNP siRNA systems 20 nm and larger with essentially complete encapsulation of siRNA over a wide range of conditions with polydispersity indexes as low as 0.02. Optimized LNP siRNA systems produced by microfluidic mixing achieved 50% target gene silencing in hepatocytes at a dose level of 10 µg/kg siRNA in mice. We anticipate that microfluidic mixing, a precisely controlled and readily scalable technique, will become the preferred method for formulation of LNP siRNA delivery systems.
Collapse
Affiliation(s)
- Nathan M Belliveau
- 1] Precision Nanosystems, Vancouver, British Columbia, Canada [2] Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tucker IG, Yang L, Mujoo H. Delivery of drugs to the brain via the blood brain barrier using colloidal carriers. J Microencapsul 2012; 29:475-86. [PMID: 22563886 DOI: 10.3109/02652048.2012.658445] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Delivering drugs to the brain is challenging given the selective permeability of the blood brain barrier (BBB). Targeted colloidal carriers containing drug payloads offer some promise for enhanced and perhaps selective delivery to brain. This review examines the recent literature and identifies issues to be addressed if these systems are to be rationally designed. These include opsonization of nanoparticles and off-target clearance; the cerebral microvasculature, flow of nanoparticles in capillaries and binding to the capillary wall; and transcytosis. Capillary architecture, blood flow and BBB permeability are affected by disease and age and there are species differences. These complexities caution against making extravagant claims for a particular nanosystem but they also highlight the rich opportunities and need for critical research in this field.
Collapse
Affiliation(s)
- Ian G Tucker
- School of Pharmacy, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| | | | | |
Collapse
|
17
|
Lee SI, Boyle DL, Berdeja A, Firestein GS. Regulation of inflammatory arthritis by the upstream kinase mitogen activated protein kinase kinase 7 in the c-Jun N-terminal kinase pathway. Arthritis Res Ther 2012; 14:R38. [PMID: 22353730 PMCID: PMC3392838 DOI: 10.1186/ar3750] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/12/2012] [Accepted: 02/21/2012] [Indexed: 12/21/2022] Open
Abstract
Introduction The c-Jun N-terminal kinase (JNK) is a key regulator of matrix metalloproteinase (MMP) and cytokine production in rheumatoid arthritis (RA) and JNK deficiency markedly protects mice in animal models of arthritis. Cytokine-induced JNK activation is strictly dependent on the mitogen-activated protein kinase kinase 7 (MKK7) in fibroblast-like synoviocytes (FLS). Therefore, we evaluated whether targeting MKK7 using anti-sense oligonucleotides (ASO) would decrease JNK activation and severity in K/BxN serum transfer arthritis. Methods Three 2'-O-methoxyethyl chimeric ASOs for MKK7 and control ASO were injected intravenously in normal C57BL/6 mice. PBS, control ASO or MKK7 ASO was injected from Day -8 to Day 10 in the passive K/BxN model. Ankle histology was evaluated using a semi-quantitative scoring system. Expression of MKK7 and JNK pathways was evaluated by quantitative PCR and Western blot analysis. Results MKK7 ASO decreased MKK7 mRNA and protein levels in ankles by about 40% in normal mice within three days. There was no effect of control ASO on MKK7 expression and MKK7 ASO did not affect MKK3, MKK4 or MKK6. Mice injected with MKK7 ASO had significantly less severe arthritis compared with control ASO (P < 0.01). Histologic evidence of synovial inflammation, bone erosion and cartilage damage was reduced in MKK7 ASO-treated mice (P < 0.01). MKK7 deficiency decreased phospho-JNK and phospho-c-Jun in ankle extracts (P < 0.05), but not phospho-MKK4. Interleukin-1beta (IL-1β), MMP3 and MMP13 gene expression in ankle joints were decreased by MKK7 ASO (P < 0.01). Conclusions MKK7 plays a critical regulatory role in the JNK pathway in a murine model of arthritis. Targeting MKK7 rather than JNK could provide site and event specificity when treating synovitis.
