1
|
Kopytek M, Kolasa-Trela R, Malinowski KP, Ząbczyk M, Natorska J, Undas A. Exercise Stress Testing Enhances Plasma Protein Carbonyl Levels in Patients With Asymptomatic Moderate-to-Severe Aortic Stenosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:4852300. [PMID: 39735712 PMCID: PMC11679273 DOI: 10.1155/omcl/4852300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/26/2024] [Indexed: 12/31/2024]
Abstract
Background: Exercise stress test-induced hypofibrinolysis and changes in circulating levels of several interleukins have been observed in aortic stenosis (AS). However, it is unknown whether the pattern of exercise-induced changes in oxidative stress differs between AS patients and controls and if the differences are associated with changes in fibrinolysis and inflammation. Methods: We studied 32 asymptomatic patients with moderate-to-severe AS and 32 controls of similar age, sex, and body mass index. We assessed plasma protein carbonyl (PC) concentrations, a marker of oxidative stress, in relation to interleukin (IL)-10 and -6 levels and fibrinolysis capacity, expressed as plasma clot lysis time (CLT) at four time points: at baseline, at peak exercise, 1 and 24 h after a symptom-limited exercise test. Results: AS patients had 12.8% and 27% higher PC concentrations 1 and 24 h after exercise than controls (both p < 0.05), with no differences at baseline and peak exercise. In AS patients, PC concentration was 8.3% higher at peak exercise compared to baseline followed by further PC increase (+12.8% at 1 h and +20.5% at 24 h) compared to peak exercise (all p < 0.05). In controls, PC concentrations increased during exercise, reaching the highest values 1 h after exercise (+21.9%). In the AS group, PC concentrations at baseline correlated with AS severity measured as peak transvalvular velocity (V max: r = 0.49, p < 0.05), mean (PGmean: r = 0.42, p < 0.05), and maximal transvalvular pressure gradients (PGmax: r = 0.41, p < 0.05). PC concentrations correlated with IL-10 levels 1 h (r = 0.37, p < 0.05) and 24 h (r = 0.38, p < 0.05) post exercise in AS patients, whereas in controls only at baseline (r = 0.42, p < 0.05). No associations between PC levels and IL-6 or CLT were observed at any time point. Conclusions: Our findings show that AS patients respond differently to exercise in terms of PC compared to controls, which suggests a novel effect of hemodynamic abnormalities in this disease on intensity of oxidative stress.
Collapse
Affiliation(s)
- Magdalena Kopytek
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St. 31–202, Krakow, Poland
- Krakow Centre for Medical Research and Technologies, St. John Paul II Hospital, 80 Pradnicka St. 31–202, Krakow, Poland
| | - Renata Kolasa-Trela
- Department of Diagnostic Medicine, St. John Paul II Hospital, 80 Pradnicka St. 31–202, Krakow, Poland
| | - Krzysztof Piotr Malinowski
- Department of Bioinformatics and Telemedicine, Faculty of Medicine, Jagiellonian University Medical College, 7 Medyczna St. 30–688, Krakow, Poland
- Center for Digital Medicine and Robotics, Jagiellonian University Medical College, 7E Kopernika St. 31–034, Krakow, Poland
| | - Michał Ząbczyk
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St. 31–202, Krakow, Poland
- Krakow Centre for Medical Research and Technologies, St. John Paul II Hospital, 80 Pradnicka St. 31–202, Krakow, Poland
| | - Joanna Natorska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St. 31–202, Krakow, Poland
- Krakow Centre for Medical Research and Technologies, St. John Paul II Hospital, 80 Pradnicka St. 31–202, Krakow, Poland
| | - Anetta Undas
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St. 31–202, Krakow, Poland
- Krakow Centre for Medical Research and Technologies, St. John Paul II Hospital, 80 Pradnicka St. 31–202, Krakow, Poland
| |
Collapse
|
2
|
Lin SC, Wang CY, Hou TH, Chen HC, Wang CC. Impact of Fruit and Vegetable Enzyme Supplementation on Aerobic Performance and Lactate Response in Older Adults Following High-Intensity Interval Exercise Through Exergaming: Randomized Experimental Matched-Pair Study. JMIR Serious Games 2024; 12:e52231. [PMID: 38967387 PMCID: PMC11225091 DOI: 10.2196/52231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/26/2024] [Accepted: 04/25/2024] [Indexed: 07/06/2024] Open
Abstract
Background Exercise offers substantial health benefits but can induce oxidative stress and inflammation, especially in high-intensity formats such as high-intensity interval exercise (HIIE). Exergaming has become an effective, enjoyable fitness tool for all ages, particularly older adults. Enzyme supplements may enhance exercise performance by improving lactate metabolism and reducing oxidative stress. Objective This study investigates the efficacy of fruit and vegetable enzyme supplementation in modulating fatigue and enhancing aerobic capacity in older adults following HIIE through exergaming. Methods The study recruited 16 older adult female participants and allocated them into 2 distinct groups (enzyme and placebo) based on their pretest lactate levels. This division used pairwise grouping to guarantee comparability between the groups, ensuring the integrity of the results. They engaged in HIIE using Nintendo Switch Ring Fit Adventure, performing 8 sets of 20 seconds of maximum effort exercise interspersed with 30 seconds of rest, totaling 370 seconds of exercise. Key metrics assessed included blood lactate levels, heart rate, rating of perceived exertion, and training impulse. Participants in the enzyme group were administered a fruit and vegetable enzyme supplement at a dosage of 30 mL twice daily over a period of 14 days. Results The enzyme group showed significantly lower blood lactate levels compared to the placebo group, notably after the fourth (mean 4.29, SD 0.67 vs mean 6.34, SD 1.17 mmol/L; P=.001) and eighth (mean 5.84, SD 0.63 vs mean 8.20, SD 1.15 mmol/L; P<.001) exercise sessions. This trend continued at 5 minutes (mean 6.85, SD 0.82 vs mean 8.60, SD 1.13 mmol/L; P=.003) and 10 minutes (mean 5.91, SD 1.16 vs mean 8.21, SD 1.27 mmol/L; P=.002) after exercise. Although both groups exceeded 85% of their estimated maximum heart rate during the exercise, enzyme supplementation did not markedly affect the perceived intensity or effort. Conclusions The study indicates that fruit and vegetable enzyme supplementation can significantly reduce blood lactate levels in older adults following HIIE through exergaming. This suggests a potential role for these enzymes in modulating lactate production or clearance during and after high-intensity exercise. These findings have implications for developing targeted interventions to enhance exercise tolerance and recovery in older adults.
