1
|
Periferakis A, Periferakis AT, Troumpata L, Periferakis K, Georgatos-Garcia S, Touriki G, Dragosloveanu CDM, Caruntu A, Savulescu-Fiedler I, Dragosloveanu S, Scheau AE, Badarau IA, Caruntu C, Scheau C. Pinosylvin: A Multifunctional Stilbenoid with Antimicrobial, Antioxidant, and Anti-Inflammatory Potential. Curr Issues Mol Biol 2025; 47:204. [PMID: 40136458 PMCID: PMC11941527 DOI: 10.3390/cimb47030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
Stilbenoids are a category of plant compounds exhibiting notable health-related benefits. After resveratrol, perhaps the most well-known stilbenoid is pinosylvin, a major phytochemical constituent of most plants characterised by the pine spines among others. Pinosylvin and its derivatives have been found to exert potent antibacterial and antifungal effects, while their antiparasitic and antiviral properties are still a subject of ongoing research. The antioxidant properties of pinosylvin are mostly based on its scavenging of free radicals, inhibition of iNOS and protein kinase C, and promotion of HO-1 expression. Its anti-inflammatory properties are based on a variety of mechanisms, such as COX-2 inhibition, NF-κB and TRPA1 activation inhibition, and reduction in IL-6 levels. Its anticancer properties are partly associated with its antioxidant and anti-inflammatory potential, although a number of other mechanisms are described, such as apoptosis induction and matrix metalloproteinase inhibition. A couple of experiments have also suggested a neuroprotective potential. A multitude of ethnomedical and ethnobotanical effects of pinosylvin-containing plants are reported, like antimicrobial, antioxidant, anti-inflammatory, hepatoprotective, and prokinetic actions; many of these are corroborated by recent research. The advent of novel methods of artificial pinosylvin synthesis may facilitate its mass production and adoption as a medical compound. Finally, pinosylvin may be a tool in promoting environmentally friendly pesticide and insecticide policies and be used in land remediation schemes.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P.), 17236 Athens, Greece
| | - Spyrangelos Georgatos-Garcia
- Tilburg Institute for Law, Technology, and Society (TILT), Tilburg University, 5037 DE Tilburg, The Netherlands
- Corvers Greece IKE, 15124 Athens, Greece
| | - Georgia Touriki
- Faculty of Law, Democritus University of Thrace, 69100 Komotini, Greece
| | - Christiana Diana Maria Dragosloveanu
- Department of Ophthalmology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
2
|
Alla C, Ali A, Mehiou A, Salhi Y, Bouanani N, Legssyer A, Ziyyat A. Phytochemical Composition of Ziziphus lotus (L.) Lam and Its Impact on the Metabolic Syndrome: A Review. Adv Pharmacol Pharm Sci 2025; 2025:8276090. [PMID: 40035065 PMCID: PMC11873318 DOI: 10.1155/adpp/8276090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
The long-term pathological state known as metabolic syndrome is characterized by hypertension, insulin resistance diabetes, abdominal obesity, and hyperlipidemia. Seeking healthcare strategies with fewer side effects, such as herbal remedies, is preferable in terms of mitigating the negative consequences of synthetic medications. Ziziphus lotus (L.) (Rhamnaceae) or wild jujube, commonly known as "Sedra," is one of the best choices as it contains a variety of phytochemicals and biologically active compounds. Several flavonoids and stilbenes have been recognized as the primary bioactive components in wild jujube, including rutin, hyperin, isoquercitrin, and resveratrol. These polyphenols are pharmacologically active and have broad-spectrum beneficial effects for reducing the risk factors associated with metabolic syndrome. They exhibit antioxidant and anti-inflammatory properties, regulate lipid metabolism, and possess antiobesity, antihypertensive, and antidiabetic characteristics. However, there are certain limitations to their therapeutic application, such as low bioavailability. Various strategies have been proposed to enhance their pharmacokinetic profile and therapeutic potential for future use. The main goal of this review is to explore the underlying mechanisms related to the therapeutic effects of wild jujube and its active compounds in the treatment and prevention of metabolic syndrome.
