1
|
Wu J, Wen L, Liu X, Li Q, Sun Z, Liang C, Xie F, Li X. Silybin: A Review of Its Targeted and Novel Agents for Treating Liver Diseases Based on Pathogenesis. Phytother Res 2024; 38:5713-5740. [PMID: 39310970 DOI: 10.1002/ptr.8347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 12/13/2024]
Abstract
Liver disease represents a significant global public health concern. Silybin, derived from Silybum marianum, has been demonstrated to exhibit a range of beneficial properties, including anti-inflammatory, antioxidative, antifibrotic, antiviral, and cytoprotective effects. These attributes render it a promising candidate for the treatment of liver fibrosis, cirrhosis, liver cancer, viral hepatitis, non-alcoholic fatty liver disease, and other liver conditions. Nevertheless, its low solubility and low bioavailability have emerged as significant limitations in its clinical application. To address these limitations, researchers have developed a number of silybin formulations. This study presents a comprehensive review of the results of research on silybin for the treatment of liver diseases in recent decades, with a particular focus on novel formulations based on the pathogenesis of the disease. These include approaches targeting the liver via the CD44 receptor, folic acid, vitamin A, and others. Furthermore, the study presents the findings of studies that have employed nanotechnology to enhance the low bioavailability and low solubility of silybin. This includes the use of nanoparticles, liposomes, and nanosuspensions. This study reviews the application of silybin preparations in the treatment of global liver diseases. However, further high-quality and more complete experimental studies are still required to gain a more comprehensive understanding of the efficacy and safety of these preparations. Finally, the study considers the issues that arise during the research of silybin formulations.
Collapse
Affiliation(s)
- Jijiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuipeng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Agboluaje EO, Cui S, Grimsey NJ, Xiong MP. Bile Acid-Targeted Hyaluronic Acid Nanoparticles for Enhanced Oral Absorption of Deferoxamine. AAPS J 2024; 26:46. [PMID: 38609650 DOI: 10.1208/s12248-024-00911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
Patients with β-thalassemia and sickle cell disease often rely on blood transfusions which can lead to hemochromatosis and chronic oxidative stress in cells and tissues. Deferoxamine (DFO) is clinically approved to treat hemochromatosis but is suboptimal to patients due to its poor pharmacokinetics which requires long-term infusion regimens. Although the oral route is preferable, DFO has limited oral bioavailability. Studies have shown that hyaluronic acid (HA) and bile acid (BA) can enhance the oral absorption of poorly absorbed drugs. To improve upon the oral delivery of DFO, we report on the synthesis and characterization of HA (MW 15 kD) conjugated to two types of BA, deoxycholic acid (DOCA) and taurocholic acid (TCA), and DFO. The resulting seven polymeric conjugates all formed self-assembled nanoparticles. The degree of BA and DFO conjugation to the HA polymer was confirmed at each step through nuclear magnetic resonance, Fourier transform infrared spectroscopy, and UV-Vis spectroscopy. The best formulations for further in vitro testing were determined based on physicochemical characterizations and included HA-DFO, TCA9-HA-DFO, and DOCA9-HA-DFO. Results from in vitro assays revealed that TCA9-HA-DFO enhanced the permeation of DFO the most and was also less cytotoxic to cells compared to the free drug DFO. In addition, ferritin reduction studies indicated that the conjugation of DFO to TCA9-HA did not compromise its chelation efficiency at equivalent free DFO concentrations. This research provides supportive data for the idea that TCA conjugated to HA may enhance the oral absorption of DFO, improve its cytocompatibility, and maintain its iron chelation efficiency.
Collapse
Affiliation(s)
- Elizabeth Oladoyin Agboluaje
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA
| | - Shuolin Cui
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA
| | - Neil J Grimsey
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA
| | - May P Xiong
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA.
| |
Collapse
|
3
|
Yang X, Yang Y, Yu H, Zhou Y. Self-Assembled Polymers for Gastrointestinal Tract Targeted Delivery through the Oral Route: An Update. Polymers (Basel) 2023; 15:3538. [PMID: 37688164 PMCID: PMC10490001 DOI: 10.3390/polym15173538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Gastrointestinal tract (GIT) targeted drug delivery systems have gained growing attention as potential carriers for the treatment of different diseases, especially local colonic diseases. They have lower side effects as well as enhanced oral delivery efficiency because of various therapeutics that are vulnerable to acidic and enzymatic degradation in the upper GIT are protected. The novel and unique design of self-assembled nanostructures, such as micelles, hydrogels, and liposomes, which can both respond to external stimuli and be further modified, making them ideal for specific, targeted medical needs and localized drug delivery treatments through the oral route. Therefore, the aim of this review was to summarize and critically discuss the pharmaceutical significance and therapeutic feasibility of a wide range of natural and synthetic biomaterials for efficient drug targeting to GIT using the self-assembly method. Among various types of biomaterials, natural and synthetic polymer-based nanostructures have shown promising targeting potential due to their innate pH responsiveness, sustained and controlled release characteristics, and microbial degradation in the GIT that releases the encapsulated drug moieties.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Yang
- Pingshan General Hospital, Southern Medical University, Shenzhen 518118, China
- Pingshan District Peoples’ Hospital of Shenzhen, Shenzhen 518118, China
| | - Haiyan Yu
- Pingshan General Hospital, Southern Medical University, Shenzhen 518118, China
- Pingshan District Peoples’ Hospital of Shenzhen, Shenzhen 518118, China
| | - Yi Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Dai Z, Zhang Y, Meng Y, Li S, Suonan Z, Sun Y, Ji J, Shen Q, Zheng H, Xue Y. Targeted delivery of nutraceuticals derived from food for the treatment of obesity and its related complications. Food Chem 2023; 418:135980. [PMID: 36989644 DOI: 10.1016/j.foodchem.2023.135980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Nutraceuticals which are abundant in foods have attracted much attention due to their bioactive activities of anti-obesity, anti-hyperlipidemia and anti-atherosclerosis. Unfortunately, the poor bioavailability severely undermines their envisioned benefits. Therefore, there is an urgent need to develop suitable delivery systems to promote the benefits of their biological activity. Targeted drug delivery system (TDDS) is a novel drug delivery system that can selectively concentrate drugs on targets in the body, improve the bioavailability of agents and reduce side effects. This emerging drug delivery system provides a new strategy for the treatment of obesity with nutraceuticals and would be a promising alternative to be widely used in the food field. This review summarizes the recent studies on the application in the targeted delivery of nutraceuticals for treating obesity and its related complications, especially the available receptors and their corresponding ligands for TDDS and the evaluation methods of the targeting ability.