Collapse
Affiliation(s)
- Shu-Cheng Lin
- Department of Sport, Leisure and Health Management, Tainan University of Technology, Tainan, Taiwan
| | - Chien-Yen Wang
- Department of Athletics, National Taiwan University, Taipei, Taiwan
| | - Tien-Hung Hou
- General Education Center & Department of Regimen and Leisure Management, Tainan University of Technology, Tainan, Taiwan
| | - Hong-Ching Chen
- Department of Sport, Leisure and Health Management, Tainan University of Technology, Tainan, Taiwan
| | - Chia-Chi Wang
- Physical Education Office, National Taipei University of Business, Taipei, Taiwan
| |
Collapse
|
3
|
Modulation of Oxidative Stress and Antioxidant Response by Different Polyphenol Supplements in Five-a-Side Football Players. Nutrients 2022; 15:nu15010177. [PMID: 36615834 PMCID: PMC9824383 DOI: 10.3390/nu15010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress is associated with playing soccer. The objective of the present report was to study the influence of different polyphenolic antioxidant-rich beverages in five-a-side/futsal players. The study was performed with a no supplemented control group (CG) and two supplemented groups with an almond-based beverage (AB) and the same beverage fortified with Lippia citriodora extract (AB + LE). At day 22, participants played a friendly futsal game. Blood extractions were performed at the beginning of intervention (day 1), before and after match (day 22) to determine oxidative stress markers and antioxidant enzyme activities in plasma, neutrophils and peripheral blood mononuclear cells (PBMCs). Malondialdehyde increased significantly in controls after the match in neutrophils, PBMCs and plasma compared to pre-match. Protein carbonyls also increased after the match in plasma in CG. In addition, malondialdehyde levels in neutrophils were significantly lower in the supplemented groups compared to controls. Post-match samples showed significant increases in neutrophil antioxidant activities in CG. Supplemented groups displayed variable results regarding neutrophil antioxidant activities, with superoxide dismutase activity significantly lower than in controls. Finally, post-match myeloperoxidase activity increased significantly in controls compared to pre-match and supplemented groups. In conclusion, polyphenolic antioxidant and anti-inflammatory supplements could be instrumental for optimal recovery after high intensity futsal games.
Collapse
|
4
|
Margaritelis NV, Chatzinikolaou PN, Chatzinikolaou AN, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, Nikolaidis MG. The redox signal: A physiological perspective. IUBMB Life 2021; 74:29-40. [PMID: 34477294 DOI: 10.1002/iub.2550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
A signal in biology is any kind of coded message sent from one place in an organism to another place. Biology is rich in claims that reactive oxygen and nitrogen species transmit signals. Therefore, we define a "redox signal as an increase/decrease in the level of reactive species". First, as in most biology disciplines, to analyze a redox signal you need first to deconstruct it. The essential components that constitute a redox signal and should be characterized are: (i) the reactivity of the specific reactive species, (ii) the magnitude of change, (iii) the temporal pattern of change, and (iv) the antioxidant condition. Second, to be able to translate the physiological fate of a redox signal you need to apply novel and bioplausible methodological strategies. Important considerations that should be taken into account when designing an experiment is to (i) assure that redox and physiological measurements are at the same or similar level of biological organization and (ii) focus on molecules that are at the highest level of the redox hierarchy. Third, to reconstruct the redox signal and make sense of the chaotic nature of redox processes, it is essential to apply mathematical and computational modeling. The aim of the present study was to collectively present, for the first time, those elements that essentially affect the redox signal as well as to emphasize that the deconstructing, decoding and reconstructing of a redox signal should be acknowledged as central to design better studies and to advance our understanding on its physiological effects.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Dialysis Unit, 424 General Military Training Hospital, Thessaloniki, Greece
| | - Panagiotis N Chatzinikolaou
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Ioannis S Vrabas
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Briskey DR, Vogel K, Johnson MA, Sharpe GR, Coombes JS, Mills DE. Inspiratory flow-resistive breathing, respiratory muscle-induced systemic oxidative stress, and diaphragm fatigue in healthy humans. J Appl Physiol (1985) 2020; 129:185-193. [PMID: 32552433 DOI: 10.1152/japplphysiol.00091.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We questioned whether the respiratory muscles of humans contribute to systemic oxidative stress following inspiratory flow-resistive breathing, whether the amount of oxidative stress is influenced by the level of resistive load, and whether the amount of oxidative stress is related to the degree of diaphragm fatigue incurred. Eight young and healthy participants attended the laboratory for four visits on separate days. During the first visit, height, body mass, lung function, and maximal inspiratory mouth and transdiaphragmatic pressure (Pdimax) were assessed. During visits 2-4, participants undertook inspiratory flow-resistive breathing with either no resistance (control) or resistive loads equivalent to 50 and 70% of their Pdimax (Pdimax50% and Pdimax70%) for 30 min. Participants undertook one resistive load per visit, and the order in which they undertook the loads was randomized. Inspiratory muscle pressures were higher (P < 0.05) during the 5th and Final min of Pdimax50% and Pdimax70% compared with control. Plasma F2-isoprostanes increased (P < 0.05) following inspiratory flow-resistive breathing at Pdimax70%. There were no increases in plasma protein carbonyls or total antioxidant capacity. Furthermore, although we evidenced small reductions in transdiapragmaic twitch pressures (PdiTW) after inspiratory flow-resistive breathing at Pdimax50% and Pdimax70%, this was not related to the increase in plasma F2-isoprostanes. Our novel data suggest that it is only when sufficiently strenuous that inspiratory flow-resistive breathing in humans elicits systemic oxidative stress evidenced by elevated plasma F2-isoprostanes, and based on our data, this is not related to a reduction in PdiTW.NEW & NOTEWORTHY We examined whether the respiratory muscles of humans contribute to systemic oxidative stress following inspiratory flow-resistive breathing, whether the amount of oxidative stress is influenced by the level of resistive load, and whether the amount of oxidative stress is related to the degree of diaphragm fatigue incurred. It is only when sufficiently strenuous that inspiratory flow-resistive breathing elevates plasma F2-isoprostanes, and our novel data show that this is not related to a reduction in transdiaphragmatic twitch pressure.
