1
|
Wen J, Li A, Wang Z, Guo X, Zhang G, Litzow MR, Liu Q. Hepatotoxicity induced by arsenic trioxide: clinical features, mechanisms, preventive and potential therapeutic strategies. Front Pharmacol 2025; 16:1536388. [PMID: 40051569 PMCID: PMC11882591 DOI: 10.3389/fphar.2025.1536388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025] Open
Abstract
Arsenic trioxide (ATO) has shown substantial efficacy in the treatment of patients with acute promyelocytic leukemia, and the utilization of ATO as a potential treatment for other tumors is currently being investigated; thus, its clinical application is becoming more widespread. However, the toxicity of ATO has prevented many patients from receiving this highly beneficial treatment. The clinical features, mechanisms, and preventive measures for ATO hepatotoxicity, as well as potential curative strategies, are discussed in this review. This review not only discusses existing drugs for the treatment of hepatotoxicity but also focuses on potential future therapeutic agents, providing forward-looking guidance for the clinical use of small molecule extracts, trace elements, antidiabetic drugs, and vitamins.
Collapse
Affiliation(s)
- Jun Wen
- Department of Haematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Aiwen Li
- Department of Haematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Ziliang Wang
- Department of Haematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Guo
- Department of Haematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Gaoling Zhang
- Center of Hematology, Peking University People’s Hospital Qingdao, Qingdao, China
| | - Mark R. Litzow
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Qiuju Liu
- Department of Haematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Sun YD, Zhang H, Li YM, Han JJ. Abnormal metabolism in hepatic stellate cells: Pandora's box of MAFLD related hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189086. [PMID: 38342420 DOI: 10.1016/j.bbcan.2024.189086] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/25/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Metabolic associated fatty liver disease (MAFLD) is a significant risk factor for the development of hepatocellular carcinoma (HCC). Hepatic stellate cells (HSCs), as key mediators in liver injury response, are believed to play a crucial role in the repair process of liver injury. However, in MAFLD patients, the normal metabolic and immunoregulatory mechanisms of HSCs become disrupted, leading to disturbances in the local microenvironment. Abnormally activated HSCs are heavily involved in the initiation and progression of HCC. The metabolic disorders and abnormal activation of HSCs not only initiate liver fibrosis but also contribute to carcinogenesis. In this review, we provide an overview of recent research progress on the relationship between the abnormal metabolism of HSCs and the local immune system in the liver, elucidating the mechanisms of immune imbalance caused by abnormally activated HSCs in MAFLD patients. Based on this understanding, we discuss the potential and challenges of metabolic-based and immunology-based mechanisms in the treatment of MAFLD-related HCC, with a specific focus on the role of HSCs in HCC progression and their potential as targets for anti-cancer therapy. This review aims to enhance researchers' understanding of the importance of HSCs in maintaining normal liver function and highlights the significance of HSCs in the progression of MAFLD-related HCC.
Collapse
Affiliation(s)
- Yuan-Dong Sun
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Hao Zhang
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Yuan-Min Li
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, China
| | - Jian-Jun Han
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China.
| |
Collapse
|
3
|
Panda SK, Kumar D, Jena GR, Patra RC, Panda SK, Sethy K, Mishra SK, Swain BK, Naik PK, Beura CK, Panda B. Hepatorenal Toxicity of Inorganic Arsenic in White Pekin Ducks and Its Amelioration by Using Ginger. Biol Trace Elem Res 2023; 201:2471-2490. [PMID: 35723853 DOI: 10.1007/s12011-022-03317-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
The toxic metalloid arsenic is known to cause liver and kidney injury in many humans and animals. The goal of this paper was to exemplify the antagonism of ginger against arsenic (As)-induced hepato-renal toxicity. In addition, the pathways Nrf2/Keap1 and NF/κB were studied to reveal the molecular mechanism of the stress. One hundred twenty 7-day-old White Pekin ducks were randomly allocated into five groups, having 24 birds in each. Each group contained three replicates having 8 birds in each replicate and maintained for 90 days. The groups were as follows: T-1 [control-basal diet with normal water], T-2 [T1 + As at 28 ppm/L of water], T-3 [T2 + ginger powder at 100 mg/kg feed], T-4 [T2 + ginger powder at 300 mg/kg feed], and T-5 [T2 + ginger powder at 1 g/kg feed]. It was observed that there was a significant increase in oxidative parameters whereas a significant decrease in antioxidant parameters in hepato-renal tissues in T-2. The exposure to As not only decreased the mRNA expression of antioxidant parameters like Nrf2, SOD-1, CAT, GPX, and HO-1and anti-inflammatory markers like IL-4 and IL-10 but also increased the m-RNA expression of NF-κB, Keap-1 and pro-inflammatory markers like IL-2, Il-6, IL-18, IL-1β, and TNF-α. There was also an accumulation of As in hepatic and renal tissue, confirmed by residual analysis of these tissues. By correlating the above parameters, As at 28 ppm showed significant toxic effects, and ginger powder at 1 g/kg feed effectively counteracted the toxic effects of As in ducks.
Collapse
Affiliation(s)
- Santosh Kumar Panda
- Department of Veterinary Clinical Medicine, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India.
| | - Dhirendra Kumar
- Regional centre ICAR-Directorate of Poultry Research, Bhubaneswar, 751003, India
| | - Geeta Rani Jena
- Department of Veterinary Clinical Medicine, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Ramesh Chandra Patra
- Department of Veterinary Clinical Medicine, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Susen Kumar Panda
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Kamdev Sethy
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Surya Kant Mishra
- Regional centre ICAR-Directorate of Poultry Research, Bhubaneswar, 751003, India
| | - Bijaya Kumar Swain
- Regional centre ICAR-Directorate of Poultry Research, Bhubaneswar, 751003, India
| | - Prafulla Kumar Naik
- Regional centre ICAR-Directorate of Poultry Research, Bhubaneswar, 751003, India
| | - Chandra Kant Beura
- Regional centre ICAR-Directorate of Poultry Research, Bhubaneswar, 751003, India
| | - Bhagyalaxmi Panda
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| |
Collapse
|
4
|
Prakash C, Chhikara S, Kumar V. Mitochondrial Dysfunction in Arsenic-Induced Hepatotoxicity: Pathogenic and Therapeutic Implications. Biol Trace Elem Res 2022; 200:261-270. [PMID: 33566285 DOI: 10.1007/s12011-021-02624-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/01/2021] [Indexed: 12/16/2022]
Abstract
Mitochondria are vital cellular organelles associated with energy production as well as cell signaling pathways. These organelles, responsible for metabolism, are highly abundant in hepatocytes that make them key players in hepatotoxicity. The literature suggests that mitochondria are targeted by various environmental pollutants. Arsenic, a toxic metalloid known as an environmental pollutant, readily contaminates drinking water and exerts toxic effects. It is toxic to various cellular organs; among them, the liver seems to be most affected. A growing body of evidence suggests that within cells, arsenic is highly toxic to mitochondria and reported to cause oxidative stress and alter an array of signaling pathways and functions. Hence, it is imperative to highlight the mechanisms associated with altered mitochondrial functions and integrity in arsenic-induced liver toxicity. This review provides the details of mechanistic aspects of mitochondrial dysfunction in arsenic-induced hepatotoxicity as well as various ameliorative measures undertaken concerning mitochondrial functions.