Collapse
|
5
|
Zou L, Li Q, Hou Y, Chen M, Xu X, Wu H, Sun Z, Ma G. Self-assembled glycyrrhetinic acid derivatives for functional applications: a review. Food Funct 2022; 13:12487-12509. [PMID: 36413139 DOI: 10.1039/d2fo02472a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycyrrhetinic acid (GA), a famous natural product, has been attracting more attention recently because of its remarkable biological activity, natural sweetness, and good biocompatibility. In the past few years, a considerable amount of literature has grown up around the theme of GA-based chemical modification to broaden its functional applications. Promising structures including gels, micelles, nanoparticles, liposomes, and so forth have been constantly reported. On the one hand, the assembly mechanisms of various materials based on GA derivatives have been elucidated via modern analytical techniques. On the other hand, their potential application prospects in edible additives, intelligent drug delivery, and other fields have been investigated fully due to availability, biocompatibility, and controllable degradability. Inspired by these findings, a systematic summary and classification of the materials formed by GA derivatives seems necessary and meaningful. This review sums up the new functional applications of GA derivatives for the first time and provides better prospects for their application and development.
Collapse
Affiliation(s)
- Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Yong Hou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Meiying Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Haifeng Wu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| |
Collapse
|
6
|
Abo El-Enin HA, Ahmed MF, Naguib IA, El-Far SW, Ghoneim MM, Alsalahat I, Abdel-Bar HM. Utilization of Polymeric Micelles as a Lucrative Platform for Efficient Brain Deposition of Olanzapine as an Antischizophrenic Drug via Intranasal Delivery. Pharmaceuticals (Basel) 2022; 15:ph15020249. [PMID: 35215361 PMCID: PMC8877317 DOI: 10.3390/ph15020249] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/10/2022] Open
Abstract
Schizophrenia is a mental disorder characterized by alterations in cognition, behavior and emotions. Oral olanzapine (OZ) administration is extensively metabolized (~up to 40% of the administrated dose). In addition, OZ is a P-glycoproteins substrate that impairs the blood–brain barrier (BBB) permeability. To direct OZ to the brain and to minimize its systemic side effects, the nasal pathway is recommended. OZ-loaded polymeric micelles nano-carriers were developed using suitable biodegradable excipients. The developed micelles were physicochemically investigated to assess their appropriateness for intranasal delivery and the potential of these carriers for OZ brain targeting. The selected formula will be examined in vivo for improving the anti-schizophrenic effects on a schizophrenia rat model. The binary mixture of P123/P407 has a low CMC (0.001326% w/v), which helps in maintaining the formed micelles’ stability upon dilution. The combination effect of P123, P407 and TPGS led to a decrease in micelle size, ranging between 37.5–47.55 nm and an increase in the EE% (ranging between 68.22–86.84%). The selected OZ–PM shows great stability expressed by a suitable negative charge zeta potential value (−15.11 ± 1.35 mV) and scattered non-aggregated spherical particles with a particle size range of 30–40 nm. OZ–PM maintains sustained drug release at the application site with no nasal cytotoxicity. In vivo administration of the selected OZ–PM formula reveals improved CNS targeting and anti-schizophrenia-related deficits after OZ nasal administration. Therefore, OZ–PM provided safe direct nose-to-brain transport of OZ after nasal administration with an efficient anti-schizophrenic effect.