Collapse
Affiliation(s)
- David R Briskey
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia.,RDC Clinical, Brisbane, Queensland, Australia
| | - Kurt Vogel
- Respiratory and Exercise Physiology Research Group, School of Health and Wellbeing, University of Southern Queensland, Ipswich, Queensland, Australia
| | - Michael A Johnson
- Exercise and Health Research Group, Sport, Health, and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, Nottinghamshire, United Kingdom
| | - Graham R Sharpe
- Exercise and Health Research Group, Sport, Health, and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, Nottinghamshire, United Kingdom
| | - Jeff S Coombes
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Dean E Mills
- Respiratory and Exercise Physiology Research Group, School of Health and Wellbeing, University of Southern Queensland, Ipswich, Queensland, Australia.,Centre for Health, Informatics, and Economic Research, Institute for Resilient Regions, University of Southern Queensland, Ipswich, Queensland, Australia
| |
Collapse
|
6
|
Jawzal KH, Alkass SY, Hassan AB, Abdulah DM. The effectiveness of military physical exercise on irisin concentrations and oxidative stress among male healthy volunteers. Horm Mol Biol Clin Investig 2020; 41:hmbci-2020-0007. [PMID: 32989959 DOI: 10.1515/hmbci-2020-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/28/2020] [Indexed: 01/02/2023]
Abstract
Background Irisin, a newly discovered hormone, is secreted into the circulation from skeletal muscles in response to physical exercise. The biochemical parameters related to irisin secretion have not been sufficiently investigated yet. The aim of this study was to examine the effectiveness of exercise on the level of irisin and its correlation with biochemical and oxidative stress parameters. Materials and methods In this pre- and post-test observational study, 39 healthy male volunteers from a military training setting were followed up on between September and November 2015. The individuals who were included in this study were between 22 and 27 years old with an average age of 24. Those with inflammatory disorders or chronic diseases such as diabetes mellitus were excluded from the study. The parameters were measured at the baseline, at 4 weeks, and at 8 weeks of intervention. Results The study found that the systolic and diastolic blood pressures substantially decreased after 8 weeks of intervention. The cholesterol-to-HDL ratio and glucose levels were significantly higher at the baseline compared to 8 weeks. Total protein and albumin were significantly higher following 4 weeks (0.25 and 0.21 g/dL) and 8 weeks (0.32 and 0.16 g/dL), respectively. Meanwhile, total globulin and irisin increased following 8 weeks of the intervention by only 0.16 g/dL and 0.41 μg/mL, respectively. The high sensitivity C-reactive protein (hs-CRP) decreased following 8 weeks (-0.81 μg/mL). The protein carbonyl (PC) decreased following 4 weeks by only 0.34 nmol/L. Conclusions This study demonstrated that military training enhanced irisin hormone secretion following 8 weeks of military exercise.
Collapse
Affiliation(s)
- Kazheen Hussein Jawzal
- Department of Chemistry, College of Science, University of Zakho, Duhok, Iraqi Kurdistan
| | - Suad Yousif Alkass
- Medicinal Chemistry Department, College of Pharmacy, University of Duhok, Duhok, Iraqi Kurdistan
| | - Alan Bapeer Hassan
- Basic Sciences Department, College of Nursing, University of Duhok, Duhok, Iraqi Kurdistan
| | - Deldar Morad Abdulah
- Community Health Unit: College of Nursing, University of Duhok, Duhok, Iraqi Kurdistan
| |
Collapse
|
7
|
Goutianos G, Margaritelis NV, Sparopoulou T, Veskoukis AS, Vrabas IS, Paschalis V, Nikolaidis MG, Kyparos A. Chronic administration of plasma from exercised rats to sedentary rats does not induce redox and metabolic adaptations. J Physiol Sci 2020; 70:3. [PMID: 32039695 PMCID: PMC6995785 DOI: 10.1186/s12576-020-00737-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
The present study aimed to investigate whether endurance exercise-induced changes in blood plasma composition may lead to adaptations in erythrocytes, skeletal muscle and liver. Forty sedentary rats were randomly distributed into two groups: a group that was injected with pooled plasma from rats that swam until exhaustion and a group that was injected with the pooled plasma from resting rats (intravenous administration at a dose of 2 mL/kg body weight for 21 days). Total antioxidant capacity, malondialdehyde and protein carbonyls were higher in the plasma collected from the exercised rats compared to the plasma from the resting rats. Νo significant difference was found in blood and tissue redox biomarkers and in tissue metabolic markers between rats that received the "exercised" or the "non-exercised" plasma (P > 0.05). Our results demonstrate that plasma injections from exercised rats to sedentary rats do not induce redox or metabolic adaptations in erythrocytes, skeletal muscle and liver.