Collapse
Affiliation(s)
- Chandra Prakash
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sunil Chhikara
- Applied Sciences, UIET, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
5
|
Ishaq A, Gulzar H, Hassan A, Kamran M, Riaz M, Parveen A, Chattha MS, Walayat N, Fatima S, Afzal S, Fahad S. Ameliorative mechanisms of turmeric-extracted curcumin on arsenic (As)-induced biochemical alterations, oxidative damage, and impaired organ functions in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:66313-66326. [PMID: 34331650 DOI: 10.1007/s11356-021-15695-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) is known for its carcinogenic and hepatorenal toxic effects causing serious health problems in human beings. Turmeric (Curcuma longa L.) extracted curcumin (Cur) is a polyphenolic antioxidant which has ability to combat hazardous environmental toxicants. This study (28 days) was carried out to investigate the therapeutic efficacy of different doses of Cur (Cur: 80, 160, 240 mg kg-1) against the oxidative damage in the liver and kidney of male rats caused by sodium arsenate (Na3AsO4) (10 mg L-1). As exposure significantly elevated the values of organ index, markers of hepatic injury (i.e., alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP)) and renal functions (i.e., total bilirubin, urea and creatinine, total cholesterol, total triglycerides, and lipid peroxidation malondialdehyde (MDA)). Moreover, different antioxidant markers such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in the liver and kidney tissues were reduced after As-induced toxicity. However, Na3AsO4 induced histopathological changes in various organs were minimized after the treatment with Cur. The alleviation effect of Cur was dosage dependent with an order of 240>160>80 mg kg-1. The oral administration of Cur prominently alleviated the As-induced toxicity in liver and kidney tissues by reducing lipid peroxidation, ALT, AST, ALP, total bilirubin, urea, creatinine, total cholesterol, total triglycerides, and low-density lipoproteins (LDL). In addition, Cur being an antioxidant improved defense system by enhancing activities of SOD, CAT, GPx, and GR. Overall, the findings explain the capability of Cur to counteract the oxidative alterations as well as hepatorenal injuries due to As intoxication.
Collapse
Affiliation(s)
- Anam Ishaq
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, 3800, Pakistan
| | - Huma Gulzar
- College of Life Sciences, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Ali Hassan
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, 3800, Pakistan.
| | - Muhammad Kamran
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Muhammad Riaz
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Aasma Parveen
- Faculty of Agriculture & Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Sohaib Chattha
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Noman Walayat
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Sana Fatima
- Faculty of Sciences, University of Agriculture, Faisalabad, 3800, Pakistan
| | - Sobia Afzal
- Faculty of Agriculture & Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
- Department of Agronomy, The University of Haripur, Haripur, Khyber Pakhtunkhwa, 22620, Pakistan.
| |
Collapse
|
6
|
Zhang D, Dailey OR, Simon DJ, Roca-Datzer K, Jami-Alahmadi Y, Hennen MS, Wohlschlegel JA, Koehler CM, Dabir DV. Aim32 is a dual-localized 2Fe-2S mitochondrial protein that functions in redox quality control. J Biol Chem 2021; 297:101135. [PMID: 34461091 PMCID: PMC8482512 DOI: 10.1016/j.jbc.2021.101135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Yeast is a facultative anaerobe and uses diverse electron acceptors to maintain redox-regulated import of cysteine-rich precursors via the mitochondrial intermembrane space assembly (MIA) pathway. With the growing diversity of substrates utilizing the MIA pathway, understanding the capacity of the intermembrane space (IMS) to handle different types of stress is crucial. We used MS to identify additional proteins that interacted with the sulfhydryl oxidase Erv1 of the MIA pathway. Altered inheritance of mitochondria 32 (Aim32), a thioredoxin-like [2Fe-2S] ferredoxin protein, was identified as an Erv1-binding protein. Detailed localization studies showed that Aim32 resided in both the mitochondrial matrix and IMS. Aim32 interacted with additional proteins including redox protein Osm1 and protein import components Tim17, Tim23, and Tim22. Deletion of Aim32 or mutation of conserved cysteine residues that coordinate the Fe-S center in Aim32 resulted in an increased accumulation of proteins with aberrant disulfide linkages. In addition, the steady-state level of assembled TIM22, TIM23, and Oxa1 protein import complexes was decreased. Aim32 also bound to several mitochondrial proteins under nonreducing conditions, suggesting a function in maintaining the redox status of proteins by potentially targeting cysteine residues that may be sensitive to oxidation. Finally, Aim32 was essential for growth in conditions of stress such as elevated temperature and hydroxyurea, and under anaerobic conditions. These studies suggest that the Fe-S protein Aim32 has a potential role in general redox homeostasis in the matrix and IMS. Thus, Aim32 may be poised as a sensor or regulator in quality control for a broad range of mitochondrial proteins.
Collapse
Affiliation(s)
- Danyun Zhang
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA
| | - Owen R Dailey
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | - Daniel J Simon
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | - Kamilah Roca-Datzer
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | | | - Mikayla S Hennen
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | | | - Carla M Koehler
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | - Deepa V Dabir
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA.