Collapse
Affiliation(s)
- Chaimae Alla
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Amanat Ali
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Afaf Mehiou
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Youssra Salhi
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Nourelhouda Bouanani
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Abdelkhaleq Legssyer
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Abderrahim Ziyyat
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| |
Collapse
|
3
|
Zhao Z, Hu J, Gao X, Liang H, Yu H, Liu S, Liu Z. Retraction: Hyperglycemia via activation of thromboxane A2 receptor impairs the integrity and function of blood-brain barrier in microvascular endothelial cells. Oncotarget 2024; 15:806. [PMID: 39576661 PMCID: PMC11584033 DOI: 10.18632/oncotarget.28675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Affiliation(s)
- Zhihong Zhao
- Department of Neurology, The First Affiliated Hospital (People’s Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
- These authors contributed equally to this work
| | - Jue Hu
- Department of Neurology, Changsha Central Hospital, Changsha, Hunan, China
- These authors contributed equally to this work
| | - Xiaoping Gao
- Department of Neurology, The First Affiliated Hospital (People’s Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Hui Liang
- Department of Neurology, The First Affiliated Hospital (People’s Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Haiya Yu
- Department of Neurology, The People’s Hospital of Xishui, Huangang, Hubei, China
| | - Suosi Liu
- Department of Neurology, The First Affiliated Hospital (People’s Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
- Department of Clinical Nutrition and Gastroenterology, The First Affiliated Hospital (People’s Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Zhan Liu
- Department of Clinical Nutrition and Gastroenterology, The First Affiliated Hospital (People’s Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
4
|
Mendonça ELSS, Xavier JA, Fragoso MBT, Silva MO, Escodro PB, Oliveira ACM, Tucci P, Saso L, Goulart MOF. E-Stilbenes: General Chemical and Biological Aspects, Potential Pharmacological Activity Based on the Nrf2 Pathway. Pharmaceuticals (Basel) 2024; 17:232. [PMID: 38399446 PMCID: PMC10891666 DOI: 10.3390/ph17020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Stilbenes are phytoalexins, and their biosynthesis can occur through a natural route (shikimate precursor) or an alternative route (in microorganism cultures). The latter is a metabolic engineering strategy to enhance production due to stilbenes recognized pharmacological and medicinal potential. It is believed that in the human body, these potential activities can be modulated by the regulation of the nuclear factor erythroid derived 2 (Nrf2), which increases the expression of antioxidant enzymes. Given this, our review aims to critically analyze evidence regarding E-stilbenes in human metabolism and the Nrf2 activation pathway, with an emphasis on inflammatory and oxidative stress aspects related to the pathophysiology of chronic and metabolic diseases. In this comprehensive literature review, it can be observed that despite the broad number of stilbenes, those most frequently explored in clinical trials and preclinical studies (in vitro and in vivo) were resveratrol, piceatannol, pterostilbene, polydatin, stilbestrol, and pinosylvin. In some cases, depending on the dose/concentration and chemical nature of the stilbene, it was possible to identify activation of the Nrf2 pathway. Furthermore, the use of some experimental models presented a challenge in comparing results. In view of the above, it can be suggested that E-stilbenes have a relationship with the Nrf2 pathway, whether directly or indirectly, through different biological pathways, and in different diseases or conditions that are mainly related to inflammation and oxidative stress.
Collapse
Affiliation(s)
- Elaine L. S. S. Mendonça
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | - Jadriane A. Xavier
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Marilene B. T. Fragoso
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Messias O. Silva
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | | | | | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy
| | - Marília O. F. Goulart
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| |
Collapse
|
5
|
DiNatale J, Crowe-White K. Effects of resveratrol supplementation on nitric oxide-mediated vascular outcomes in hypertension: A systematic review. Nitric Oxide 2022; 129:74-81. [DOI: 10.1016/j.niox.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
|
6
|
Suvorava T, Metry S, Pick S, Kojda G. Alterations in endothelial nitric oxide synthase activity and their relevance to blood pressure. Biochem Pharmacol 2022; 205:115256. [DOI: 10.1016/j.bcp.2022.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022]
|
7
|
DiNicolantonio JJ, McCarty MF, O'Keefe JH. Coenzyme Q10 deficiency can be expected to compromise Sirt1 activity. Open Heart 2022; 9:e001927. [PMID: 35296520 PMCID: PMC8928362 DOI: 10.1136/openhrt-2021-001927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
For reasons that remain unclear, endogenous synthesis and tissue levels of coenzyme Q10 (CoQ10) tend to decline with increasing age in at least some tissues. When CoQ10 levels are sufficiently low, this compromises the efficiency of the mitochondrial electron transport chain, such that production of superoxide by site 2 increases and the rate of adenosine triphosphate production declines. Moreover, CoQ10 deficiency can be expected to decrease activities of Sirt1 and Sirt3 deacetylases, believed to be key determinants of health span. Reduction of the cytoplasmic and mitochondrial NAD+/NADH ratio consequent to CoQ10 deficit can be expected to decrease the activity of these deacetylases by lessening availability of their obligate substrate NAD+ The increased oxidant production induced by CoQ10 deficiency can decrease the stability of Sirt1 protein by complementary mechanisms. And CoQ10 deficiency has also been found to lower mRNA expression of Sirt1. An analysis of the roles of Sirt1/Sirt3 in modulation of cellular function helps to rationalise clinical benefits of CoQ10 supplementation reported in heart failure, hypertension, non-alcoholic fatty liver disease, metabolic syndrome and periodontal disease. Hence, correction of CoQ10 deficiency joins a growing list of measures that have potential for amplifying health protective Sirt1/Sirt3 activities.