Collapse
Affiliation(s)
- Georgios Goutianos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Nikos V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
- Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece
| | - Theodora Sparopoulou
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
- Department of Animal Structure and Function, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aristidis S Veskoukis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Ioannis S Vrabas
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece.
| |
Collapse
|
8
|
Curcumin Prevents Cyclophosphamide-Induced Lung Injury in Rats by Suppressing Oxidative Stress and Apoptosis. Processes (Basel) 2020. [DOI: 10.3390/pr8020127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Curcumin (CUR) has been used since ancient times to treat several ailments as it possesses many pharmacological activities. This study intended to explore the mechanism underlying the protective effects of CUR in remodeling oxidative stress and apoptotic signals in cyclophosphamide (CP)-induced pulmonary injury in albino rats. CUR was administered at a dose of 300 mg/kg/day for 7 days and on the seventh day a single dose of CP (200 mg/kg) was given. Histopathological and ultrastructural examinations of CP-intoxicated rats showed complete alveolar obstruction, thickened inter-alveolar septa, enlarged blood vessels, severe inflammatory edema with pyknotic nuclei, and disappearance of cytoplasmic organelles. Significant increases in caspase-3, malondialdehyde (MDA), and protein carbonyl (PCO) and significant decreases in superoxide dismutase (SOD) and glutathione peroxidase (GPx) were observed. In contrast, rats that received CUR showed clear and empty lumina with single row of pneumocytes, disappearance of edema, and no interstitial electron dense bodies in rats’ lung tissues. Additionally, CUR significantly reduced caspase-3, MDA, and PCO and increased SOD and GPx. In conclusion, these findings revealed the protective effects of CUR against CP-induced pulmonary injury in rats through suppressing oxidative damage and apoptosis.
Collapse
|
9
|
Lim ZX, Duong MN, Boyatzis AE, Golden E, Vrielink A, Fournier PA, Arthur PG. Oxidation of cysteine 34 of plasma albumin as a biomarker of oxidative stress. Free Radic Res 2020; 54:91-103. [PMID: 31903812 DOI: 10.1080/10715762.2019.1708347] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: In order to better understand the physiological and pathophysiological roles of reactive oxygen species (ROS), multiple blood and urine biomarkers of oxidative stress have been developed. The single free thiol (Cys34) in plasma albumin is a useful biomarker of oxidative stress because thiol groups are particularly sensitive to oxidation by ROS. The primary aim of this study was to develop a gel electrophoresis-based method (mPEG assay) that would be more widely accessible than existing chromatography techniques to assay the oxidation state of albumin Cys34.Method: Blood samples were collected into a solution containing polyethylene glycol maleimide (malpeg). Plasma samples were divided into two aliquots, with a reducing agent added to one aliquot. Albumin bound to malpeg was separated from albumin by gel electrophoresis. The proportion of albumin in reduced form (-SH), disulphide form (-SSX) and irreversibly oxidised form (-SO2, -SO3) could then be calculated.Results: Data for the mPEG assay was comparable to data from chromatographic and mass spectrometric assays. The mPEG assay was more sensitive than the albumin carbonyl assay for the detection of changes in albumin oxidation level in response to exposure to hydrogen peroxide or hypochlorous acid. This assay could also be performed on small blood samples (less than 10 µL) from fingerprick, thus facilitating longitudinal tracking of changes in albumin Cys34 oxidation level.Conclusion: The mPEG assay is a user-friendly, highly sensitive, specific, cost-effective gel electrophoresis-based method for the assay of the oxidations state of albumin Cys34 as a biomarker of oxidative stress.HighlightsProtein thiol groups are sensitive to oxidation by reactive oxygen species.Plasma albumin contains a reduced cysteine residue (Cys34) sensitive to oxidation.A novel gel electrophoresis-based method (mPEG) has been developed to measure the oxidation state of Cys34.The mPEG assay can be run on a drop of blood collected by fingerprick.