| |
Collapse
|
7
|
Ezhilarasan D. Mitochondria: A critical hub for hepatic stellate cells activation during chronic liver diseases. Hepatobiliary Pancreat Dis Int 2021; 20:315-322. [PMID: 33975780 DOI: 10.1016/j.hbpd.2021.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/19/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Upon liver injury, quiescent hepatic stellate cells (qHSCs), reside in the perisinusoidal space, phenotypically transdifferentiate into myofibroblast-like cells (MFBs). The qHSCs in the normal liver are less fibrogenic, migratory, and also have less proliferative potential. However, activated HSCs (aHSCs) are more fibrogenic and have a high migratory and proliferative MFBs phenotype. HSCs activation is a highly energetic process that needs abundant intracellular energy in the form of adenosine triphosphate (ATP) for the synthesis of extracellular matrix (ECM) in the injured liver to substantiate the injury. DATA SOURCES The articles were collected through PubMed and EMBASE using search terms "mitochondria and hepatic stellate cells", "mitochondria and HSCs", "mitochondria and hepatic fibrosis", "mitochondria and liver diseases", and "mitochondria and chronic liver disease", and relevant publications published before September 31, 2020 were included in this review. RESULTS Mitochondria homeostasis is affected during HSCs activation. Mitochondria in aHSCs are highly energetic and are in a high metabolically active state exhibiting increased activity such as glycolysis and respiration. aHSCs have high glycolytic enzymes expression and glycolytic activity induced by Hedgehog (Hh) signaling from injured hepatocytes. Increased glycolysis and aerobic glycolysis (Warburg effect) end-products in aHSCs consequently activate the ECM-related gene expressions. Increased Hh signaling from injured hepatocytes downregulates peroxisome proliferator-activated receptor-γ expression and decreases lipogenesis in aHSCs. Glutaminolysis and tricarboxylic acid cycle liberate ATPs that fuel HSCs to proliferate and produce ECM during their activation. CONCLUSIONS Available studies suggest that mitochondria functions can increase in parallel with HSCs activation. Therefore, mitochondrial modulators should be tested in an elaborate manner to control or prevent the HSCs activation during liver injury to subsequently regress hepatic fibrosis.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, the Blue Lab, Molecular Medicine and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
8
|
Ho CH, Huang JH, Sun MS, Tzeng IS, Hsu YC, Kuo CY. Wild Bitter Melon Extract Regulates LPS-Induced Hepatic Stellate Cell Activation, Inflammation, Endoplasmic Reticulum Stress, and Ferroptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6671129. [PMID: 34239589 PMCID: PMC8241502 DOI: 10.1155/2021/6671129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/17/2021] [Indexed: 12/21/2022]
Abstract
The activation of hepatic stellate cells (HSCs) is a key component of liver fibrosis. Two antifibrosis pathways have been identified, the reversion to quiescent-type HSCs and the clearance of HSCs through apoptosis. Lipopolysaccharide- (LPS-) induced HSCs activation and proliferation have been associated with the development of liver fibrosis. We determined the pharmacological effects of wild bitter melon (WM) on HSC activation following LPS treatment and investigated whether WM treatment affected cell death pathways under LPS-treated conditions, including ferroptosis. WM treatment caused cell death, both with and without LPS treatment. WM treatment caused reactive oxygen species (ROS) accumulation without LPS treatment and reversed the decrease in lipid ROS production in HSCs after LPS treatment. We examined the effects of WM treatment on fibrosis, endoplasmic reticulum (ER) stress, inflammation, and ferroptosis in LPS-activated HSCs. The western blotting analysis revealed that the WM treatment of LPS-activated HSCs induced the downregulation of the connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), integrin-β1, phospho-JNK (p-JNK), glutathione peroxidase 4 (GPX4), and cystine/glutamate transporter (SLC7A11) and the upregulation of CCAAT enhancer-binding protein homologous protein (CHOP). These results support WM as an antifibrotic agent that may represent a potential therapeutic solution for the management of liver fibrosis.
Collapse
Affiliation(s)
- Chang-Hsun Ho
- Department of Anesthesiology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Jen-Hsuan Huang
- Department of Anesthesiology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Maw-Sheng Sun
- Department of Anesthesiology, Show Chwan Memorial Hospital, Changhua, Taiwan
- Department of Nursing, Meiho University, Pingtung, Taiwan
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| |
Collapse
|
9
|
Abstract
Hepatic stellate cells (HSCs) are resident non-parenchymal liver pericytes whose plasticity enables them to regulate a remarkable range of physiologic and pathologic responses. To support their functions in health and disease, HSCs engage pathways regulating carbohydrate, mitochondrial, lipid, and retinoid homeostasis. In chronic liver injury, HSCs drive hepatic fibrosis and are implicated in inflammation and cancer. To do so, the cells activate, or transdifferentiate, from a quiescent state into proliferative, motile myofibroblasts that secrete extracellular matrix, which demands rapid adaptation to meet a heightened energy need. Adaptations include reprogramming of central carbon metabolism, enhanced mitochondrial number and activity, endoplasmic reticulum stress, and liberation of free fatty acids through autophagy-dependent hydrolysis of retinyl esters that are stored in cytoplasmic droplets. As an archetype for pericytes in other tissues, recognition of the HSC's metabolic drivers and vulnerabilities offer the potential to target these pathways therapeutically to enhance parenchymal growth and modulate repair.
Collapse
Affiliation(s)
- Parth Trivedi
- Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shuang Wang
- Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Scott L Friedman
- Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
10
|
Yeh Y, Liang C, Chen M, Tsai F, Lin Y, Lee M, Wu J, Kuo C. Apoptotic effects of hsian-tsao ( Mesona procumbens Hemsley) on hepatic stellate cells mediated by reactive oxygen species and ERK, JNK, and caspase-3 pathways. Food Sci Nutr 2019; 7:1891-1898. [PMID: 31139404 PMCID: PMC6526671 DOI: 10.1002/fsn3.1046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/31/2019] [Accepted: 04/07/2019] [Indexed: 12/20/2022] Open
Abstract
The activation of hepatic stellate cells (HSCs) is an important step in the progress of liver fibrosis. Fibrosis can be impeded by HSC reversion to a quiescent state or HSC clearance through apoptosis. To investigate the apoptotic effects of hsian-tsao (Mesona procumbens Hemsl) on human HSCs, the expression levels of cleaved caspase-3, p38, and c-Jun N-terminal kinase (JNK) were assessed using Western blotting, and the caspase-3 activity was measured using caspase-3/CPP32 colorimetric assay kit. Hsian-tsao extract (HTE) increased the activity of caspase-3 and the level of activated caspase-3, indicating the activation of apoptosis. The intracellular reactive oxygen species (ROS) level increased in a dose-dependent manner. This increase was prevented by an antioxidant, suggesting that HTE induces ROS accumulation. In addition, we found that HTE induced the phosphorylation of the mitogen-activated protein kinases JNK and p38. These collective data indicate that HTE induces apoptosis via ROS production through the p38, JNK, and caspase-3-dependent pathways. HTE may decrease HSC activation in liver fibrosis and may have a therapeutic potential.