Collapse
Affiliation(s)
- James J DiNicolantonio
- Department of Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | | | - James H O'Keefe
- Saint Luke's Mid America Heart Institute, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
8
|
Zeraattalab-Motlagh S, Jayedi A, Shab-Bidar S. The effects of resveratrol supplementation in patients with type 2 diabetes, metabolic syndrome, and nonalcoholic fatty liver disease: an umbrella review of meta-analyses of randomized controlled trials. Am J Clin Nutr 2021; 114:1675-1685. [PMID: 34320173 DOI: 10.1093/ajcn/nqab250] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Uncertainty remains about the estimates of the effects for resveratrol supplementation, including the certainty of the evidence for each estimate and the magnitude of the observed impact based on the minimal important difference. OBJECTIVE We aimed to provide an overview of the effects of resveratrol supplementation, in comparison to control groups, for the management of cardiometabolic risk factors in patients with type 2 diabetes (T2D), metabolic syndrome (MetS), and nonalcoholic fatty liver disease (NAFLD). METHODS PubMed, Scopus, and ISI Web of Science were searched from inception to May 2021. For each meta-analysis, the mean difference and its 95% CI were recalculated using a random-effects model. The certainty of evidence was rated using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) approach. RESULTS We identified 11 meta-analyses corresponding to 29 outcomes in 1476 individuals with T2D, 17 meta-analyses reporting 26 outcomes in 727 participants with the MetS, and 10 meta-analyses reporting 24 outcomes in 271 patients with NAFLD. Resveratrol supplementation had beneficial effects on some outcomes such as blood pressure, lipid profile, glycemic control, and insulin resistance in T2D, waist circumference in MetS, and body-weight and inflammation markers in NAFLD; however, for almost all outcomes, the magnitude of the effect was trivial, the certainty of evidence was very low to low, or the number of trials was too few. In the case of glycated hemoglobin (HbA1c), there was evidence that resveratrol can exert favorable and clinically important effects in the short term (<12 wk; mean difference: -1.05%, 95% CI: -2.09%, -0.02%; n = 6; GRADE = moderate). CONCLUSIONS Current evidence does not support supplementation with resveratrol for the management of cardiometabolic risk factors in patients with T2D, MetS, and NAFLD. In the case of HbA1c, subject to the limitations such as short-term follow-up and small sample size, there was a clinically important effect. The protocol of the present systematic review was registered in Open Science Framework (https://osf.io/ake85; registration doi: 10.17605/OSF.IO/AKE85).
Collapse
Affiliation(s)
- Sheida Zeraattalab-Motlagh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ahmad Jayedi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
9
|
Modifications in the Intestinal Functionality, Morphology and Microbiome Following Intra-Amniotic Administration ( Gallus gallus) of Grape ( Vitis vinifera) Stilbenes (Resveratrol and Pterostilbene). Nutrients 2021; 13:nu13093247. [PMID: 34579124 PMCID: PMC8466538 DOI: 10.3390/nu13093247] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
This efficacy trial evaluated the effects of two polyphenolic stilbenes, resveratrol and pterostilbene, mostly found in grapes, on the brush border membrane functionality, morphology and gut microbiome. This study applied the validated Gallus gallus intra-amniotic approach to investigate the effects of stilbene administration versus the controls. Three treatment groups (5% resveratrol; 5% pterostilbene; and synergistic: 4.75% resveratrol and 0.25% pterostilbene) and three controls (18 MΩ H2O; no injection; 5% inulin) were employed. We observed beneficial morphological changes, specifically an increase in the villus length, diameter, depth of crypts and goblet cell diameter in the pterostilbene and synergistic groups, with concomitant increases in the serum iron and zinc concentrations. Further, the alterations in gene expression of the mineral metabolism proteins and pro-inflammatory cytokines indicate a potential improvement in gut health and mineral bioavailability. The cecal microbiota was analyzed using 16S rRNA sequencing. A lower α-diversity was observed in the synergistic group compared with the other treatment groups. However, beneficial compositional and functional alterations in the gut microbiome were detected. Several key microbial metabolic pathways were differentially enriched in the pterostilbene treatment group. These observations demonstrate a significant bacterial–host interaction that contributed to enhancements in intestinal functionality, morphology and physiological status. Our data demonstrate a novel understanding of the nutritional benefits of dietary stilbenes and their effects on intestinal functionality, morphology and gut microbiota in vivo.
Collapse
|
10
|
Ramalingam A, Budin SB, Mohd Fauzi N, Ritchie RH, Zainalabidin S. Targeting mitochondrial reactive oxygen species-mediated oxidative stress attenuates nicotine-induced cardiac remodeling and dysfunction. Sci Rep 2021; 11:13845. [PMID: 34226619 PMCID: PMC8257608 DOI: 10.1038/s41598-021-93234-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/22/2021] [Indexed: 01/20/2023] Open
Abstract
Long-term nicotine intake is associated with an increased risk of myocardial damage and dysfunction. However, it remains unclear whether targeting mitochondrial reactive oxygen species (ROS) prevents nicotine-induced cardiac remodeling and dysfunction. This study investigated the effects of mitoTEMPO (a mitochondria-targeted antioxidant), and resveratrol (a sirtuin activator) , on nicotine-induced cardiac remodeling and dysfunction. Sprague–Dawley rats were administered 0.6 mg/kg nicotine daily with 0.7 mg/kg mitoTEMPO, 8 mg/kg resveratrol, or vehicle alone for 28 days. At the end of the study, rat hearts were collected to analyze the cardiac structure, mitochondrial ROS level, oxidative stress, and inflammation markers. A subset of rat hearts was perfused ex vivo to determine the cardiac function and myocardial susceptibility to ischemia–reperfusion injury. Nicotine administration significantly augmented mitochondrial ROS level, cardiomyocyte hypertrophy, fibrosis, and inflammation in rat hearts. Nicotine administration also induced left ventricular dysfunction, which was worsened by ischemia–reperfusion in isolated rat hearts. MitoTEMPO and resveratrol both significantly attenuated the adverse cardiac remodeling induced by nicotine, as well as the aggravation of postischemic ventricular dysfunction. Findings from this study show that targeting mitochondrial ROS with mitoTEMPO or resveratrol partially attenuates nicotine-induced cardiac remodeling and dysfunction.