Collapse
Affiliation(s)
- Zi Xiang Lim
- School of Molecular Sciences, the University of Western Australia, Crawley, Australia.,School of Human Sciences, Sports Science, Exercise and Health, the University of Western Australia, Crawley, Australia
| | - Marisa N Duong
- School of Molecular Sciences, the University of Western Australia, Crawley, Australia
| | - Amber E Boyatzis
- School of Molecular Sciences, the University of Western Australia, Crawley, Australia
| | - Emily Golden
- School of Molecular Sciences, the University of Western Australia, Crawley, Australia
| | - Alice Vrielink
- School of Molecular Sciences, the University of Western Australia, Crawley, Australia
| | - Paul A Fournier
- School of Human Sciences, Sports Science, Exercise and Health, the University of Western Australia, Crawley, Australia
| | - Peter G Arthur
- School of Molecular Sciences, the University of Western Australia, Crawley, Australia
| |
Collapse
|
10
|
Gandhi G, Sharma R, Kaur G. Traditional Indian sports - A case-control study on Kho Kho players investigating genomic instability and oxidative stress as a function of metabolic genotypes. Heliyon 2019; 5:e01928. [PMID: 31294102 PMCID: PMC6595184 DOI: 10.1016/j.heliyon.2019.e01928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/18/2019] [Accepted: 06/05/2019] [Indexed: 11/25/2022] Open
Abstract
The beneficial effects of physical exercise regularly for overall well being, or for recreational or professional purposes are widely accepted in clinical practice and have from time immemorial been the reasons for performing traditional sports. On the contrary, there is also evidence implying increased oxidative stress and genetic damage from intensive exercising. Depending on the intensity, time, frequency and characteristics of exercises, there can be differential induction of oxidative stress and provocation of oxidation of cellular macromolecules (including DNA) and cellular dysfunction which can likely accumulate with age, physical attributes and increase the susceptibility to disease on one hand, while stimulating cell signalling pathways leading to cell adaptation and improved resistance to stress, on the other. In order to observe if continuous sports activities as in Kho Kho increase oxidation capacity, which can also provoke oxidation of cellular macromolecules, the effects on oxidative/antioxidant changes and DNA damage in professional Kho Kho players modulated by individual genetic differences were assessed. Kho Kho, a traditional Indian game of ‘Tag’, is an all-time favourite which requires endurance, agility and strength. Healthy Kho Kho players (20.27 ± 0.28 y; sports age 6.78 ± 0.52 y) and controls (20.90 ± 0.45 y) were matched for age, gender, BMI, VO2 max (maximal oxygen uptake), frequency of GSTT1 (present/null), M1 (present/null), SOD2 (C199T) polymorphisms but differed for variant allele frequencies of GSTP1 (A313G) and SOD2 (C47T). Players compared to controls had significantly increased levels of DNA damage (1.8x, 44.66 ± 1.68 vs. 23.85 ± 1.79 μm, p = 0.000), lipid (MDA) peroxidation (2x, 1.72 ± 0.06 vs. 0.83 ± 0.16 μmol/l, p = 0.000) and total antioxidant capacity (1.09x, 1.69 ± 0.06 vs. 1.11 ± 0.03 mmol Trolox equivalent/l, p = 0.000) but with no differences for SOD activity (94.99 ± 2.42 vs. 93.36 ± 2.54 U/ml, p = 0.935). These results suggest that the players have increased genetic damage and oxidative stress probably from the intense physical activity in the absence of other exposure(s) as other attributes were comparable in the study group. The players may therefore be at increased risk for susceptibility to cancer, various diseases and precocious age-related changes and should be sensitized to health risks related to regular intensive physical exercise.
Collapse
Affiliation(s)
- Gursatej Gandhi
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, 143 005, India
| | - R Sharma
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, 143 005, India
| | - Gurpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, 143 005, India
| |
Collapse
|
11
|
Bujok J, Gąsior-Głogowska M, Marszałek M, Trochanowska-Pauk N, Zigo F, Pavľak A, Komorowska M, Walski T. Applicability of FTIR-ATR Method to Measure Carbonyls in Blood Plasma after Physical and Mental Stress. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2181370. [PMID: 31032337 PMCID: PMC6457301 DOI: 10.1155/2019/2181370] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 02/24/2019] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Oxidative stress is a state of imbalance between the production of reactive oxygen species and antioxidant defenses. It results in the oxidation of all cellular elements and, to a large extent, proteins, causing inter alia the formation of carbonyl groups in their structures. The study focused on assessment of changes in the plasma protein-bound carbonyls in police horses after combat training and after rest and the applicability of infrared spectroscopy with a Fourier transform, utilizing the attenuated total reflectance (FTIR-ATR) in detecting plasma protein oxidation. METHODS We evaluated the influence of both the different concentrations of hydrogen peroxide and combat training on protein carbonylation in horse blood plasma. The oxidation of plasma proteins was assessed using a spectrophotometric method based on the carbonyl groups derivatization with 2,4-dinitrophenylhydrazine (DNPH). The measured values were correlated with the carbonyl groups concentrations determined by means of the FTIR-ATR method. RESULTS The linear correlation between the DNPH and FTIR-ATR methods was shown. The concentration of plasma protein-bound carbonyls significantly deceased in police horses after one-day rest when compared to the values measured directly after the combat training (a drop by 23%, p<0.05 and 29%, p<0.01 measured by DNPH and FTIR-ATR methods, respectively). These results were consistent with the proteins phosphorylation analysis. CONCLUSION The FTIR-ATR method may be applied to measure the level of plasma proteins peroxidation.
Collapse
Affiliation(s)
- Jolanta Bujok
- Department of Animal Physiology and Biostructure, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Michał Marszałek
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Natalia Trochanowska-Pauk
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - František Zigo
- Department of Animal Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 041 81 Košice, Slovakia
| | - Alexander Pavľak
- Department of Animal Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 041 81 Košice, Slovakia
| | - Małgorzata Komorowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Tomasz Walski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Biosciences Research Building 118 Corrib Village, Newcastle, Galway, Ireland
| |
Collapse
|
12
|
Protein carbonyl levels in serum, saliva and gingival crevicular fluid in patients with chronic and aggressive periodontitis. Saudi Dent J 2019; 31:23-30. [PMID: 30705565 PMCID: PMC6349948 DOI: 10.1016/j.sdentj.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 11/19/2022] Open
Abstract
Objective This study aims at evaluating the degree of protein carbonyl (PC) levels in serum, gingival crevicular fluid (GCF) and saliva in patients who suffer from chronic periodontitis (CP) and generalized aggressive periodontitis (GAP). Materials and methods A total of 110 individuals took part in the study. Of this number, 35 were CP patients, 43 GAP patients, and the remaining 32 were healthy controls. Measurements regarding the serum, saliva and GCF PC levels were obtained by high-performance liquid chromatography. Results No statistically significant difference was found in serum PC levels between the groups (P > 0.05). In terms of salivary levels, the CP group demonstrated a significantly higher level (P < 0.05) of PC level compared to the GAP group. However, the difference was not found statistically significant when the comparison was drawn with the control group (p > 0.05). The GCF PC level in the CP group had a significantly higher level of concentration compared to the other groups (P < 0.05), whereas the relevant values in the control group were higher than the values in the GAP group (P < 0.05). GCF PC total values (/30 s) were higher in the CP group than the remaining groups (P < 0.05), whereas the relevant values in the GAP group were higher than the values in the control group (P < 0.05). It could be stated that GCF PC levels were significantly correlated, either positively or negatively, with all clinical periodontal parameters (p < 0.05). Conclusions The results obtained suggest that PC levels of serum and salivary in periodontitis, when compared to periodontal health, do not seem to change considerably. However, in the CP group, a statistically significant increase in PC levels of GCF was observed. This finding suggests the salient role of local protein carbonylation in the periodontal area in CP. That the CP group had a higher level of PC level than the GAP group underscores the higher protein oxidation levels in CP patients.