Collapse
Affiliation(s)
- Yung‐Hsiang Yeh
- Division of GastroenterologyChang Bing Show Chwan Memorial HospitalChanghuaTaiwan
| | - Chun‐Ya Liang
- Department of Medical Research and DevelopmentChang Bing Show Chwan Memorial HospitalChanghuaTaiwan
| | - Mao‐Liang Chen
- Department of Research, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| | - Fu‐Ming Tsai
- Department of Research, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| | - Yi‐Ying Lin
- Department of Research, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| | - Ming‐Cheng Lee
- Department of Research, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| | - Jiunn‐Sheng Wu
- Division of Infectious DiseasesTaipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| | - Chan‐Yen Kuo
- Department of Research, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| |
Collapse
|
11
|
Turk E, Kandemir FM, Yildirim S, Caglayan C, Kucukler S, Kuzu M. Protective Effect of Hesperidin on Sodium Arsenite-Induced Nephrotoxicity and Hepatotoxicity in Rats. Biol Trace Elem Res 2019; 189:95-108. [PMID: 30066062 DOI: 10.1007/s12011-018-1443-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023]
Abstract
The present study was conducted to investigate the protective effects of hesperidin (HSP) against sodium arsenite (SA)-induced nephrotoxicity and hepatotoxicity in rats. Thirty-five male Sprague Dawley rats were divided into five groups as follows: control, HSP, SA, SA + HSP 100, and SA + HSP 200. Rats were orally gavaged with SA (10 mg/kg body weight) and HSP (100 and 200 mg/kg body weight) for 15 days. SA increased oxidative damage by decreasing antioxidant enzyme activities, such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), and glutathione (GSH) level and increasing malondialdehyde (MDA) level in the kidney and liver tissues. In addition, it increased serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and serum urea and creatinine levels. Furthermore, SA caused inflammation, apoptosis, and oxidative DNA damage by increasing tumor necrosis factor-α (TNF-α), nuclear factor kappa B (NF-κB), interleukin-1β (IL-1β), cysteine aspartate-specific protease-3 (caspase-3), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in the kidney and liver tissues and by increasing liver p53 and kidney interleukin-6 (IL-6) expressions. In other words, HSP administration reduced apoptosis, oxidative stress, inflammation, and oxidative DNA damage significantly in SA-induced kidney and liver tissues depending on dose. In this study, it was seen that HSP showed a protective effect against SA-induced kidney and liver toxicity.
Collapse
Affiliation(s)
- Erdinç Turk
- Department of Pharmacy Professional Sciences, Faculty of Pharmacy, Agri Ibrahim Cecen University, 04100, Ağrı, Turkey.
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Muslum Kuzu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri, Turkey
| |
Collapse
|
12
|
Dai J, Xu M, Zhang X, Niu Q, Hu Y, Li Y, Li S. Bi-directional regulation of TGF-β/Smad pathway by arsenic: A systemic review and meta-analysis of in vivo and in vitro studies. Life Sci 2019; 220:92-105. [PMID: 30703382 DOI: 10.1016/j.lfs.2019.01.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/18/2019] [Accepted: 01/25/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND Arsenic exposure can cause fibrosis of organs including the liver, heart and lung. It was reported that TGF-β/Smad pathway played a crucial role in the process of fibrosis. However, the mechanism of arsenic-induced fibrosis through TGF-β/Smad signaling pathway has remained controversial. OBJECTIVE A systematic review and meta-analysis was performed to clarify the relationship between arsenic and TGF-β/Smad pathway, providing a theoretical basis of fibrosis process caused by arsenic. METHODS A meta-analysis was used to reveal a correlation between arsenic and fibrosis markers of TGF-β/Smad pathway, including 47 articles of both in vivo and in vitro studies. (Standardized Mean Difference) SMD was employed to compare and analyze the combined effects. When I2 > was 50%, random effect model was selected and subgroup analysis was used to explore the source of heterogeneity. RESULTS Arsenic exposure up-regulated the expression of TGF-β1, p-Smad2/3, α-SMA, Collagen1/3 and FN. The dose-response relationship showed that low dose (≤5 μmol/L) arsenic exposure up-regulated the expression of TGF-β1, whereas high doses had a tendency to down-regulate that of TGF-β1. Subgroup analysis showed that low or short-term arsenic exposure induced the expression of TGF-β1 and fibrosis markers. CONCLUSION The results indicated that arsenic activates the TGF-β/Smad pathway and induced fibrosis. The mechanism is related to the up-regulation of NADPH oxidase and ROS accumulation. However, high-dose arsenic exposure may inhibit this pathway.
Collapse
Affiliation(s)
- Jingyuan Dai
- Department of Public Health, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Mengchuan Xu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Xiaoran Zhang
- Department of Public Health, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Qiang Niu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Yunhua Hu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Yu Li
- Department of Public Health, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Shugang Li
- Department of Public Health, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
13
|
The Bioactive Extract of Pinnigorgia sp. Induces Apoptosis of Hepatic Stellate Cells via ROS-ERK/JNK-Caspase-3 Signaling. Mar Drugs 2018; 16:md16010019. [PMID: 29315209 PMCID: PMC5793067 DOI: 10.3390/md16010019] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/30/2017] [Accepted: 01/06/2018] [Indexed: 12/12/2022] Open
Abstract
The activation of hepatic stellate cells (HSCs) is a significant phenomenon during the pathogenesis of liver disorders, including liver cirrhosis and fibrosis. Here, we identified that the extract from a gorgonian coral Pinnigorgia sp. (Pin) induced apoptosis of HSC-T6 cells. Pin inhibited the viability of HSC-T6 cells and increased their subG1 population, DNA fragmentation, caspase-3 activation, and reactive oxygen species (ROS) production in a concentration-dependent manner. The Pin-induced ROS generation and apoptotic effects were significantly reversed by a thiol antioxidant, N-acetylcysteine (NAC). Additionally, Pin induced ERK/JNK phosphorylation and pharmacological inhibition of ERK/JNK rescued the Pin-induced cell death. Pin-activated ERK/JNK were significantly reduced after the administration of NAC; however, the inhibition of ERK/JNK failed to change the Pin-induced ROS production. Similarly, pinnigorgiol A, a pure compound isolated from Pin, elicited ROS production and apoptosis in HSC-T6 cells. The pinnigorgiol A-induced apoptosis was retrained by NAC. Together, it appears that Pin leads to apoptosis in HSC-T6 cells through ROS-mediated ERK/JNK signaling and caspase-3 activation. Pinnigorgiol A serves as a bioactive compound of Pin and may exhibit therapeutic potential by clearance of HSCs.