Collapse
Affiliation(s)
- Hadel A. Abo El-Enin
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
- Correspondence:
| | - Marwa F. Ahmed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia; (M.F.A.); (I.A.N.)
| | - Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia; (M.F.A.); (I.A.N.)
| | - Shaymaa W. El-Far
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia;
| | - Izzeddin Alsalahat
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff CF24 1TP, UK;
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt;
| |
Collapse
|
7
|
Glycyrrhizic Acid and Its Hydrolyzed Metabolite 18β-Glycyrrhetinic Acid as Specific Ligands for Targeting Nanosystems in the Treatment of Liver Cancer. Pharmaceutics 2021; 13:pharmaceutics13111792. [PMID: 34834206 PMCID: PMC8621092 DOI: 10.3390/pharmaceutics13111792] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 01/10/2023] Open
Abstract
Glycyrrhizic acid and its hydrolyzed metabolite 18β-glycyrrhetinic acid, obtained from the plant Glycyrrhiza glabra, have numerous pharmacological activities, such as anti-inflammatory, anti-ulcerative, antiallergic, immunomodulatory, antiviral, antitumor, hepatoprotective, and antioxidant effects, and others. In addition to the pharmacological activities, in the 1980s, an interaction and uptake of these molecules by the liver was verified, which was later confirmed by other studies through the discovery of specific receptors in the hepatocytes. The presence of these specific receptors in the liver led to vectorization and delivery of drugs, by the introduction of glycyrrhizic acid or glycyrrhetinic acid on the surface of nanosystems, for the treatment of liver diseases. This review describes experimental evidence of vectorization by conjugating glycyrrhizic acid or glycyrrhetinic acid to nanosystems and delivery of antitumor drugs for the treatment of liver cancer and also describes the techniques used to perform this conjugation. We have shown that due to the existence of specific receptors for these molecules, in addition to the targeting of nanosystems to hepatocytes, nanosystems having glycyrrhizic acid or glycyrrhetinic acid on their surface had the same therapeutic effect in a significantly lower dose compared to the free drug and unconjugated nanosystems, with consequent reduction of side effects and toxicity.
Collapse
|
8
|
Rehman MU, Farooq A, Ali R, Bashir S, Bashir N, Majeed S, Taifa S, Ahmad SB, Arafah A, Sameer AS, Khan R, Qamar W, Rasool S, Ahmad A. Preclinical Evidence for the Pharmacological Actions of Glycyrrhizic Acid: A Comprehensive Review. Curr Drug Metab 2021; 21:436-465. [PMID: 32562521 DOI: 10.2174/1389200221666200620204914] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
Glycyrrhiza glabra L. (Family: Fabaceae) is one of the important traditional medicinal plant used extensively in folk medicine. It is known for its ethnopharmacological value in curing a wide variety of ailments. Glycyrrhizin, an active compound of G. glabra, possesses anti-inflammatory activity due to which it is mostly used in traditional herbal medicine for the treatment and management of chronic diseases. The present review is focused extensively on the pharmacology, pharmacokinetics, toxicology, and potential effects of Glycyrrhizic Acid (GA). A thorough literature survey was conducted to identify various studies that reported on the GA on PubMed, Science Direct and Google Scholar.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adil Farooq
- RAKCOPS, RAK Medical and Health Sciences University, Ras AL Khaimah, United Arab Emirates
| | - Rayeesa Ali
- Division of Veterinary Pathology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Sana Bashir
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Nazirah Bashir
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Samia Majeed
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Syed Taifa
- Division of Animal Nutrition, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aga Syed Sameer
- Department of Basic Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Centre (KAIMRC), Jeddah, Saudi Arabia
| | - Rehan Khan
- Department of Nano-therapeutics, Institute of Nanoscience and Technology (DST-INST), Mohali, Punjab, India
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology and Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saiema Rasool
- Forest Biotech Lab, Department of Forest Mana pgement, Faculty of Forestry, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Anas Ahmad
- Department of Nano-therapeutics, Institute of Nanoscience and Technology (DST-INST), Mohali, Punjab, India
| |
Collapse
|
9
|
Wu SY, Wang WJ, Dou JH, Gong LK. Research progress on the protective effects of licorice-derived 18β-glycyrrhetinic acid against liver injury. Acta Pharmacol Sin 2021; 42:18-26. [PMID: 32144337 PMCID: PMC7921636 DOI: 10.1038/s41401-020-0383-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
The first description of the medical use of licorice appeared in "Shennong Bencao Jing", one of the well-known Chinese herbal medicine classic books dated back to 220-280 AD. As one of the most commonly prescribed Chinese herbal medicine, licorice is known as "Guo Lao", meaning "a national treasure" in China. Modern pharmacological investigations have confirmed that licorice possesses a number of biological activities, such as antioxidation, anti-inflammatory, antiviral, immune regulation, and liver protection. 18β-glycyrrhetinic acid is one of the most extensively studied active integrants of licorice. Here, we provide an overview of the protective effects of 18β-glycyrrhetinic acid against various acute and chronic liver diseases observed in experimental models, and summarize its pharmacological effects and potential toxic/side effects at higher doses. We also make additional comments on the important areas that may warrant further research to support appropriate clinical applications of 18β-glycyrrhetinic acid and avoid potential risks.