Collapse
Affiliation(s)
- Anand Ramalingam
- Program of Biomedical Science, Centre of Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Balkis Budin
- Program of Biomedical Science, Centre of Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norsyahida Mohd Fauzi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Satirah Zainalabidin
- Program of Biomedical Science, Centre of Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Altered Properties of Neurons and Astrocytes and the Effects of Food Components in Stroke-Prone Spontaneously Hypertensive Rats. J Cardiovasc Pharmacol 2021; 77:718-727. [PMID: 34001721 DOI: 10.1097/fjc.0000000000001025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/07/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT In stroke-prone spontaneously hypertensive rats (SHRSP), stroke induces neuronal vulnerability and neuronal death, while astrocytes show a weakened support function toward neurons. Moreover, certain food components have been demonstrated to prevent the occurrence of stroke. This review aims to explain the stroke-related properties of SHRSP-derived neurons and astrocytes. In addition, it describes the effects of particular dietary phytochemicals on SHRSP. In this study, we obtained information using PubMed, ScienceDirect, and Web of Science. We searched for the functions of neurons and astrocytes and the molecular mechanism of ischemic stroke induction. We summarized the recent literature on the underlying mechanisms of stroke onset in SHRSP and the alleviating effects of typical food-derived phytochemical components. Neuronal death in SHRSP is induced by hypoxia-reoxygenation, suggesting the involvement of oxidative stress. Furthermore, the production of lactate, l-serine, and glial cell line-derived neurotrophic factor in SHRSP-derived astrocytes was reduced compared with that in control Wistar-Kyoto rats. Vitamin E exerts an inhibitory effect on hypoxia-reoxygenation-induced neuronal death in SHRSP. Curcumin, epigallocatechin gallate, resveratrol, and carotenoids can prevent the development of stroke in SHRSP. In particular, the properties of SHRSP-derived neurons and astrocytes affect stroke-induced neuronal death. This review suggests the potential and therapeutic applications of dietary phytochemicals in reducing stroke risk and lowering blood pressure in SHRSP, respectively, by targeting various processes, including oxidative stress, apoptosis, and inflammation. Thus, future research on SHRSP brain cells with a genetic predisposition to stroke can consider using these food ingredients to develop approaches for stroke prevention.
Collapse
|
12
|
Wu Y, Ding Y, Ramprasath T, Zou MH. Oxidative Stress, GTPCH1, and Endothelial Nitric Oxide Synthase Uncoupling in Hypertension. Antioxid Redox Signal 2021; 34:750-764. [PMID: 32363908 PMCID: PMC7910417 DOI: 10.1089/ars.2020.8112] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Significance: Hypertension has major health consequences, which is associated with endothelial dysfunction. Endothelial nitric oxide synthase (eNOS)-produced nitric oxide (NO) signaling in the vasculature plays an important role in maintaining vascular homeostasis. Considering the importance of NO system, this review aims to provide a brief overview of the biochemistry of members of NO signaling, including GTPCH1 [guanosine 5'-triphosphate (GTP) cyclohydrolase 1], tetrahydrobiopterin (BH4), and eNOS. Recent Advances: Being NO signaling activators and regulators of eNOS signaling, BH4 treatment is getting widespread attention either as potential therapeutic agents or as preventive agents. Recent clinical trials also support that BH4 treatment could be considered a promising therapeutic in hypertension. Critical Issues: Under conditions of BH4 depletion, eNOS-generated superoxides trigger pathological events. Abnormalities in NO availability and BH4 deficiency lead to disturbed redox regulation causing pathological events. This disturbed signaling influences the development of systemic hypertension as well as pulmonary hypertension. Future Directions: Considering the importance of BH4 and NO to improve the translational significance, it is essential to continue research on this field to manipulate BH4 to increase the efficacy for treating hypertension. Thus, this review also examines the current state of knowledge on the effects of eNOS activators on preclinical models and humans to utilize this information for potential therapy.
Collapse
Affiliation(s)
- Yin Wu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Ye Ding
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Tharmarajan Ramprasath
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Efficacy of Polyphenols in the Management of Dyslipidemia: A Focus on Clinical Studies. Nutrients 2021; 13:nu13020672. [PMID: 33669729 PMCID: PMC7922034 DOI: 10.3390/nu13020672] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Polyphenols (PLPs), phytochemicals found in a wide range of plant-based foods, have gained extensive attention in view of their antioxidant, anti-inflammatory, immunomodulatory and several additional beneficial activities. The health-promoting effects noted in animal models of various non-communicable diseases explain the growing interest in these molecules. In particular, in vitro and animal studies reported an attenuation of lipid disorders in response to PLPs. However, despite promising preclinical investigations, the effectiveness of PLPs in human dyslipidemia (DLP) is less clear and necessitates revision of available literature. Therefore, the present review analyzes the role of PLPs in managing clinical DLP, notably by dissecting their potential in ameliorating lipid/lipoprotein metabolism and alleviating hyperlipidemia, both postprandially and in long-term interventions. To this end, PubMed was used for article search. The search terms included polyphenols, lipids, triglycerides, cholesterol, LDL-cholesterol and /or HDL-cholesterol. The critical examination of the trials published to date illustrates certain benefits on blood lipids along with co-morbidities in participant’s health status. However, inconsistent results document significant research gaps, potentially owing to study heterogeneity and lack of rigor in establishing PLP bioavailability during supplementation. This underlines the need for further efforts in order to elucidate and support a potential role of PLPs in fighting DLP.