Collapse
|
13
|
Seif F, Reza Bayatiani M, Ansarihadipour H, Habibi G, Sadelaji S. Protective properties of Myrtus communis extract against oxidative effects of extremely low-frequency magnetic fields on rat plasma and hemoglobin. Int J Radiat Biol 2019; 95:215-224. [PMID: 30496018 DOI: 10.1080/09553002.2019.1542182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE This study investigates the protective properties of Myrtus communis extract against the oxidative effects of extremely low-frequency magnetic fields (ELFMF). Also, this study is aimed to analyze the conformational changes of hemoglobin, oxidative damages to plasma proteins and antioxidant power of plasma following exposure to ELFMF. MATERIALS AND METHODS Adult male rats were divided into 3 groups: (1) control, (2) ELFMF exposure, and (3) ELFMF exposure after M. communis extract administration. The magnetic field (0.7 mT, 50 Hz) was produced by a Helmholtz coil for one month, 2 hours a day. The M. communis extract was injected intraperitoneally at a dose of 0.5 mg/kg before exposure to ELFMF. The oxidative effects of ELFMF were studied by evaluating the hemoglobin, methemoglobin (metHb) and hemichrome levels, absorption spectrum of hemoglobin (200-700 nm), oxidative damage to plasma proteins by measuring protein carbonyl (PCO) levels and plasma antioxidant power according to the ferric reducing ability of plasma (FRAP). The mean and standard errors of the mean were determined for each group. One-way ANOVA analysis was used to compare the means of groups. The significance level was considered to be p < .05. Moreover, artificial neural network (ANN) analysis was used to identify the predictive parameters for estimating the oxyhemoglobin (oxyHb) concentration. RESULTS Exposure to ELFMF decreased the FRAP which was in concomitant with a significant increase in plasma PCO, metHb and hemichrome concentrations (p < .001). Oxidative modifications of Hb were shown by reduction in optical density at 340 nm (globin-heme interaction) and 420 nm (heme-heme interaction). Administration of M. communis extract increased FRAP values and decreased plasma POC, metHb, and hemichrome concentrations. Also, a significant increase in Hb absorbance at 340, 420, 542, and 577 nm showed the protective properties of M. communis extract against ELFMF-induced oxidative stress in erythrocytes. ANN analysis showed that optical absorption of hemoglobin at 520, 577, 542, and 630 nm and concentration of metHb and hemichrome were the most important parameters in predicting the oxyHb concentration. CONCLUSIONS Myrtus communis extract enhances the ability of erythrocytes and plasma to deal with oxidative conditions during exposure to ELFMF. Also, ANN analysis can predict the most important parameters in relation to Hb structure during oxidative stress.
Collapse
Affiliation(s)
- Fatemeh Seif
- a Department of Medical Physics and Radiotherapy , Arak University of Medical Sciences and Khansari Hospital , Arak , Iran
| | - Mohamad Reza Bayatiani
- a Department of Medical Physics and Radiotherapy , Arak University of Medical Sciences and Khansari Hospital , Arak , Iran
| | - Hadi Ansarihadipour
- b Department of Biochemistry and Genetics , Arak University of Medical Sciences , Arak , Iran
| | - Ghasem Habibi
- c Arak University of Medical Sciences, Infectious Diseases Research Center , Arak , Iran
| | - Samira Sadelaji
- c Arak University of Medical Sciences, Infectious Diseases Research Center , Arak , Iran
| |
Collapse
|
14
|
|
15
|
Gorini G, Gamberi T, Fiaschi T, Mannelli M, Modesti A, Magherini F. Irreversible plasma and muscle protein oxidation and physical exercise. Free Radic Res 2018; 53:126-138. [PMID: 30513020 DOI: 10.1080/10715762.2018.1542141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The imbalance between the reactive oxygen (ROS) and nitrogen (RNS) species production and their handling by the antioxidant machinery (low molecular weight antioxidant molecules and antioxidant enzymes), also known as oxidative stress, is a condition caused by physiological and pathological processes. Moreover, oxidative stress may be due to an overproduction of free radicals during physical exercise. Excess of radical species leads to the modification of molecules, such as proteins - the most susceptible to oxidative modification - lipids and DNA. With regard to the oxidation of proteins, carbonylation is an oxidative modification that has been widely described. Several studies have detected changes in the total amount of protein carbonyls following different types of physical exercise, but only few of these identified the specific amino acidic residues targets of such oxidation. In this respect, proteomic approaches allow to identify the proteins susceptible to carbonylation and in many cases, it is also possible to identify the specific protein carbonylation sites. This review focuses on the role of protein oxidation, and specifically carbonyl formation, for plasma and skeletal muscle proteins, following different types of physical exercise performed at different intensities. Furthermore, we focused on the proteomic strategies used to identify the specific protein targets of carbonylation. Overall, our analysis suggests that regular physical activity promotes a protection against protein carbonylation, due to the activation of the antioxidant defence or of the turnover of protein carbonyls. However, we can conclude that from the comprehensive bibliography analysed, there is no clearly defined specific physiological role about this post-translational modification of proteins.