Collapse
Affiliation(s)
- Shou-Yan Wu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Jie Wang
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Hui Dou
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Oxford, MS, 38677, USA
| | - Li-Kun Gong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Hao T, Wang K, Zhang S, Yang S, Wang P, Gao F, Zhao Y, Guo N, Yu P. Preparation, characterization, antioxidant evaluation of new curcumin derivatives and effects of forming HSA-bound nanoparticles on the stability and activity. Eur J Med Chem 2020; 207:112798. [PMID: 32920425 DOI: 10.1016/j.ejmech.2020.112798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 11/17/2022]
Abstract
Curcumin (CCM) is a well-known active component, which has been studied extensively in food and medicine field since it showed various activities. However, some serious issues limit its application, for example, the extremely low solubility, stability and bioavailability. In this study, 10 Curcumin derivatives were synthesized and characterized by 1H NMR, 13C NMR and HR-MS, then their antioxidant activity was evaluated. Compound 2 and curcumin were further investigated by preparing HSA-bound nanoparticles (NP-2 and NP-CCM) to surmount the difficulties mentioned above. The nanoparticles obtained were about 110 nm in size measured by Dynamic light scattering (DLS), the stability of compound 2 in NP-2 was significantly increased. Above all, NP-2 showed more efficient antioxidant and antitumor activity, which was probably attributed to the introduced isopentenyl groups in 2, it was supposed that the isopentenyl groups increased the interaction between compound 2 and HSA. Overall, NP-2 has great potential for some food and pharmaceutical applications.
Collapse
Affiliation(s)
- Tiantian Hao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Kai Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shutong Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shuyan Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Pingxi Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Feng Gao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yufan Zhao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Na Guo
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
11
|
Lai H, Ding X, Ye J, Deng J, Cui S. pH-responsive hyaluronic acid-based nanoparticles for targeted curcumin delivery and enhanced cancer therapy. Colloids Surf B Biointerfaces 2020; 198:111455. [PMID: 33243547 DOI: 10.1016/j.colsurfb.2020.111455] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/08/2020] [Accepted: 10/31/2020] [Indexed: 02/08/2023]
Abstract
Curcumin (CUR) display promising antitumor effects, however, the poor water solubility severely limited its clinical application. To overcome this problem, polymeric nanocarriers have been adopted for targeted CUR delivery and enhanced cancer therapy. In this paper, utilizing an acid-labile hydrazone linkage, hydrophobic CUR was conjugated with hydrophilic hyaluronic acid (HA) to form amphiphilic HA-ADH-CUR conjugates, which could subsequently self-assemble to form nanoparticles (HA@CUR NPs) in aqueous. The in vitro drug release experiments showed that HA@CUR NPs exhibited a pH-responsive CUR release behavior, and the release rate of CUR was 73.5 % in pH 5.0. Further, in vitro cell experiments showed HA@CUR NPs could be efficiently internalized by 4T1 and MCF-7 cancer cells through CD44 receptor mediated endocytosis and successfully release CUR in acidic lysosome environment for chemotherapy. In vivo antitumor experiments showed that, compared to free CUR, HA@CUR NPs could efficiently cumulate in tumor site via EPR effect and CD44 mediated endocytosis, achieve superior therapeutic effect for tumor growth suppression. Therefore, HA@CUR NPs were a highly promising nanocarrier for hydrophobic CUR to realize enhanced cancer therapy with good biosafety.
Collapse
Affiliation(s)
- Hualu Lai
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Xin Ding
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Junxian Ye
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Jie Deng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Shengmiao Cui
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China.
| |
Collapse
|
12
|
Barbosa de Souza A, Vinícius Chaud M, Francine Alves T, Ferreira de Souza J, Andrade Santana MH. Hyaluronic Acid in the Intestinal Tract: Influence of Structure, Rheology, and Mucoadhesion on the Intestinal Uptake in Rats. Biomolecules 2020; 10:E1422. [PMID: 33050089 PMCID: PMC7601924 DOI: 10.3390/biom10101422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 01/14/2023] Open
Abstract
Oral hyaluronic acid (HA) is a ubiquitous biopolymer that has gained attention as a treatment for local or systemic diseases. Here, we prepared and characterized structures of free HA (f-HA) with a high (>105 Da), intermediate (≤105 Da), and low (≤104 Da) average molar mass (MM); nanoparticles crosslinked with adipic dihydrazide (n-HA); and mixed formulations (mixed-HA) containing f-HA and n-HA. MM distribution determined the structure, hydrodynamic diameter, and zeta potential of the f-HAs. Crosslinking changed the physicochemical properties in n-HA. In vitro tack adhesion assays, using mucin tablets or a viable rat intestinal mucosa, showed better mucoadhesion with f-HA (intermediate MM) and mixed-HA (25% n-HA), especially in the jejunum segment. High MM f-HA presented negligible mucoadhesion. n-HA showed the deepest diffusion into the porous of the membranes. In vivo results showed that, except for high MM f-HA, there is an inverse relationship between rheological changes in the intestinal membrane macerates resulting from mucoadhesion and the effective intestinal permeability that led to blood clearance of the structures. We conclude that the n-HA formulations are promising for targeting other tissues, while formulations of f-HA (intermediate MM) and mixed-HA are better for treating dysbiosis.