Collapse
|
14
|
Lu YA, Jiang Y, Yang HW, Hwang J, Jeon YJ, Ryu B. Diphlorethohydroxycarmalol Isolated from Ishige okamurae Exerts Vasodilatory Effects via Calcium Signaling and PI3K/Akt/eNOS Pathway. Int J Mol Sci 2021; 22:1610. [PMID: 33562632 PMCID: PMC7914902 DOI: 10.3390/ijms22041610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide (NO) is released by endothelial cells in the blood vessel wall to enhance vasodilation. Marine polyphenols are known to have protective effects against vascular dysfunction and hypertension. The present study is the first to investigate how diphlorethohydroxycarmalol (DPHC) isolated from Ishige okamurae affects calcium levels, resulting in enhanced vasodilation. We examined calcium modulation with the well-known receptors, acetylcholine receptor (AchR) and vascular endothelial growth factor 2 (VEGFR2), which are related to NO formation, and further confirmed the vasodilatory effect of DPHC. We confirmed that DPHC stimulated NO production by increasing calcium levels and endothelial nitric oxide synthase (eNOS) expression. DPHC affected AchR and VEGFR2 expression, thereby influencing transient calcium intake. Specific antagonists, atropine and SU5416, were used to verify our findings. Furthermore, based on the results of in vivo experiments, we treated Tg(flk:EGFP) transgenic zebrafish with DPHC to confirm its vasodilatory effect. In conclusion, the present study showed that DPHC modulated calcium transit through AchR and VEGFR2, increasing endothelial-dependent NO production. Thus, DPHC, a natural marine component, can efficiently ameliorate cardiovascular diseases by improving vascular function.
Collapse
Affiliation(s)
- Yu An Lu
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (Y.A.L.); (Y.J.); (H.-W.Y.); (J.H.)
| | - Yunfei Jiang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (Y.A.L.); (Y.J.); (H.-W.Y.); (J.H.)
| | - Hye-Won Yang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (Y.A.L.); (Y.J.); (H.-W.Y.); (J.H.)
| | - Jin Hwang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (Y.A.L.); (Y.J.); (H.-W.Y.); (J.H.)
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (Y.A.L.); (Y.J.); (H.-W.Y.); (J.H.)
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Bomi Ryu
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (Y.A.L.); (Y.J.); (H.-W.Y.); (J.H.)
| |
Collapse
|
15
|
Synthesis of Stilbene and Chalcone Inhibitors of Influenza A Virus by SBA-15 Supported Hoveyda-Grubbs Metathesis. Catalysts 2019. [DOI: 10.3390/catal9120983] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Stilbene and chalcone derivatives with biological activity against influenza A virus have been synthesized by self-, cross-, and ring-closing metathesis procedures. The reactions were performed under environmentally friendly conditions using the second generation Hoveyda-Grubbs catalyst Aquamet SiPr after immobilization on Santa Barbara Amorphous mesoporous silicate SBA-15. Irrespective from the experimental conditions, the heterogeneous catalyst showed activity and selectivity comparable than the homogeneous counterpart for at least six successive runs without appreciable leaching of the active species. An appreciable antiviral activity against influenza A virus for some of the novel derivatives were observed, mainly involving the early stage of the virus-replication life-cycle.
Collapse
|
16
|
Diaz M, Parikh V, Ismail S, Maxamed R, Tye E, Austin C, Dew T, Graf BA, Vanhees L, Degens H, Azzawi M. Differential effects of resveratrol on the dilator responses of femoral arteries, ex vivo. Nitric Oxide 2019; 92:1-10. [DOI: 10.1016/j.niox.2019.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/12/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022]
|
17
|
Sarkar O, Li Y, Anand-Srivastava MB. Resveratrol prevents the development of high blood pressure in spontaneously hypertensive rats through the inhibition of enhanced expression of Giα proteins. Can J Physiol Pharmacol 2019; 97:872-879. [DOI: 10.1139/cjpp-2019-0040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Resveratrol (RV), a polyphenolic component of red wine, has been shown to attenuate high blood pressure (BP) in spontaneously hypertensive rats (SHRs). We previously found that the enhanced expression of Giα proteins plays a role in the pathogenesis of hypertension in SHRs. In the present study, we investigated whether this RV-induced decrease in BP in SHRs can be attributed to the ability of RV to inhibit the enhanced expression of Giα proteins and the upstream signaling molecules implicated in the overexpression of Giα proteins. Administration of RV (50 mg/kg per day) to prehypertensive 2-week-old SHRs for 6 weeks prevented the development of high BP and inhibited the enhanced expression of Giα proteins, the enhanced levels of superoxide anion (O2−) and NADPH oxidase activity, the enhanced activation (phosphorylation) of c-Src and growth factor receptors, as well as the enhanced levels of extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) exhibited by vascular smooth muscle cells isolated from SHRs. In conclusion, these results indicate that RV attenuates the development of high BP in SHRs through the inhibition of enhanced levels of Giα proteins, oxidative stress, and the upstream signaling molecules that contribute to the overexpression of Giα proteins. These findings suggest that RV could potentially be used as a therapeutic agent in the treatment of cardiovascular complications including hypertension.