Collapse
|
14
|
Li J, Zhao L, Zhang Y, Li W, Duan X, Chen J, Guo Y, Yang S, Sun G, Li B. Imbalanced immune responses involving inflammatory molecules and immune-related pathways in the lung of acute and subchronic arsenic-exposed mice. ENVIRONMENTAL RESEARCH 2017; 159:381-393. [PMID: 28843991 DOI: 10.1016/j.envres.2017.08.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
Inorganic arsenic has been claimed to increase the risk of pulmonary diseases through ingestion, as opposed to inhalation, which makes it a unique and intriguing environmental toxicant. However, the immunotoxic effects of lung, one of the targets of arsenic exposure, have not been extensively investigated in vivo. In the present study, we first confirmed that 2.5, 5 and 10mg/kg NaAsO2 orally for 24h dose-dependently triggered the infiltration of neutrophils, lymphocytes and macrophages in BALF. Not only the transcription activity, but also the secretion of proinflammatory cytokines IL-1β, IL-6 and TNF-α were consistently raised in the lung and BALF of acute arsenic-exposed mice. Acute oral administration of NaAsO2 also raised pulmonary MPO activity and mRNA levels of chemokine Mip-2 and Mcp-1. Meanwhile, obvious histopathological damages with inflammatory cells infiltration and erythrocyte aggregation around the capillaries were verified in the lung of mice drank arsenic-rich water freely for 3 months. Furthermore, we affirmed notable disturbance of CD4+ T-cell differentiation in the lung of acute arsenic-exposed mice, as demonstrated by up-regulated mRNA levels of regulator Gata3 and cytokine Il-4 of Th2, enhanced Foxp3 and Il-10 of Treg, down-regulated T-bet and Ifn-γ of Th1, as well as lessened Ror-γt and Il-23 of Th17. However, impressive elevation of cytokine Ifn-γ and Il-23, as well as moderate enhancement of Il-4 and Il-10 were found in the lung by subchronic arsenic administration. Finally, our present study demonstrated that both a single and sustained arsenic exposure prominently increased the expression of immune-related p38, JNK, ERK1/2 and NF-κB proteins in the lung tissue. While disrupting the pulmonary redox homeostasis by increasing MDA levels, exhausting GSH and impaired enzyme activities of CAT and GSH-Px, antioxidant regulator NRF2 and its downstream targets HO-1 and GSTO1/2 were also up-regulated by both acute and subchronic arsenic treatment. Conclusively, our present study demonstrated both acute and subchronic oral administration of arsenic triggers multiple pulmonary immune responses involving inflammatory molecules and T-cell differentiation, which might be closely associated with the imbalanced redox status and activation of immune-related MAPKs, NF-κB and anti-inflammatory NRF2 pathways.
Collapse
Affiliation(s)
- Jinlong Li
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, China; Department of Occupational and Environmental Health, Key Laboratory of Occupational Health and Safety for Coal Industry in Hebei Province, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Lu Zhao
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yang Zhang
- Chengde City Center for Disease Prevention and Control, Chengde City, Hebei Province 069000, China
| | - Wei Li
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, Liaoning, China
| | - Jinli Chen
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuanyuan Guo
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, China
| | - Shan Yang
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, China
| | - Guifan Sun
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, China
| | - Bing Li
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
15
|
The involvement of Nrf2 in the protective effects of (-)-Epigallocatechin-3-gallate (EGCG) on NaAsO 2-induced hepatotoxicity. Oncotarget 2017; 8:65302-65312. [PMID: 29029432 PMCID: PMC5630332 DOI: 10.18632/oncotarget.18582] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/27/2017] [Indexed: 01/12/2023] Open
Abstract
Arsenic exposure produces hepatotoxicity. The common mechanism determining its toxicity is the generation of oxidative stress. Oxidative stress induced by arsenic leads to the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. (-)-Epigallocatechin-3-gallate (EGCG) possesses a potent antioxidant capacity and exhibits extensive pharmacological activities. This study aims to evaluate effects of EGCG on arsenic-induced hepatotoxicity and activation of Nrf2 pathway. Plasma activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase were measured; Histological analyses were conducted to observe morphological changes; Biochemical indexes such as oxidative stress (Catalase (CAT), malonyldialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), reactive oxygen species (ROS)), Nrf2 signaling related genes (Nrf2, Nqo1, and Ho-1) were assessed. The results showed that EGCG inhibited arsenic-induced hepatic pathological damage, liver ROS level and MDA level. Arsenic decreases the antioxidant enzymes SOD, GPX, and CAT activity and the decrease was inhibited by treatment of EGCG. Furthermore, EGCG attenuated the retention of arsenic in liver tissues and improved the expressions of Nrf2 signaling related genes (Nrf2, Nqo1, and Ho-1). These findings provide evidences that EGCG may be useful for reducing hepatotoxicity associated with oxidative stress by the activation of Nrf2 signaling pathway. Our findings suggest a possible mechanism of antioxidant EGCG in preventing hepatotoxicity, which implicate that EGCG may be a potential treatment for arsenicosis therapy.
Collapse
|
16
|
Adil M, Kandhare AD, Visnagri A, Bodhankar SL. Naringin ameliorates sodium arsenite-induced renal and hepatic toxicity in rats: decisive role of KIM-1, Caspase-3, TGF-β, and TNF-α. Ren Fail 2015; 37:1396-407. [PMID: 26337322 DOI: 10.3109/0886022x.2015.1074462] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chronic exposure of a naturally occurring metal arsenic leads to renal and hepatic diseases. Naringin, a flavanone glycoside, possesses anti-inflammatory and anti-oxidant potential. The aim of this investigation was to evaluate the protective effect of naringin against arsenic-induced renal and hepatic toxicity in rats. Renal and hepatic toxicity was induced in rats by sodium arsenite (5 mg/kg, p.o.). Rats were treated orally with either vehicle or naringin (20, 40, and 80 mg/kg) or Coenzyme Q10 (10 mg/kg) for 28 days. Various biochemical, histological, and molecular biomarkers were assessed in kidney and liver. Treatment with naringin (40 and 80 mg/kg) significantly and dose-dependently restored (p < 0.01 and p < 0.001) altered levels of kidney (serum creatinine, urine creatinine, BUN, uric acid, and creatinine clearance) and liver function test (AST and ALT) induced by sodium arsenite. Elevated levels of oxido-nitrosative stress in renal and hepatic tissue was significantly and dose-dependently decreased (p < 0.01 and p < 0.001) by naringin (40 and 80 mg/kg) treatment. It significantly and dose-dependently down-regulated (p < 0.01 and p < 0.001) renal KIM-1, Caspase-3, TGF-β, and TNF-α mRNA expression. Histopathological alteration induced in kidney and liver by sodium arsenite was reduced by naringin (40 and 80 mg/kg) treatment. In conclusion, naringin treatment ameliorates arsenic-induced renal and hepatic damage in rats due its antioxidant and anti-inflammatory properties via down-regulation of elevated oxido-nitrosative stress, KIM-1, Caspase-3, TGF-β, and TNF-α levels.