Collapse
Affiliation(s)
- Alexandro Barbosa de Souza
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, P.O. Box 6066, Campinas 13083 852, SP, Brazil;
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba, Sorocaba 18300 000, SP, Brazil; (M.V.C.); (T.F.A.); (J.F.d.S.)
| | - Marco Vinícius Chaud
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba, Sorocaba 18300 000, SP, Brazil; (M.V.C.); (T.F.A.); (J.F.d.S.)
| | - Thais Francine Alves
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba, Sorocaba 18300 000, SP, Brazil; (M.V.C.); (T.F.A.); (J.F.d.S.)
| | - Juliana Ferreira de Souza
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba, Sorocaba 18300 000, SP, Brazil; (M.V.C.); (T.F.A.); (J.F.d.S.)
| | - Maria Helena Andrade Santana
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, P.O. Box 6066, Campinas 13083 852, SP, Brazil;
| |
Collapse
|
13
|
Tumor-targeted and self-assembled mixed micelles as carriers for enhanced anticancer efficacy of gemcitabine. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Development of TPGS/F127/F68 mixed polymeric micelles: Enhanced oral bioavailability and hepatoprotection of syringic acid against carbon tetrachloride-induced hepatotoxicity. Food Chem Toxicol 2020; 137:111126. [PMID: 31954714 DOI: 10.1016/j.fct.2020.111126] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/12/2019] [Accepted: 01/09/2020] [Indexed: 12/26/2022]
Abstract
Syringic acid (SA), a natural polyphenol found in fruits and vegetables, is claimed to show notable hepatoprotection. Nevertheless, low solubility and bioavailability hamper the application of SA. This study aimed to investigate the potential of TPGS/F127/F68 mixed polymeric micelles as a sustained and liver-targeting nanocarrier for SA. Herein, the prepared SA-loaded TPGS/F127/F68 mixed polymeric micelles (SA-TPGS-Ms) were spherically-shaped and homogeneously-distributed nanoparticles with high entrapment efficiency (94.67 ± 2.05%) and sustained release. Besides, in-vitro cell culture studies revealed that SA-TPGS-Ms substantially promoted cellular uptake with excellent biocompatibility. After oral administration, SA-TPGS-Ms demonstrated an increased bioavailability (2.3-fold) and delayed in-vivo elimination compared with the free SA. Furthermore, the alleviation of oxidative stress and amelioration of hepatic injury in CCl4-induced hepatotoxicity mice further demonstrated the excellent hepatoprotection of SA-TPGS-Ms. Collectively, SA-TPGS-Ms could be a promising nanocarrier for the utilization of SA in functional foods, with enhanced bioavailability and hepatoprotection.
Collapse
|
15
|
Cun X, Chen J, Li M, He X, Tang X, Guo R, Deng M, Li M, Zhang Z, He Q. Tumor-Associated Fibroblast-Targeted Regulation and Deep Tumor Delivery of Chemotherapeutic Drugs with a Multifunctional Size-Switchable Nanoparticle. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39545-39559. [PMID: 31617997 DOI: 10.1021/acsami.9b13957] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tumor-associated fibroblasts (TAFs), which form a predominant stromal cellular component of the tumor microenvironment, hinder the delivery of nanomedicine to deep tumor cells and lead to poor prognosis of tumors. However, depletion of TAFs by therapeutic agents results in the secretion of damage response program (DRP) molecules to weaken the efficacy of tumor treatment. This paper reports a multifunctional size-switchable nanoparticle (denoted DGL (dendrigraft poly-l-lysine) (DGL)/GEM@PP/GA) for TAF-targeted regulation and deep tumor penetration. After accumulation at the tumor site, in response to overexpressed matrix metalloproteinase-2 (MMP-2) in the tumor microenvironment, gemcitabine (GEM)-conjugated small nanoparticles (DGL/GEM) are released from DGL/GEM@PP/GA, leaving 18β-glycyrrhetinic acid (GA)-loaded large nanoparticles (PP/GA). The released DGL/GEM can penetrate to the deep region of the tumor as well as intracellularly release GEM to kill tumor cells. However, residual GA-loaded nanoparticles with lower tumor penetration ability could accumulate around tumor vessels and be preferentially absorbed by TAFs to regulate the secretion of Wnt 16, which is an important DRP molecule. By taking actions on both tumor cells and TAFs, DGL/GEM@PP/GA displayed significant and long-term antitumor effect in stroma-rich pancreatic cancer and breast cancer models.
Collapse
Affiliation(s)
- Xingli Cun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu 610041 , China
| | - Jiantao Chen
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu 610041 , China
| | - Mengmeng Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu 610041 , China
| | - Xuan He
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu 610041 , China
| | - Xian Tang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu 610041 , China
| | - Rong Guo
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu 610041 , China
| | - Miao Deng
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu 610041 , China
| | - Man Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu 610041 , China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu 610041 , China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu 610041 , China
| |
Collapse
|
16
|
Ma Z, Zhang B, Fan Y, Wang M, Kebebe D, Li J, Liu Z. Traditional Chinese medicine combined with hepatic targeted drug delivery systems: A new strategy for the treatment of liver diseases. Biomed Pharmacother 2019; 117:109128. [PMID: 31234023 DOI: 10.1016/j.biopha.2019.109128] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
Abstract
Liver diseases are clinically common and present a substantial public health issue. Many of the currently available drugs for the treatment of liver diseases suffer from limitations that include low hepatic distribution, lack of target effects, poor in vivo stability and adverse effects on other organs. Consequently, conventional treatment of hepatic diseases is ineffective. TCM is commonly used in the treatment of liver diseases worldwide, particularly in China, and has advantages over conventional therapy. HTDDS can be designed to enhance clinical efficacy in the treatment of liver diseases. We have conducted an extensive review of 335 studies reported since 1964. These included about 166 references involving the treatment of liver diseases with TCM (covering active components of TCM, single TCM and Chinese medicine formulas), 169 reports on HTDDS and background studies on liver-related diseases. Here we review the long history of TCM in the treatment of liver diseases.We have also reviewed the status of studies on active components of TCM using nanotechnology-based targeted delivery systems to provide support for further research and development of TCM-based targeted preparations for the treatment of liver disease.