Collapse
Affiliation(s)
- Oli Sarkar
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Madhu B. Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
18
|
Dehghani A, Hafizibarjin Z, Najjari R, Kaseb F, Safari F. Resveratrol and 1,25-dihydroxyvitamin D co-administration protects the heart against D-galactose-induced aging in rats: evaluation of serum and cardiac levels of klotho. Aging Clin Exp Res 2019; 31:1195-1205. [PMID: 30484255 DOI: 10.1007/s40520-018-1075-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/14/2018] [Indexed: 01/14/2023]
Abstract
The current study investigates the cooperative cardioprotective effect of calcitriol (active form of vitamin D) combined with resveratrol in a rat model of D-galactose (D.gal)-induced aging. Male Wistar rats received resveratrol (D.gal + Res), calcitriol (D.gal + Cal), or a combination of them (D.gal + Res + Cal). Intact animals served as control (Ctl). Blood pressure (BP) was recorded by cannulation of the left carotid artery. Fibrosis and cell size were assessed by Masson's trichrome and hematoxylin-eosin staining, respectively. Cardiac and serum level of antiaging protein, klotho, was measured by ELISA assay method. Gene expression was evaluated by real-time RT-PCR. Biochemical tests were performed according to the standardized method. In D.gal + Res + Cal group, BP, heart weight-to-body weight ratio, and cardiomyocytes size decreased significantly compared with D-gal group. The cardiac transcription levels of catalase and superoxide dismutase 1 and 2 were upregulated in D.gal + Res + Cal compared to the D.gal group (P < 0.001, P < 0.05, P < 0.05, respectively). Increased level of malondialdehyde was observed in D.gal group (P < 0.01 vs. Ctl) which was normalized partially in D.gal + Res + Cal group (P < 0.05). Catalase and superoxide dismutase activity also increased in D.gal + Res + Cal group (P < 0.01 vs. D.gal). Cardiac Klotho, as the antiaging protein, remained unchanged at mRNA and protein levels among the experimental groups. The serum level of Klotho did not change significantly in D.gal group; however, in D.gal + Res + Cal group, serum klotho concentration was increased (P < 0.05 vs. D.gal). It could be concluded that co-administration of resveratrol and vitamin D protects the heart against aging-induced damage by the modulation of hemodynamic parameters and antioxidant status of the heart. Furthermore, increased serum level of klotho could be a novel mechanism for antiaging effects of resveratrol and vitamin D.
Collapse
Affiliation(s)
- Ali Dehghani
- Department of Elderly Health, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zeynab Hafizibarjin
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Razieh Najjari
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Kaseb
- Faculty of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Safari
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Biotechnology Research Center, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
19
|
Diaz M, Avila A, Degens H, Coeckelberghs E, Vanhees L, Cornelissen V, Azzawi M. Acute resveratrol supplementation in coronary artery disease: towards patient stratification. SCAND CARDIOVASC J 2019; 54:14-19. [PMID: 31429599 DOI: 10.1080/14017431.2019.1657584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: Resveratrol (RV) is a polyphenol with antioxidant, anti-inflammatory and cardio-protective properties. Our objective was to investigate whether acute supplementation with high doses of RV would improve flow-mediated dilation (FMD) and oxygen consumption (VO2) kinetics in older coronary artery disease (CAD) patients. Design: We employed a placebo-controlled, single-blind, crossover design in which ten participants (aged 66.6 ± 7.8 years) received either RV or placebo (330 mg, 3× day-1) during three consecutive days plus additional 330 mg in the morning of the fourth day with a seven-day wash-out period in-between. On the fourth day, FMD of the brachial artery and VO2 on-kinetics were determined. Results: RV improved FMD in patients who had undergone coronary artery bypass grafting (CABG; -1.4 vs. 5.0%; p = .004), but not in those who had undergone percutaneous coronary intervention (PCI; 4.2 vs. -0.2%; NS). Conclusion: Acute high dose supplementation with RV improved FMD in patients after CABG surgery but impaired FMD in patients who underwent PCI. The revascularization method-related differential effects of RV may be due to its direct effects on endothelial-dependent dilator responses. Our findings have important implications for personalized treatment and stratification of older CAD patients.
Collapse
Affiliation(s)
- M Diaz
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.,Swedish Red Cross University College, Huddinge, Sweden
| | - A Avila
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.,Research Group for Cardiovascular and Respiratory Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - H Degens
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.,Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - E Coeckelberghs
- Research Group for Cardiovascular and Respiratory Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - L Vanhees
- Research Group for Cardiovascular and Respiratory Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - V Cornelissen
- Research Group for Cardiovascular and Respiratory Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - M Azzawi
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
20
|
De Bruyne T, Steenput B, Roth L, De Meyer GRY, Santos CND, Valentová K, Dambrova M, Hermans N. Dietary Polyphenols Targeting Arterial Stiffness: Interplay of Contributing Mechanisms and Gut Microbiome-Related Metabolism. Nutrients 2019; 11:E578. [PMID: 30857217 PMCID: PMC6471395 DOI: 10.3390/nu11030578] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
Increased arterial stiffness is a degenerative vascular process, progressing with age that leads to a reduced capability of arteries to expand and contract in response to pressure changes. This progressive degeneration mainly affects the extracellular matrix of elastic arteries and causes loss of vascular elasticity. Recent studies point to significant interference of dietary polyphenols with mechanisms involved in the pathophysiology and progression of arterial stiffness. This review summarizes data from epidemiological and interventional studies on the effect of polyphenols on vascular stiffness as an illustration of current research and addresses possible etiological factors targeted by polyphenols, including pathways of vascular functionality, oxidative status, inflammation, glycation, and autophagy. Effects can either be inflicted directly by the dietary polyphenols or indirectly by metabolites originated from the host or microbial metabolic processes. The composition of the gut microbiome, therefore, determines the resulting metabolome and, as a consequence, the observed activity. On the other hand, polyphenols also influence the intestinal microbial composition, and therefore the metabolites available for interaction with relevant targets. As such, targeting the gut microbiome is another potential treatment option for arterial stiffness.