Collapse
Affiliation(s)
- Sang-il Lee
- Division of Rheumatology, Allergy and Immunology, UCSD School of Medicine, La Jolla, CA, USA
| | | | | | | |
Collapse
|
18
|
Vader P, Crielaard BJ, van Dommelen SM, van der Meel R, Storm G, Schiffelers RM. Targeted delivery of small interfering RNA to angiogenic endothelial cells with liposome-polycation-DNA particles. J Control Release 2011; 160:211-6. [PMID: 21983283 DOI: 10.1016/j.jconrel.2011.09.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/07/2011] [Accepted: 09/10/2011] [Indexed: 12/27/2022]
Abstract
Angiogenesis is an attractive target for cancer therapy, due to its central position in tumor growth and development. Vascular Endothelial Growth Factor (VEGF) and its receptors (VEGFRs) play a key role in the angiogenic process. A promising strategy for targeting VEGF-mediated angiogenesis is RNA interference (RNAi) using short interfering RNA (siRNA). However, for efficacious RNAi a well-designed siRNA delivery system is crucial. Liposome-Polycation-DNA (LPD) particles form a promising system for siRNA delivery to tumors. In order to target angiogenic endothelial cells, LPD particles may be modified with a targeting ligand, such as a cyclic Arg-Gly-Asp (RGD) peptide that specifically binds to integrins expressed on tumor-associated endothelial cells. In the current study, RGD-targeted PEGylated LPD particles containing VEGFR-2 siRNA were prepared and optimized with respect to their size and charge by varying protamine content, carrier DNA content for stronger complexation, and PEGylation density. The size of the optimized particles was around 200 nm and the ζ-potential was approximately +20 mV. The uptake and silencing efficacy of the RGD-targeted PEGylated LPD particles were evaluated in H5V cells (murine endothelial cells) and Human Umbilical Vein Endothelial cells (HUVECs). When compared to non-targeted LPD particles, enhanced uptake and silencing of VEGFR-2 expression was observed for RGD-targeted PEGylated LPD particles. In conclusion, the RGD-targeted PEGylated LPD particles containing VEGFR-2 siRNA presented here may be a promising approach for targeting VEGF-mediated angiogenesis in cancer therapy.
Collapse
Affiliation(s)
- P Vader
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
19
|
Kowalski PS, Leus NGJ, Scherphof GL, Ruiters MHJ, Kamps JAAM, Molema G. Targeted siRNA delivery to diseased microvascular endothelial cells-Cellular and molecular concepts. IUBMB Life 2011; 63:648-58. [DOI: 10.1002/iub.487] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/04/2011] [Indexed: 12/11/2022]
|
20
|
Lovell JF, Jin CS, Huynh E, Jin H, Kim C, Rubinstein JL, Chan WCW, Cao W, Wang LV, Zheng G. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. NATURE MATERIALS 2011; 10:324-332. [PMID: 21423187 DOI: 10.1038/nmat2986] [Citation(s) in RCA: 1009] [Impact Index Per Article: 72.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 02/08/2011] [Indexed: 05/27/2023]
Abstract
Optically active nanomaterials promise to advance a range of biophotonic techniques through nanoscale optical effects and integration of multiple imaging and therapeutic modalities. Here, we report the development of porphysomes; nanovesicles formed from self-assembled porphyrin bilayers that generated large, tunable extinction coefficients, structure-dependent fluorescence self-quenching and unique photothermal and photoacoustic properties. Porphysomes enabled the sensitive visualization of lymphatic systems using photoacoustic tomography. Near-infrared fluorescence generation could be restored on dissociation, creating opportunities for low-background fluorescence imaging. As a result of their organic nature, porphysomes were enzymatically biodegradable and induced minimal acute toxicity in mice with intravenous doses of 1,000 mg kg(-1). In a similar manner to liposomes, the large aqueous core of porphysomes could be passively or actively loaded. Following systemic administration, porphysomes accumulated in tumours of xenograft-bearing mice and laser irradiation induced photothermal tumour ablation. The optical properties and biocompatibility of porphysomes demonstrate the multimodal potential of organic nanoparticles for biophotonic imaging and therapy.
Collapse
Affiliation(s)
- Jonathan F Lovell
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|