Collapse
Affiliation(s)
- Zhe Ma
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Bing Zhang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yuqi Fan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Meng Wang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Dereje Kebebe
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Jiawei Li
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Zhidong Liu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
17
|
Hayes AJ, Melrose J. Glycosaminoglycan and Proteoglycan Biotherapeutics in Articular Cartilage Protection and Repair Strategies: Novel Approaches to Visco‐supplementation in Orthobiologics. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research HubCardiff School of BiosciencesCardiff University Cardiff CF10 3AX Wales UK
| | - James Melrose
- Graduate School of Biomedical EngineeringUNSW Sydney Sydney NSW 2052 Australia
- Raymond Purves Bone and Joint Research LaboratoriesKolling Institute of Medical ResearchRoyal North Shore Hospital and The Faculty of Medicine and HealthUniversity of Sydney St. Leonards NSW 2065 Australia
- Sydney Medical SchoolNorthernRoyal North Shore HospitalSydney University St. Leonards NSW 2065 Australia
| |
Collapse
|
18
|
Jiang H, Li ZP, Tian GX, Pan RY, Xu CM, Zhang B, Wu JL. Liver-targeted liposomes for codelivery of curcumin and combretastatin A4 phosphate: preparation, characterization, and antitumor effects. Int J Nanomedicine 2019; 14:1789-1804. [PMID: 30880980 PMCID: PMC6413741 DOI: 10.2147/ijn.s188971] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Recent efforts have been focused on combining two or more therapeutic approaches with different mechanisms to enhance antitumor therapy. Moreover, nanosize drug-delivery systems for codelivering two drugs with proapoptotic and antiangiogenic activities have exhibited great potential in efficient treatment of cancers. Methods Glycyrrhetinic acid (GA)–modified liposomes (GA LPs) for liver-targeted codelivery of curcumin (Cur) and combretastatin A4 phosphate (CA4P) were prepared and characterized. In vitro cellular uptake, cytotoxicity, cell migration, in vivo biodistribution, antitumor activity, and histopathological studies were performed. Results Compared with unmodified LPs (Cur-CA4P LPs), Cur-CA4P/GA LPs were taken up effectively by human hepatocellular carcinoma cells (BEL-7402) and showed higher cytotoxicity than free drugs. In vivo real-time near-infrared fluorescence–imaging results indicated that GA-targeted LPs increased accumulation in the tumor region. Moreover, Cur-CA4P/GA LPs showed stronger inhibition of tumor proliferation than Cur, Cur + CA4P, and Cur-CA4P LPs in vivo antitumor studies, which was also verified by H&E staining. Conclusion GA-modified LPs can serve as a promising nanocarrier for liver-targeted co-delivery of antitumor drugs against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hong Jiang
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China,
| | - Zhi-Peng Li
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China,
| | - Gui-Xiang Tian
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China,
| | - Rui-Yan Pan
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China,
| | - Chong-Mei Xu
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China,
| | - Bo Zhang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China,
| | - Jing-Liang Wu
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China,
| |
Collapse
|
19
|
Tian G, Sun X, Bai J, Dong J, Zhang B, Gao Z, Wu J. Doxorubicin‑loaded dual‑functional hyaluronic acid nanoparticles: Preparation, characterization and antitumor efficacy in vitro and in vivo. Mol Med Rep 2018; 19:133-142. [PMID: 30483793 PMCID: PMC6297777 DOI: 10.3892/mmr.2018.9687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/10/2018] [Indexed: 01/03/2023] Open
Abstract
A novel GHH copolymer was synthesized using hyaluronic acid modified with glycyrrhetinic acid and L-histidine (His), and doxorubicin-loaded GHH nanoparticles (DOX/GHH) were prepared for liver-targeted drug delivery and pH-responsive drug release. In the present study, GHH nanoparticles were characterized, and their pH-responsive behaviors were evaluated at different pH levels. The antitumor effect of the DOX/GHH nanoparticles was investigated in vitro and in vivo. Results showed that the DOX/GHH nanoparticles were spherical, and the particle sizes ranged from 238.1 to 156.7 nm with an increase in the degree of substitution of His. The GHH nanoparticles were obviously internalized into human hepatoblastoma cells. In vitro cytotoxicity assay results showed that the DOX/GHH nanoparticles exhibited a dose-dependent antitumor effect. Compared with free DOX, the DOX/GHH nanoparticles displayed higher antitumor efficacy. These results indicate that GHH nanoparticles could be a promising nano-delivery carrier of hydrophobic drugs for liver-targeted therapy.