Collapse
Affiliation(s)
- Tess De Bruyne
- Laboratory of Natural Products and Food-Research and Analysis (NatuRA), University of Antwerp, 2610 Antwerpen, Belgium.
| | - Bieke Steenput
- Laboratory of Natural Products and Food-Research and Analysis (NatuRA), University of Antwerp, 2610 Antwerpen, Belgium.
| | - Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Antwerpen, Belgium.
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Antwerpen, Belgium.
| | - Claudia Nunes Dos Santos
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia.
| | - Nina Hermans
- Laboratory of Natural Products and Food-Research and Analysis (NatuRA), University of Antwerp, 2610 Antwerpen, Belgium.
| |
Collapse
|
21
|
Marshall SA, Cox AG, Parry LJ, Wallace EM. Targeting the vascular dysfunction: Potential treatments for preeclampsia. Microcirculation 2018; 26:e12522. [PMID: 30556222 DOI: 10.1111/micc.12522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/22/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022]
Abstract
Preeclampsia is a pregnancy-specific disorder, primarily characterized by new-onset hypertension in combination with a variety of other maternal or fetal signs. The pathophysiological mechanisms underlying the disease are still not entirely clear. Systemic maternal vascular dysfunction underlies the clinical features of preeclampsia. It is a result of oxidative stress and the actions of excessive anti-angiogenic factors, such as soluble fms-like tyrosine kinase, soluble endoglin, and activin A, released by a dysfunctional placenta. The vascular dysfunction then leads to impaired regulation and secretion of relaxation factors and an increase in sensitivity/production of constrictors. This results in a more constricted vasculature rather than the relaxed vasodilated state associated with normal pregnancy. Currently, the only effective "treatment" for preeclampsia is delivery of the placenta and therefore the baby. Often, this means a preterm delivery to save the life of the mother, with all the attendant risks and burdens associated with fetal prematurity. To lessen this burden, there is a pressing need for more effective treatments that target the maternal vascular dysfunction that underlies the hypertension. This review details the vascular effects of key drugs undergoing clinical assessment as potential treatments for women with preeclampsia.
Collapse
Affiliation(s)
- Sarah A Marshall
- Departments of Obstetrics and Gynaecology and Medicine, School of Clinical Sciences, The Ritchie Centre, Monash University, Clayton, Victoria, Australia
| | - Annie G Cox
- Departments of Obstetrics and Gynaecology and Medicine, School of Clinical Sciences, The Ritchie Centre, Monash University, Clayton, Victoria, Australia
| | - Laura J Parry
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Euan M Wallace
- Departments of Obstetrics and Gynaecology and Medicine, School of Clinical Sciences, The Ritchie Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
22
|
Endothelial AMP-Activated Kinase α1 Phosphorylates eNOS on Thr495 and Decreases Endothelial NO Formation. Int J Mol Sci 2018; 19:ijms19092753. [PMID: 30217073 PMCID: PMC6165563 DOI: 10.3390/ijms19092753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is frequently reported to phosphorylate Ser1177 of the endothelial nitric-oxide synthase (eNOS), and therefore, is linked with a relaxing effect. However, previous studies failed to consistently demonstrate a major role for AMPK on eNOS-dependent relaxation. As AMPK also phosphorylates eNOS on the inhibitory Thr495 site, this study aimed to determine the role of AMPKα1 and α2 subunits in the regulation of NO-mediated vascular relaxation. Vascular reactivity to phenylephrine and acetylcholine was assessed in aortic and carotid artery segments from mice with global (AMPKα-/-) or endothelial-specific deletion (AMPKαΔEC) of the AMPKα subunits. In control and AMPKα1-depleted human umbilical vein endothelial cells, eNOS phosphorylation on Ser1177 and Thr495 was assessed after AMPK activation with thiopental or ionomycin. Global deletion of the AMPKα1 or α2 subunit in mice did not affect vascular reactivity. The endothelial-specific deletion of the AMPKα1 subunit attenuated phenylephrine-mediated contraction in an eNOS- and endothelium-dependent manner. In in vitro studies, activation of AMPK did not alter the phosphorylation of eNOS on Ser1177, but increased its phosphorylation on Thr495. Depletion of AMPKα1 in cultured human endothelial cells decreased Thr495 phosphorylation without affecting Ser1177 phosphorylation. The results of this study indicate that AMPKα1 targets the inhibitory phosphorylation Thr495 site in the calmodulin-binding domain of eNOS to attenuate basal NO production and phenylephrine-induced vasoconstriction.