Collapse
Affiliation(s)
- Mohammad Adil
- a Department of Pharmacology , Poona College of Pharmacy, Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| | - Amit D Kandhare
- a Department of Pharmacology , Poona College of Pharmacy, Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| | - Asjad Visnagri
- a Department of Pharmacology , Poona College of Pharmacy, Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| | - Subhash L Bodhankar
- a Department of Pharmacology , Poona College of Pharmacy, Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| |
Collapse
|
17
|
Yang JJ, Tao H, Li J. Hedgehog signaling pathway as key player in liver fibrosis: new insights and perspectives. Expert Opin Ther Targets 2014; 18:1011-21. [PMID: 24935558 DOI: 10.1517/14728222.2014.927443] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Activation of hepatic stellate cells (HSCs) is a pivotal cellular event in liver fibrosis. Therefore, improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for liver fibrosis. Greater knowledge of the role of the hedgehog signaling pathway in liver fibrosis could improve understanding of the liver fibrosis pathogenesis. AREAS COVERED The aim of this review is to describe the present knowledge about the hedgehog signaling pathway, which significantly participates in liver fibrosis and HSC activation, and look ahead on new perspectives of hedgehog signaling pathway research. Moreover, we will discuss the different interactions with hedgehog signaling pathway-regulated liver fibrosis. EXPERT OPINION The hedgehog pathway modulates several important aspects of function, including cell proliferation, activation and differentiation. Targeting the hedgehog pathway can be a promising direction in liver fibrosis treatment. We discuss new perspectives of hedgehog signaling pathway activation in liver fibrosis and HSC fate, including DNA methylation, methyl CpG binding protein 2, microRNA, irradiation and metabolism that influence hedgehog signaling pathway transduction. These findings identify the hedgehog pathway as a potentially important for biomarker development and therapeutic targets in liver fibrosis. Future studies are needed in order to find safer and more effective hedgehog-based drugs.
Collapse
Affiliation(s)
- Jing-Jing Yang
- The Second Hospital of Anhui Medical University, Department of Pharmacology , Hefei 230601 , China
| | | | | |
Collapse
|
18
|
Kuo LM, Kuo CY, Lin CY, Hung MF, Shen JJ, Hwang TL. Intracellular glutathione depletion by oridonin leads to apoptosis in hepatic stellate cells. Molecules 2014; 19:3327-44. [PMID: 24647034 PMCID: PMC6270846 DOI: 10.3390/molecules19033327] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/04/2014] [Accepted: 03/13/2014] [Indexed: 01/04/2023] Open
Abstract
Proliferation of hepatic stellate cells (HSCs) plays a key role in the pathogenesis of liver fibrosis. Induction of HSC apoptosis by natural products is considered an effective strategy for treating liver fibrosis. Herein, the apoptotic effects of 7,20-epoxy-ent-kaurane (oridonin), a diterpenoid isolated from Rabdosia rubescens, and its underlying mechanisms were investigated in rat HSC cell line, HSC-T6. We found that oridonin inhibited cell viability of HSC-T6 in a concentration-dependent manner. Oridonin induced a reduction in mitochondrial membrane potential and increases in caspase 3 activation, subG1 phase, and DNA fragmentation. These apoptotic effects of oridonin were completely reversed by thiol antioxidants, N-acetylcysteine (NAC) and glutathione monoethyl ester. Moreover, oridonin increased production of reactive oxygen species (ROS), which was also inhibited by NAC. Significantly, oridonin reduced intracellular glutathione (GSH) level in a concentration- and time-dependent fashion. Additionally, oridonin induced phosphorylations of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK). NAC prevented the activation of MAPKs in oridonin-induced cells. However, selective inhibitors of MAPKs failed to alter oridonin-induced cell death. In summary, these results demonstrate that induction of apoptosis in HSC-T6 by oridonin is associated with a decrease in cellular GSH level and increase in ROS production.
Collapse
Affiliation(s)
- Liang-Mou Kuo
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Chan-Yen Kuo
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, Collage of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Chen-Yu Lin
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, Collage of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Min-Fa Hung
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, Collage of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Jiann-Jong Shen
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, Collage of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, Collage of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
19
|
Spencer NY, Engelhardt JF. The basic biology of redoxosomes in cytokine-mediated signal transduction and implications for disease-specific therapies. Biochemistry 2014; 53:1551-64. [PMID: 24555469 PMCID: PMC3985689 DOI: 10.1021/bi401719r] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Redox
reactions have been established as major biological players
in many cellular signaling pathways. Here we review mechanisms of
redox signaling with an emphasis on redox-active signaling endosomes.