Collapse
Affiliation(s)
- Guixiang Tian
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiue Sun
- Department of Psychology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jinhua Dong
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Bo Zhang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhiqin Gao
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jingliang Wu
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
20
|
Wang X, Gu X, Wang H, Yang J, Mao S. Enhanced delivery of doxorubicin to the liver through self-assembled nanoparticles formed via conjugation of glycyrrhetinic acid to the hydroxyl group of hyaluronic acid. Carbohydr Polym 2018; 195:170-179. [PMID: 29804965 DOI: 10.1016/j.carbpol.2018.04.052] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/13/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022]
Abstract
Liver-targeted nanoparticles is highly desired for better therapy of liver cancer. In this study, enhanced delivery of doxorubicin (DOX) to the liver cells through self-assembled nanoparticles formed via conjugation of glycyrrhetinic acid (GA) to the hydroxyl group of hyaluronic acid (HA) was investigated. The DOX loaded hyaluronic acid-glycyrrhetinic acid succinate (HSG) conjugates based nanoparticles (HSG/DOX nanoparticles) were sub-spherical in shape with particle size in the range of 180-280 nm, the drug loading was drug-to-carrier ratio and GA graft ratio dependent. In vitro release study suggested that the release of DOX from HSG nanoparticles was sustained and the release rate was pH and GA graft ratio dependent. MTT assay indicated the HSG/DOX nanoparticles presented a GA-dependent cytotoxicity to HepG2 cells. Pharmacokinetics study demonstrated the HSG/DOX nanoparticles could prolong blood circulation time of DOX and had a higher AUC value than that of DOX solution. Furthermore, tissue distribution study revealed the HSG/DOX nanoparticles significantly increased the accumulation of DOX in the liver and meanwhile decreased the cardiotoxicity and nephrotoxicity of DOX. Moreover, the liver targeting enhancing capacity was HSG conjugate structure dependent. The accumulation of HSG-20/DOX, HSG-12/DOX, and HSG-6/DOX nanoparticles in the liver was 4.0-, 3.1-, and 2.6-fold higher than that of DOX solution. In vivo imaging analysis further demonstrated HSG nanoparticles not only had better liver targeting effect, but also presented superior tumor targeting efficiency, and the tumor targeting capacity was also GA-dependent. These results indicated that HSG conjugates prepared via modifying the hydroxyl groups of HA have promising potential as a liver-targeting nanocarrier for the delivery of hydrophobic anti-tumor drugs.
Collapse
Affiliation(s)
- Xiaodan Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiangqin Gu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huimin Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
21
|
Amphiphilic polysaccharides as building blocks for self-assembled nanosystems: molecular design and application in cancer and inflammatory diseases. J Control Release 2018; 272:114-144. [DOI: 10.1016/j.jconrel.2017.12.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 01/09/2023]
|
22
|
Sun T, Cheung KSC, Liu ZL, Leung F, Lu WW. Matrix metallopeptidase 9 targeted by hsa-miR-494 promotes silybin-inhibited osteosarcoma. Mol Carcinog 2017; 57:262-271. [DOI: 10.1002/mc.22753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/09/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Tianhao Sun
- Li Ka Shing Faculty of Medicine; Department of Orthopaedics and Traumatology; The University of Hong Kong; Hong Kong SAR China
| | - Kelvin S. C. Cheung
- Li Ka Shing Faculty of Medicine; Department of Orthopaedics and Traumatology; The University of Hong Kong; Hong Kong SAR China
| | - Zhi-Li Liu
- Department of Orthopedic Surgery; The First Affiliated Hospital of Nanchang University; Nanchang China
| | - Frankie Leung
- Li Ka Shing Faculty of Medicine; Department of Orthopaedics and Traumatology; The University of Hong Kong; Hong Kong SAR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma; Department of Orthopaedics and Traumatology; The University of Hong Kong-Shenzhen Hospital; Shenzhen China
| | - William W. Lu
- Li Ka Shing Faculty of Medicine; Department of Orthopaedics and Traumatology; The University of Hong Kong; Hong Kong SAR China
| |
Collapse
|
23
|
Han X, Dong X, Li J, Wang M, Luo L, Li Z, Lu X, He R, Xu R, Gong M. Free paclitaxel-loaded E-selectin binding peptide modified micelle self-assembled from hyaluronic acid-paclitaxel conjugate inhibit breast cancer metastasis in a murine model. Int J Pharm 2017; 528:33-46. [DOI: 10.1016/j.ijpharm.2017.05.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/07/2017] [Accepted: 05/25/2017] [Indexed: 01/15/2023]
|
24
|
Zhang Z, Cui C, Wei F, Lv H. Improved solubility and oral bioavailability of apigenin via Soluplus/Pluronic F127 binary mixed micelles system. Drug Dev Ind Pharm 2017; 43:1276-1282. [PMID: 28358225 DOI: 10.1080/03639045.2017.1313857] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aim of this study was to develop a novel mix micelles system composing of two biocompatible copolymers of Soluplus® and Pluronic F127 to improve the solubility, oral bioavailability of insoluble drug apigenin (AP) as model drug. The AP-loaded mixed micelles (AP-M) were prepared by ethanol thin-film hydration method. The formed optimal formulation of AP-M were provided with small size (178.5 nm) and spherical shape at ratio of 4:1 (Soluplus®:Pluronic F127), as well as increasing solubility of to 5.61 mg/mL in water which was about 3442-fold compared to that of free AP. The entrapment efficiency and drug loading of AP-M were 95.72 and 5.32%, respectively, and a sustained release of AP-M was obtained as in vitro release study indicated. Transcellular transport study showed that the cell uptake of AP was increased in Caco-2 cell transport models. The oral bioavailability of AP-M was 4.03-fold of free AP in SD rats, indicating the mixed micelles of Soluplus® and Pluronic F127 is an industrially feasible drug delivery system to promote insoluble drug oral absorption in the gastrointestinal tract.