Collapse
|
23
|
Wang G, Song X, Zhao L, Li Z, Liu B. Resveratrol Prevents Diabetic Cardiomyopathy by Increasing Nrf2 Expression and Transcriptional Activity. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2150218. [PMID: 29721501 PMCID: PMC5867593 DOI: 10.1155/2018/2150218] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/07/2017] [Accepted: 12/27/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVE This study investigated if resveratrol ameliorates diabetic cardiomyopathy by targeting associated oxidative stress mechanisms. METHOD Type 1 diabetes mellitus (DM) in FVB mice was induced by several intraperitoneal injections of a low dose of streptozotocin. Hyperglycemic and age-matched control mice were given resveratrol (10 mg/kg per day) for 1 month and subsequently monitored for an additional 6 months. Mice were assigned to four groups: control, resveratrol, DM, and DM/resveratrol. Cardiac function and blood pressure were assessed at 1, 3, and 6 months after DM induction. Oxidative damage and cardiac fibrosis were analyzed by histopathology, real-time PCR, and Western blot. RESULT Mice in the DM group exhibited increased blood glucose levels, cardiac dysfunction, and high blood pressure at 1, 3, and 6 months after DM induction. Resveratrol did not significantly affect blood glucose levels and blood pressure; however, resveratrol attenuated cardiac dysfunction and hypertrophy in DM mice. Resveratrol also reduced DM-induced fibrosis. In addition, DM mice hearts exhibited increased oxidative damage, as evidenced by elevated accumulation of 3-nitrotyrosine and 4-hydroxynonenal, which were both attenuated by resveratrol. Mechanistically, resveratrol increased NFE2-related factor 2 (Nrf2) expression and transcriptional activity, as well as Nrf2's downstream antioxidative targets. CONCLUSION We demonstrated that resveratrol prevents DM-induced cardiomyopathy, in part, by increasing Nrf2 expression and transcriptional activity.
Collapse
Affiliation(s)
- Guan Wang
- Department of Cardiology, The Second Hospital of Jilin University, Jilin University, Changchun 100032, China
| | - Xianjin Song
- Department of Cardiology, The Second Hospital of Jilin University, Jilin University, Changchun 100032, China
| | - Lei Zhao
- Department of Cardiology, The Second Hospital of Jilin University, Jilin University, Changchun 100032, China
| | - Zhibo Li
- Department of Cardiology, The Second Hospital of Jilin University, Jilin University, Changchun 100032, China
| | - Bing Liu
- Department of Cardiology, The Second Hospital of Jilin University, Jilin University, Changchun 100032, China
| |
Collapse
|
24
|
Abstract
Stilbenoids are a group of naturally occurring phenolic compounds found in various plant species. They share a common backbone structure known as stilbene, but differ in the nature and position of substituents. Stilbenoids are classified as phytoalexins, which are antimicrobial compounds produced de novo in plants to protect against fungal infection and toxins. In this review, the biological effects of stilbenoids such as resveratrol, pterostilbene, gnetol and piceatannol are discussed. Stilbenoids exert various biological activities ranging from cardioprotection, neuroprotection, anti-diabetic properties, depigmentation, anti-inflammation, cancer prevention and treatment. The results presented cover a myriad of models, from cell culture to animal studies as well as clinical human trials. Although positive results were obtained in most cell culture and animal studies, further human studies are needed to substantiate beneficial effects of stilbenoids. Resveratrol remains the most widely studied stilbenoid. However, there is limited information regarding the potential of less common stilbenoids. Therefore, further research is warranted to evaluate the salutary effects of various stilbenoids.
Collapse
Affiliation(s)
- Bolanle C Akinwumi
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
| | - Kimberly-Ann M Bordun
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
| | - Hope D Anderson
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| |
Collapse
|
25
|
Ding J, Kang Y, Fan Y, Chen Q. Efficacy of resveratrol to supplement oral nifedipine treatment in pregnancy-induced preeclampsia. Endocr Connect 2017; 6:595-600. [PMID: 28993436 PMCID: PMC5633060 DOI: 10.1530/ec-17-0130] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/12/2017] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Preeclampsia (PE) is a complication affecting pregnant women worldwide, which usually manifests as severe maternal hypertension. Resveratrol (RESV), a naturally existing polyphenol, is known to exhibit beneficial effects in cardiovascular disease including hypertension. We evaluated the outcome of treatment combining oral nifedipine (NIFE) and RESV against PE. DESIGN AND METHODS Using a randomized group assignment, 400 PE patients were enrolled and received oral treatments of either NIFE + RESV or NIFE + placebo. Primary endpoints were defined as time to control blood pressure and time before a new hypertensive crisis. Secondary endpoints were defined as the number of doses needed to control blood pressure, maternal and neonatal adverse effects. RESULTS Compared with the NIFE + placebo group, the time needed to control blood pressure was significantly reduced in NIFE + RESV group, while time before a new hypertensive crisis was greatly delayed in NIFE + RESV group. The number of treatment doses needed to control blood pressure was also categorically lower in NIFE + RESV group. No differences in maternal or neonatal adverse effects were observed between the two treatment groups. CONCLUSION Our data support the potential of RESV as a safe and effective adjuvant of oral NIFE to attenuate hypertensive symptoms among PE patients.
Collapse
Affiliation(s)
- Jian Ding
- Department of Obstetrics and GynecologyMaternal and Child Health Care Hospital of Shandong Province, Jinan, Shandong Province, China
- Department of Obstetrics and GynecologyProvincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Yan Kang
- Department of Obstetrics and GynecologyMaternal and Child Health Care Hospital of Shandong Province, Jinan, Shandong Province, China
- Department of Obstetrics and GynecologyProvincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Yuqin Fan
- Department of Obstetrics and GynecologyMaternal and Child Health Care Hospital of Shandong Province, Jinan, Shandong Province, China
- Department of Obstetrics and GynecologyProvincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Qi Chen
- Department of Obstetrics and GynecologyZoucheng People's Hospital, Zoucheng, Shandong Province, China
| |
Collapse
|