Signals are transduced by relatively few reactive oxygen species (ROS),
through very specific redox modifications of numerous proteins and
enzymes. Although ROS signals are typically associated with cellular
injury, these signaling pathways are also critical for maintaining
cellular health at homeostasis. An important component of ROS signaling
pertains to localization and tightly regulated signal transduction
events within discrete microenvironments of the cell. One major aspect
of this specificity is ROS compartmentalization within membrane-enclosed
organelles such as redoxosomes (redox-active endosomes) and the nuclear
envelope. Among the cellular proteins that produce superoxide are
the NADPH oxidases (NOXes), transmembrane proteins that are implicated
in many types of redox signaling. NOXes produce superoxide on only
one side of a lipid bilayer; as such, their orientation dictates the
compartmentalization of ROS and the local control of signaling events
limited by ROS diffusion and/or movement through channels associated
with the signaling membrane. NOX-dependent ROS signaling pathways
can also be self-regulating, with molecular redox sensors that limit
the local production of ROS required for effective signaling. ROS
regulation of the Rac-GTPase, a required co-activator of many NOXes,
is an example of this type of sensor. A deeper understanding of redox
signaling pathways and the mechanisms that control their specificity
will provide unique therapeutic opportunities for aging, cancer, ischemia-reperfusion
injury, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Netanya Y Spencer
- Department of Anatomy and Cell Biology, The University of Iowa , Iowa City, Iowa 52242-1009, United States
| | | |
Collapse
|
20
|
Zhang J, Pan X, Li N, Li X, Wang Y, Liu X, Yin X, Yu Z. Grape seed extract attenuates arsenic-induced nephrotoxicity in rats. Exp Ther Med 2013; 7:260-266. [PMID: 24348802 PMCID: PMC3861237 DOI: 10.3892/etm.2013.1381] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/24/2013] [Indexed: 01/23/2023] Open
Abstract
Oxidative stress is a recognized factor in nephrotoxicity induced by chronic exposure to inorganic arsenic (As). Grape seed extract (GSE) possesses antioxidant properties. The present study was designed to evaluate the beneficial effects of GSE against arsenic-induced renal injury. Healthy, male Sprague-Dawley rats were exposed to As in drinking water (30 ppm) with or without GSE (100 mg/kg) for 12 months. The serum proinflammatory cytokine levels and mRNA expression levels of fibrogenic markers in the renal tissues were evaluated using enzyme-linked immunosorbent assay and quantitative polymerase chain reaction, respectively. The protein expression levels of nicotinamide adenine dinucleotide phosphate (NADPH) subunits, transforming growth factor-β1 (TGF-β1) and phosphorylated Smad2/3 (pSmad2/3) were assessed using western blot analysis. The results demonstrated that cotreatment with GSE significantly improved renal function, as demonstrated by the reductions in relative kidney weight (% of body weight) and blood urea nitrogen, and the increase in the creatinine clearance capacity. GSE attenuated the As-induced changes in the serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β and the mRNA levels of TGF-β1, α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF) and fibronectin (FN) in renal tissue. Furthermore, administration of GSE markedly reduced As-stimulated reactive oxygen species (ROS) production and Nox activity, as well as the protein expression levels of the NADPH subunits (Nox2, p47phox and Nox4). In addition, GSE cotreatment was correlated with a significant reduction in TGF-β/Smad signaling, as demonstrated by the decreased protein levels of TGF-β1 and pSmad2/3 in renal tissue. This study indicated that GSE may be a useful agent for the prevention of nephrotoxicity induced by chronic exposure to As. GSE may exert its effects through the suppression of Nox and inhibition of TGF-β/Smad signaling activation.
Collapse
Affiliation(s)
- Jiangong Zhang
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China ; Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Xinjuan Pan
- School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Ning Li
- School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China ; College of Food Science and Technology, Henan Agriculture University, Zhengzhou, Henan 450002, P.R. China
| | - Xing Li
- School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yongchao Wang
- School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiaozhuan Liu
- School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xinjuan Yin
- School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
21
|
Explore the Molecular Mechanism of Apoptosis Induced by Tanshinone IIA on Activated Rat Hepatic Stellate Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:734987. [PMID: 23346212 PMCID: PMC3546466 DOI: 10.1155/2012/734987] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/28/2012] [Accepted: 12/07/2012] [Indexed: 02/06/2023]
Abstract
Since the activated hepatic stellate cell (HSC) is the predominant event in the progression of liver fibrosis, selective clearance of HSC should be a potential strategy in therapy. Salvia miltiorrhiza roots ethanol extract (SMEE) remarkably ameliorates liver fibrogenesis in DMN-administrated rat model. Next, tanshinone IIA (Tan IIA), the major compound of SMEE, significantly inhibited rat HSC viability and led to cell apoptosis. Proteome tools elucidated that increased prohibitin is involved in cell cycle arrest under Tan IIA is the treatment while knockdown of prohibitin could attenuate Tan IIA-induced apoptosis. In addition, Tan IIA mediated translocation of C-Raf which interacted with prohibitin activating MAPK and inhibiting AKT signaling in HSC. MAPK antagonist suppressed ERK phosphorylation which was necessary for Tan IIA-induced expression of Bax and cytochrome c. PD98059 also abolished Tan IIA-modulated cleavage of PARP. Our findings suggested that Tan IIA could contribute to apoptosis of HSC by promoting ERK-Bax-caspase pathways through C-Raf/prohibitin complex.
Collapse
|
22
|
Shearn CT, Reigan P, Petersen DR. Inhibition of hydrogen peroxide signaling by 4-hydroxynonenal due to differential regulation of Akt1 and Akt2 contributes to decreases in cell survival and proliferation in hepatocellular carcinoma cells. Free Radic Biol Med 2012; 53:1-11. [PMID: 22580126 PMCID: PMC3377776 DOI: 10.1016/j.freeradbiomed.2012.04.021] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/18/2012] [Accepted: 04/22/2012] [Indexed: 11/16/2022]
Abstract
Dysregulation of cell signaling by electrophiles such as 4-hydroxynonenal (4-HNE) is a key component in the pathogenesis of chronic inflammatory liver disease. Another consequence of inflammation is the perpetuation of oxidative damage by the production of reactive oxidative species such as hydrogen peroxide. Previously, we have demonstrated Akt2 as a direct target of 4-HNE in hepatocellular carcinoma cells. In the present study, we used the hepatocellular carcinoma cell line HepG2 as model to understand the combinatorial effects of 4-HNE and hydrogen peroxide. We demonstrate that 4-HNE inhibits hydrogen peroxide-mediated phosphorylation of Akt1 but not Akt2. Pretreatment of HepG2 cells with 4-HNE prevented hydrogen peroxide stimulation of Akt-dependent phosphorylation of downstream targets and intracellular Akt activity compared with untreated control cells. Using biotin hydrazide capture, it was confirmed that 4-HNE treatment resulted in carbonylation of Akt1, which was not observed in untreated control cells. Using a synthetic GSK3α/β peptide as a substrate, treatment of recombinant human myristoylated Akt1 (rAkt1) with 20 or 40 μΜ 4-HNE inhibited rAkt1 activity by 29 and 60%, respectively. We further demonstrate that 4-HNE activates Erk via a PI3 kinase and PP2A-dependent mechanism leading to increased Jnk phosphorylation. At higher concentrations, 4-HNE decreased both cell survival and proliferation as evidenced by MTT assays and EdU incorporation as well as decreased expression of cyclin D1 and β-catenin, an effect only moderately increased by the addition of hydrogen peroxide. The ability of 4-HNE to exert combinatorial effects on Erk, Jnk, and Akt-dependent cell survival pathways provides additional insight into the mechanisms of cellular damage associated with chronic inflammation.