Collapse
Affiliation(s)
- Giulia Gorini
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Tania Gamberi
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Tania Fiaschi
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Michele Mannelli
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Alessandra Modesti
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Francesca Magherini
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| |
Collapse
|
16
|
August PM, Maurmann RM, Saccomori AB, Scortegagna MC, Flores EB, Klein CP, Santos BG, Stone V, Dal Magro BM, Cristhian L, Santo CN, Hözer R, Matté C. Effect of maternal antioxidant supplementation and/or exercise practice during pregnancy on postnatal overnutrition induced by litter size reduction: Brain redox homeostasis at weaning. Int J Dev Neurosci 2018; 71:146-155. [DOI: 10.1016/j.ijdevneu.2018.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/27/2018] [Accepted: 09/04/2018] [Indexed: 12/28/2022] Open
Affiliation(s)
- Pauline Maciel August
- Programa de Pós‐graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Rafael Moura Maurmann
- Departamento de BioquímicaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - André Brum Saccomori
- Departamento de BioquímicaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Mariana Crestani Scortegagna
- Departamento de BioquímicaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Eduardo Borges Flores
- Departamento de BioquímicaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Caroline Peres Klein
- Programa de Pós‐graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Bernardo Gindri Santos
- Programa de Pós‐graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Vinicius Stone
- Programa de Pós‐graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Bárbara Mariño Dal Magro
- Departamento de BioquímicaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Leo Cristhian
- Departamento de BioquímicaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Carolina Nunes Santo
- Departamento de BioquímicaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Régis Hözer
- Programa de Pós‐graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Cristiane Matté
- Programa de Pós‐graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
- Departamento de BioquímicaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
- Programa de Pós‐graduação em Ciências Biológicas: Fisiologia, ICBS, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| |
Collapse
|
17
|
Paschalis V, Theodorou AA, Margaritelis NV, Kyparos A, Nikolaidis MG. N-acetylcysteine supplementation increases exercise performance and reduces oxidative stress only in individuals with low levels of glutathione. Free Radic Biol Med 2018; 115:288-297. [PMID: 29233792 DOI: 10.1016/j.freeradbiomed.2017.12.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 01/05/2023]
Abstract
Most of the evidence indicates that chronic antioxidant supplementation induces negative effects in healthy individuals. However, it is currently unknown whether specific redox deficiencies exist and whether targeted antioxidant interventions in deficient individuals can induce positive effects. We hypothesized that the effectiveness of antioxidant supplements to decrease oxidative stress and promote exercise performance depends on the redox status of the individuals that receive the antioxidant treatment. To this aim, we investigated whether N-acetylcysteine (NAC) supplementation would enhance exercise performance by increasing glutathione concentration and by reducing oxidative stress only in individuals with low resting levels of glutathione. We screened 100 individuals for glutathione levels and formed three groups with low, moderate and high levels (N = 36, 12 per group). After by-passing the regression to the mean artifact, by performing a second glutathione measurement, the individuals were supplemented with NAC (2 × 600mg, twice daily, for 30 days) or placebo using a double-blind cross-over design. We performed three whole-body performance tests (VO2max, time trial and Wingate), measured two systemic oxidative stress biomarkers (F2-isoprostanes and protein carbonyls) and assessed glutathione-dependent redox metabolism in erythrocytes (glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase and NADPH). The low glutathione group improved after NAC supplementation in VO2max, time trial and Wingate by 13.6%, 15.4% and 11.4%, respectively. Thirty days of NAC supplementation were sufficient to restore baseline glutathione concentration, reduce systemic oxidative stress and improve erythrocyte glutathione metabolism in the low glutathione group. On the contrary, the 30-day supplementation period did not affect performance and redox state of the moderate and high glutathione groups, although few both beneficial and detrimental effects in performance were observed. In conclusion, individuals with low glutathione levels were linked with decreased physical performance, increased oxidative stress and impaired redox metabolism of erythrocytes. NAC supplementation restored both performance and redox homeostasis.
Collapse
Affiliation(s)
- Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Greece
| | - Anastasios A Theodorou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Nikos V Margaritelis
- Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece; Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| |
Collapse
|
18
|
Indo HP, Hawkins CL, Nakanishi I, Matsumoto KI, Matsui H, Suenaga S, Davies MJ, St Clair DK, Ozawa T, Majima HJ. Role of Mitochondrial Reactive Oxygen Species in the Activation of Cellular Signals, Molecules, and Function. Handb Exp Pharmacol 2017; 240:439-456. [PMID: 28176043 DOI: 10.1007/164_2016_117] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondria are a major source of intracellular energy and reactive oxygen species in cells, but are also increasingly being recognized as a controller of cell death. Here, we review evidence of signal transduction control by mitochondrial superoxide generation via the nuclear factor-κB (NF-κB) and GATA signaling pathways. We have also reviewed the effects of ROS on the activation of MMP and HIF. There is significant evidence to support the hypothesis that mitochondrial superoxide can initiate signaling pathways following transport into the cytosol. In this study, we provide evidence of TATA signal transductions by mitochondrial superoxide. Oxidative phosphorylation via the electron transfer chain, glycolysis, and generation of superoxide from mitochondria could be important factors in regulating signal transduction, cellular homeostasis, and cell death.