Collapse
Affiliation(s)
- Zhenhai Zhang
- a Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine , Nanjing , PR China.,b Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , PR China
| | - Changchang Cui
- c Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , PR China
| | - Fang Wei
- a Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine , Nanjing , PR China.,b Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , PR China
| | - Huixia Lv
- c Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , PR China
| |
Collapse
|
25
|
Preparation and Characterization of Hyaluronic Acid-Polycaprolactone Copolymer Micelles for the Drug Delivery of Radioactive Iodine-131 Labeled Lipiodol. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4051763. [PMID: 28127555 PMCID: PMC5239969 DOI: 10.1155/2017/4051763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022]
Abstract
Micelles, with the structure of amphiphilic molecules including a hydrophilic head and a hydrophobic tail, are recently developed as nanocarriers for the delivery of drugs with poor solubility. In addition, micelles have shown many advantages, such as enhanced permeation and retention (EPR) effects, prolonged circulation times, and increased endocytosis through surface modification. In this study, we measured the critical micelle concentrations, diameters, stability, and cytotoxicity and the cell uptake of micelles against hepatic cells with two kinds of hydrophilic materials: PEG-PCL and HA-g-PCL. We used 131I as a radioactive tracer to evaluate the stability, drug delivery, and cell uptake activity of the micelles. The results showed that HA-g-PCL micelles exhibited higher drug encapsulation efficiency and stability in aqueous solutions. In addition, the 131I-lipiodol loaded HA-g-PCL micelles had better affinity and higher cytotoxicity compared to HepG2 cells.
Collapse
|
26
|
Wang X, Gu X, Wang H, Sun Y, Wu H, Mao S. Synthesis, characterization and liver targeting evaluation of self-assembled hyaluronic acid nanoparticles functionalized with glycyrrhetinic acid. Eur J Pharm Sci 2017; 96:255-262. [DOI: 10.1016/j.ejps.2016.09.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/08/2016] [Accepted: 09/26/2016] [Indexed: 01/16/2023]
|
27
|
Wu JL, Tian GX, Yu WJ, Jia GT, Sun TY, Gao ZQ. pH-Responsive Hyaluronic Acid-Based Mixed Micelles for the Hepatoma-Targeting Delivery of Doxorubicin. Int J Mol Sci 2016; 17:364. [PMID: 27043540 PMCID: PMC4848880 DOI: 10.3390/ijms17040364] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/28/2016] [Accepted: 03/07/2016] [Indexed: 02/07/2023] Open
Abstract
The tumor targetability and stimulus responsivity of drug delivery systems are crucial in cancer diagnosis and treatment. In this study, hepatoma-targeting mixed micelles composed of a hyaluronic acid-glycyrrhetinic acid conjugate and a hyaluronic acid-l-histidine conjugate (HA-GA/HA-His) were prepared through ultrasonic dispersion. The formation and characterization of the mixed micelles were confirmed via ¹H-NMR, particle size, and ζ potential measurements. The in vitro cellular uptake of the micelles was evaluated using human liver carcinoma (HepG2) cells. The antitumor effect of doxorubicin (DOX)-loaded micelles was investigated in vitro and in vivo. Results indicated that the DOX-loaded HA-GA/HA-His micelles showed a pH-dependent controlled release and were remarkably absorbed by HepG2 cells. Compared with free DOX, the DOX-loaded HA-GA/HA-His micelles showed a higher cytotoxicity to HepG2 cells. Moreover, the micelles effectively inhibited tumor growth in H22 cell-bearing mice. These results suggest that the HA-GA/HA-His mixed micelles are a good candidate for drug delivery in the prevention and treatment of hepatocarcinoma.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/pharmacology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Cell Survival/drug effects
- Doxorubicin/administration & dosage
- Doxorubicin/chemistry
- Doxorubicin/pharmacology
- Drug Carriers/chemistry
- Female
- Hep G2 Cells
- Histidine/chemistry
- Humans
- Hyaluronic Acid/chemistry
- Hydrogen-Ion Concentration
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Magnetic Resonance Spectroscopy
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Micelles
- Microscopy, Electron, Transmission
- Particle Size
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Jing-Liang Wu
- School of Bioscience and Technology, Weifang Medical University, Wei Fang 261053, Shandong, China.
| | - Gui-Xiang Tian
- School of Bioscience and Technology, Weifang Medical University, Wei Fang 261053, Shandong, China.
| | - Wen-Jing Yu
- School of Bioscience and Technology, Weifang Medical University, Wei Fang 261053, Shandong, China.
| | - Guang-Tao Jia
- School of Bioscience and Technology, Weifang Medical University, Wei Fang 261053, Shandong, China.
| | - Tong-Yi Sun
- School of Bioscience and Technology, Weifang Medical University, Wei Fang 261053, Shandong, China.
| | - Zhi-Qin Gao
- School of Bioscience and Technology, Weifang Medical University, Wei Fang 261053, Shandong, China.
| |
Collapse
|