Collapse
Affiliation(s)
| | | | - Dennis R. Petersen
- To whom correspondence should be addressed: Dennis Petersen, University of Colorado Denver, School of Pharmacy, Department of Pharmaceutical Sciences, 12850 East Montview Blvd Box C238, Building V20 Room 2131, Ph. 303-724-3397, Fax 303-724-7266,
| |
Collapse
|
23
|
Chen Z, Li Q, Sun Q, Chen H, Wang X, Li N, Yin M, Xie Y, Li H, Tang B. Simultaneous Determination of Reactive Oxygen and Nitrogen Species in Mitochondrial Compartments of Apoptotic HepG2 Cells and PC12 Cells Based On Microchip Electrophoresis–Laser-Induced Fluorescence. Anal Chem 2012; 84:4687-94. [DOI: 10.1021/ac300255n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Role of leukotrienes on protozoan and helminth infections. Mediators Inflamm 2012; 2012:595694. [PMID: 22577251 PMCID: PMC3337730 DOI: 10.1155/2012/595694] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/30/2012] [Indexed: 01/21/2023] Open
Abstract
Leukotrienes (LTs), formed by the 5-lipoxygenase-(5-LO-) catalyzed oxidation of arachidonic acid, are lipid mediators that have potent proinflammatory activities. Pharmacologic or genetic inhibition of 5-LO biosynthesis in animals is associated with increased mortality and impaired clearance of bacteria, fungi, and parasites. LTs play a role in the control of helminth and protozoan infections by modulating the immune system and/or through direct cytotoxicity to parasites; however, LTs may also be associated with pathogenesis, such as in cerebral malaria and schistosomal granuloma. Interestingly, some proteins from the saliva of insect vectors that transmit protozoans and secreted protein from helminth could bind LTs and may consequently modulate the course of infection or pathogenesis. In addition, the decreased production of LTs in immunocompromised individuals might modulate the pathophysiology of helminth and protozoan infections. Herein, in this paper, we showed the immunomodulatory and pathogenic roles of LTs during the helminth and protozoan infections.
Collapse
|
25
|
Brechbuhl HM, Kachadourian R, Min E, Chan D, Day BJ. Chrysin enhances doxorubicin-induced cytotoxicity in human lung epithelial cancer cell lines: the role of glutathione. Toxicol Appl Pharmacol 2011; 258:1-9. [PMID: 21856323 DOI: 10.1016/j.taap.2011.08.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/28/2011] [Accepted: 08/02/2011] [Indexed: 01/28/2023]
Abstract
We hypothesized that flavonoid-induced glutathione (GSH) efflux through multi-drug resistance proteins (MRPs) and subsequent intracellular GSH depletion is a viable mechanism to sensitize cancer cells to chemotherapies. This concept was demonstrated using chrysin (5-25 μM) induced GSH efflux in human non-small cell lung cancer lines exposed to the chemotherapeutic agent, doxorubicin (DOX). Treatment with chrysin resulted in significant and sustained intracellular GSH depletion and the GSH enzyme network in the four cancer cell types was predictive of the severity of chrysin induced intracellular GSH depletion. Gene expression data indicated a positive correlation between basal MRP1, MRP3 and MRP5 expression and total GSH efflux before and after chrysin exposure. Co-treating the cells for 72 h with chrysin (5-30 μM) and DOX (0.025-3.0 μM) significantly enhanced the sensitivity of the cells to DOX as compared to 72-hour DOX alone treatment in all four cell lines. The maximum decrease in the IC(50) values of cells treated with DOX alone compared to co-treatment with chrysin and DOX was 43% in A549 cells, 47% in H157 and H1975 cells and 78% in H460 cells. Chrysin worked synergistically with DOX to induce cancer cell death. This approach could allow for use of lower concentrations and/or sensitize cancer cells to drugs that are typically resistant to therapy.
Collapse
|
26
|
Inhibition of arsenic induced-rat liver injury by grape seed exact through suppression of NADPH oxidase and TGF-β/Smad activation. Toxicol Appl Pharmacol 2011; 254:323-31. [DOI: 10.1016/j.taap.2011.04.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 04/20/2011] [Accepted: 04/25/2011] [Indexed: 01/07/2023]
|
27
|
Jung J, Lee HJ, Lee JM, Na KH, Hwang SG, Kim GJ. Placenta extract promote liver regeneration in CCl4-injured liver rat model. Int Immunopharmacol 2011; 11:976-84. [PMID: 21354355 DOI: 10.1016/j.intimp.2011.02.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/06/2011] [Accepted: 02/09/2011] [Indexed: 01/30/2023]
Abstract
The human placenta is an organ for fetus development and abundant reservoir of various bioactive molecules. Interest to human placenta extract (hPE) is growing, and application with trial of hPE is widening in oriental medicine including in liver diseases. However, underlying mechanisms for therapeutic effects are still unclear. Here, we investigated therapeutic effects of hPE in carbon tetrachloride (CCl(4))-injured rat liver model in vivo and in damaged rat hepatic cells exposed to CCl(4) in vitro. In addition, regulation of inflammatory responses by treatment of hPE was investigated. Serum levels of GOT/AST and GPT/ALT were significantly reduced (P<0.05), and uptake/excretion of indocyanine green in serum was significantly induced at 3 weeks after intravenous hPE administration in CCl(4)-injured rat model (P<0.05). Expression of type I collagen (Col I) and α-smooth muscle actin (α-SMA) was decreased, whereas that of matrix metalloproteinase-9 (MMP-9) was increased resulting in improvement of score for fibrotic grade in hPE group. Also, albumin, proliferation activities and molecules associated with liver regeneration (e.g. interleukin-6, gp130, ATP binding cassette transporters, cyclin A) were more increased in hPE administration group than Non-hPE group. hPE administration suppressed activated T-cell proliferation via increasing anti-inflammatory cytokines and decreasing pro-inflammatory cytokines. These results suggest that hPE could be effective for liver disease through reduction of fibrosis, induction of liver regeneration, and regulation of inflammatory responses. These findings are important for understanding the roles of hPE and provide evidences for therapeutic effects of hPE in hepatic diseases which could lead to potential clinical applications.
Collapse
Affiliation(s)
- Jieun Jung
- Department of Biomedical Science, CHA University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Warm hepatic ischemia-reperfusion injury is a significant medical problem in many clinical conditions such as liver transplantation, hepatic surgery for tumor excision, trauma and hepatic failure after hemorrhagic shock. Partial or, mostly, total interruption of hepatic blood flow is often necessary when liver surgery is performed. This interruption of blood flow is termed "warm ischemia" and upon revascularization, when molecular oxygen is reintroduced, the organ undergoes a process called "reperfusion injury" that causes deterioration of organ function. Ischemia reperfusion results in cellular damage and tissue injury associated with a complex series of events. Pathophysiological mechanisms leading to tissue injury following ischemia-reperfusion will be discussed and therapies targeted to reduce liver damage will be summarized within this review.
Collapse
Affiliation(s)
- Serdar Dogan
- Department of Biochemistry, Akdeniz University School of Medicine, Antalya, Turkey
| | | |
Collapse
|