1
|
Gao H, Sun F, Zhang X, Qiao X, Guo Y. The role and application of Coronin family in human tumorigenesis and immunomodulation. Biochim Biophys Acta Rev Cancer 2025; 1880:189304. [PMID: 40154644 DOI: 10.1016/j.bbcan.2025.189304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
The Coronin family, a class of actin-binding proteins involved in the formation and maintenance of cytoskeleton structural stability, is aberrantly expressed in various tumors, including lung, gastric and head and neck cancers. They can regulate tumor cell metabolism and proliferation through RAC-1 and Wnt/β-Catenin signaling pathways and regulate invasion by influencing the PI3K, PAK4, and MT1-MMP signaling pathways and impacting the actin-network dynamics. In recent years, an increasing number of studies have highlighted the crucial roles of the cytoskeleton and immune modulation in the occurrence and development of tumors. The article delves into the Coronin family's pivotal role in tumor immune evasion, highlighting its modulation of neutrophil, T cell, and vesicular transport functions, as well as its interactions with tumorigenesis related organelles such as the endoplasmic reticulum, Golgi apparatus, mitochondria, and lysosomes. It also summarizes the potential therapeutic applications of the Coronin family in oncology. This review provides valuable insights into the mechanisms through which the Coronin family is implicated in the onset and progression of tumors. It also provides more theoretical foundation for tumor immunotherapy and combination drug therapy.
Collapse
Affiliation(s)
- Huimeng Gao
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China
| | - Fuli Sun
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China; Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, China
| | - Xuanyu Zhang
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China
| | - Xue Qiao
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China; Department of Central Laboratory, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China.
| | - Yan Guo
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China; Department of Central Laboratory, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China.
| |
Collapse
|
2
|
Khoreva A, Butov KR, Nikolaeva EI, Martyanov A, Kulakovskaya E, Pershin D, Alexenko M, Kurnikova M, Abasov R, Raykina E, Abramov D, Arnaudova K, Rodina Y, Trubina N, Skvortsova Y, Balashov D, Sveshnikova A, Maschan A, Novichkova G, Panteleev M, Shcherbina A. Novel hemizygous CORO1A variant leads to combined immunodeficiency with defective platelet calcium signaling and cell mobility. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100172. [PMID: 37915722 PMCID: PMC10616384 DOI: 10.1016/j.jacig.2023.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 11/03/2023]
Abstract
Background To date, fewer than 20 patients have been identified as having germline biallelic mutations in the coronin-1A gene (CORO1A) and its protein with clinical features of combined immunodeficiency characterized by T-cell lymphopenia ranging from the severe phenotype to the mild phenotype, recurrent infections, and lymphoproliferative disorders. However, the effects of CORO1A protein disruption on actin-dependent functions in primary cells have not been fully delineated. Objective We sought to characterize the underlying defects of actin-dependent cellular functions in a female patient with combined immunodeficiency caused by a novel missense variant in the CORO1A gene in combination with a de novo heterozygous microdeletion of chromosome 16p11.2 and also to provide evidence of the pathogenicity of this gene mutation. Methods To identify the genetic defect, next-generation sequencing followed by Sanger confirmation and array comparative genomic hybridization were performed. Western blot and quantitative PCR tests were used to assess the effects on the protein. Flow cytometry and live microscopy were performed to investigate cellular motility and immune cell counts and function. Results We demonstrated that the CORO1A hemizygous variant c.19C>T, p. A7C induces significant decreases in cellular levels of the CORO1A protein while leaving mRNA concentrations unaffected. The observed mutation resulted in impaired natural killer cell cytotoxicity and platelet calcium signaling. In addition, primary granulocytes and mesenchymal cells showed significant defects in motility. Conclusion Collectively, we added new data about the CORO1A gene as a key player in actin cytoskeleton dynamics and cell signaling. Our findings expand the clinical spectrum regarding CORO1A protein deficiency and confirm the importance of a personalized therapeutic approach for each patient.
Collapse
Affiliation(s)
- Anna Khoreva
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Kirill R. Butov
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| | - Elena I. Nikolaeva
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| | - Alexey Martyanov
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| | - Elena Kulakovskaya
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitry Pershin
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Maxim Alexenko
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Maria Kurnikova
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ruslan Abasov
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Elena Raykina
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitry Abramov
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | - Yulia Rodina
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Natalia Trubina
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Yulia Skvortsova
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitry Balashov
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anastasia Sveshnikova
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| | - Alexey Maschan
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Galina Novichkova
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Mikhail Panteleev
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
3
|
Punwani D, Pelz B, Yu J, Arva NC, Schafernak K, Kondratowicz K, Makhija M, Puck JM. Coronin-1A: immune deficiency in humans and mice. J Clin Immunol 2015; 35:100-7. [PMID: 25666293 DOI: 10.1007/s10875-015-0130-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/13/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Divya Punwani
- Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, Box 0519, 513 Parnassus Avenue, HSE 301A, San Francisco, CA, 94143-0519, USA
| | | | | | | | | | | | | | | |
Collapse
|