Collapse
Affiliation(s)
- Hiroko P Indo
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan. .,Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan. .,Graduate Center of Toxicology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.
| | - Clare L Hawkins
- The Heart Research Institute, 7 Eliza Street, Newtown, NSW, 2042, Australia. .,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Ikuo Nakanishi
- Quantitative RedOx Sensing Team (QRST), Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Team (QRST), Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Hirofumi Matsui
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki Prefecture, 305-8575, Japan
| | - Shigeaki Suenaga
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark
| | - Daret K St Clair
- Graduate Center of Toxicology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Toshihiko Ozawa
- Division of Oxidative Stress Research, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Hideyuki J Majima
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan. .,Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan.
| |
Collapse
|
19
|
Georgescu VP, de Souza Junior TP, Behrens C, Barros MP, Bueno CA, Utter AC, McAnulty LS, McAnulty SR. Effect of exercise-induced dehydration on circulatory markers of oxidative damage and antioxidant capacity. Appl Physiol Nutr Metab 2017; 42:694-699. [DOI: 10.1139/apnm-2016-0701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dehydration is a common event associated with exercise. However, few studies have examined the effects of dehydration on plasma redox status in humans. Eighty-two athletes were recruited and baseline anthropometrics and blood samples were obtained. Athletes then engaged in a dehydration protocol, training until 3% of preweight body mass was lost. Athletes returned to the lab and had postdehydration blood collected. Athletes then consumed an isotonic drink until pre-exercise body weight was reestablished. Blood was then recollected (1 h post full rehydration (PFR)). Samples were centrifuged and the plasma snap frozen in liquid nitrogen and stored at −80 °C. Lipid and protein oxidative stress was determined by measuring F2-isoprostanes and protein carbonyls (PC), respectively. Antioxidant capacity was determined by the ferric reducing ability of plasma (FRAP) and trolox equivalent antioxidant capacity (TEAC) assays. Plasma osmolality was determined using an osmometer. Statistical analysis utilized a 1-way ANOVA with posthoc testing. Values are reported as mean ± SD. Plasma osmolality was significantly elevated immediately postdehydration (p ≤ 0.001) but decreased to baseline at PFR. Plasma TEAC increased immediately postdehydration and at PFR (p ≤ 0.001). FRAP increased immediately postdehydration (p ≤ 0.001) and decreased to below baseline at PFR (p ≤ 0.05). Conversely, F2-isoprostanes declined significantly from baseline to immediately postdehydration and then significantly rose at PFR (p ≤ 0.001), whereas PC declined at PFR (p ≤ 0.01). This study indicates that dehydration and exercise cause a significant increase in plasma osmolality and antioxidant potential immediately postexercise. We propose dehydration significantly elevates antioxidant concentration which suppresses F2-isoprostanes and PC.
Collapse
Affiliation(s)
- Vincent P. Georgescu
- Department of Health and Exercise Science, Appalachian State University, 111 Rivers Street, Boone, NC USA
| | - Tacito P. de Souza Junior
- Department of Health and Exercise Science, Appalachian State University, 111 Rivers Street, Boone, NC USA
- Universidade Federal do Parana, Research Group on Metabolism, Nutrition, and Strength Training, Rua Coração de Maria, 92 - BR 116, Curitiba, Brazil
| | - Christian Behrens
- Department of Nutrition and Health Care Management, Appalachian State University, 261 Locust Street, Boone, NC USA
| | - Marcelo P. Barros
- Postgraduate program in Human Movement Sciences, Institute of Physical Activity and Sports Sciences (ICAFE), Cruzeiro do Sul University, Rua Coração de Maria, 192 - BR 16 Sao Paulo, Brazil
| | - Carlos Alves Bueno
- Universidade Federal do Parana, Research Group on Metabolism, Nutrition, and Strength Training, Rua Coração de Maria, 92 - BR 116, Curitiba, Brazil
| | - Alan C. Utter
- Department of Health and Exercise Science, Appalachian State University, 111 Rivers Street, Boone, NC USA
| | - Lisa S. McAnulty
- Department of Nutrition and Health Care Management, Appalachian State University, 261 Locust Street, Boone, NC USA
| | - Steven R. McAnulty
- Department of Health and Exercise Science, Appalachian State University, 111 Rivers Street, Boone, NC USA
| |
Collapse
|
20
|
Oxidative Stress Assessment in Response to Ultraendurance Exercise: Thiols Redox Status and ROS Production according to Duration of a Competitive Race. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6439037. [PMID: 27504148 PMCID: PMC4967677 DOI: 10.1155/2016/6439037] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022]
Abstract
Purpose. Response to an ultraendurance competitive race on thiols redox status, reactive oxygen species (ROS) production, and oxidative stress (OxS) was investigated according to duration. Methods. Twenty-four elite runners were examined: six completed 50 km and eighteen 100 km. Blood and urine samples were collected before and immediately after the race. Erythrocytes and plasma aminothiols by high-performance liquid chromatography, total antioxidant capacity (TAC), and OxS biomarkers (protein carbonyl (PC), thiobarbituric acid-reactive substances (TBARS), 8-isoprostane (8-iso-PGF2α), and 8-OH-2-deoxyguanosine (8-OH-dG)) by immunoenzymatic assays and ROS production by Electron Paramagnetic Resonance were assessed. Results. Significant increases (P between <0.05 and <0.0001) were recorded in plasma total and oxidized aminothiols concentration and TAC (P < 0.0001) only after 100 km: plasmatic (ROS production (+12 versus +29%), PC (+54 versus +115%), and TBARS (+28 versus +55%)) and urinary (8-OH-dG.creatinine−1 (+71 versus +158%) and 8-iso-PGF2α.creatinine−1 (+43 versus +135%)) concentrations for 50 and 100 km (duration 4 h 3′ versus 8 h 42′), respectively. Conclusion. Very prolonged ultraendurance exercise causes an increase in ROS production and OxS depending on specific biomarker examined but always linearly and directly related to exercise duration. Redox status of erythrocytes was preserved. A relationship between running performance and both prerace ROS production and antioxidant-redox status was found in 100 km race.
Collapse
|