1
|
Obradovic M, Sudar-Milovanovic E, Gluvic Z, Banjac K, Rizzo M, Isenovic ER. The Na +/K +-ATPase: A potential therapeutic target in cardiometabolic diseases. Front Endocrinol (Lausanne) 2023; 14:1150171. [PMID: 36926029 PMCID: PMC10011626 DOI: 10.3389/fendo.2023.1150171] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Cardiometabolic diseases (CMD) are a direct consequence of modern living and contribute to the development of multisystem diseases such as cardiovascular diseases and diabetes mellitus (DM). CMD has reached epidemic proportions worldwide. A sodium pump (Na+/K+-ATPase) is found in most eukaryotic cells' membrane and controls many essential cellular functions directly or indirectly. This ion transporter and its isoforms are important in the pathogenesis of some pathological processes, including CMD. The structure and function of Na+/K+-ATPase, its expression and distribution in tissues, and its interactions with known ligands such as cardiotonic steroids and other suspected endogenous regulators are discussed in this review. In addition, we reviewed recent literature data related to the involvement of Na+/K+-ATPase activity dysfunction in CMD, focusing on the Na+/K+-ATPase as a potential therapeutic target in CMD.
Collapse
Affiliation(s)
- Milan Obradovic
- Department of Radiobiology and Molecular Genetics, “VINČA“ Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Emina Sudar-Milovanovic
- Department of Radiobiology and Molecular Genetics, “VINČA“ Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal medicine, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Katarina Banjac
- Department of Radiobiology and Molecular Genetics, “VINČA“ Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Manfredi Rizzo
- School of Medicine, Promise Department, University of Palermo, Palermo, Italy
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, “VINČA“ Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Nepal N, Arthur S, Butts MR, Singh S, Palaniappan B, Sundaram U. Molecular Mechanism of Stimulation of Na-K-ATPase by Leukotriene D4 in Intestinal Epithelial Cells. Int J Mol Sci 2021; 22:ijms22147569. [PMID: 34299188 PMCID: PMC8303499 DOI: 10.3390/ijms22147569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/03/2022] Open
Abstract
Na-K-ATPase provides a favorable transcellular Na gradient required for the functioning of Na-dependent nutrient transporters in intestinal epithelial cells. The primary metabolite for enterocytes is glutamine, which is absorbed via Na-glutamine co-transporter (SN2; SLC38A5) in intestinal crypt cells. SN2 activity is stimulated during chronic intestinal inflammation, at least in part, secondarily to the stimulation of Na-K-ATPase activity. Leukotriene D4 (LTD4) is known to be elevated in the mucosa during chronic enteritis, but the way in which it may regulate Na-K-ATPase is not known. In an in vitro model of rat intestinal epithelial cells (IEC-18), Na-K-ATPase activity was significantly stimulated by LTD4. As LTD4 mediates its action via Ca-dependent protein kinase C (PKC), Ca levels were measured and were found to be increased. Phorbol 12-myristate 13-acetate (PMA), an activator of PKC, also mediated stimulation of Na-K-ATPase like LTD4, while BAPTA-AM (Ca chelator) and calphostin-C (Cal-C; PKC inhibitor) prevented the stimulation of Na-K-ATPase activity. LTD4 caused a significant increase in mRNA and plasma membrane protein expression of Na-K-ATPase α1 and β1 subunits, which was prevented by calphostin-C. These data demonstrate that LTD4 stimulates Na-K-ATPase in intestinal crypt cells secondarily to the transcriptional increase of Na-K-ATPase α1 and β1 subunits, mediated via the Ca-activated PKC pathway.
Collapse
|
3
|
Nepal N, Arthur S, Haynes J, Palaniappan B, Sundaram U. Mechanism of Na-K-ATPase Inhibition by PGE2 in Intestinal Epithelial Cells. Cells 2021; 10:cells10040752. [PMID: 33805551 PMCID: PMC8066871 DOI: 10.3390/cells10040752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 11/26/2022] Open
Abstract
The primary means of intestinal absorption of nutrients by villus cells is via Na-dependent nutrient co-transporters located in the brush border membrane (BBM). These secondary active co-transport processes require a favorable transcellular Na gradient that is provided by Na-K-ATPase. In chronic enteritis, malabsorption of essential nutrients is partially due to inhibition of villus Na-K-ATPase activity mediated by specific immune inflammatory mediators that are known to be elevated in the inflamed mucosa. However, how Prostaglandin E2 (PGE2), a specific mediator of nutrient malabsorption in the villus BBM, may mediate the inhibition of Na-K-ATPase is not known. Therefore, this study aimed to determine the effect of PGE2 on Na-K-ATPase in villus cells and define its mechanism of action. In vitro, in IEC-18 cells, PGE2 treatment significantly reduced Na-K-ATPase activity, accompanied by a significant increase in the intracellular levels of cyclic Adenosine Monophosphate (cAMP). The treatment with cAMP analog 8-Bromo-cAMP mimicked the PGE2-mediated effect on Na-K-ATPase activity, while Rp-cAMP (PKA inhibitor) pretreatment reversed the same. The mechanism of inhibition of PGE2 was secondary to a transcriptional reduction in the Na-K-ATPase α1 and β1 subunit genes, which was reversed by the Rp-cAMP pretreatment. Thus, the PGE2-mediated activation of the PKA pathway mediates the transcriptional inhibition of Na-K-ATPase activity in vitro.
Collapse
|
4
|
Birkeland ES, Koch LM, Dechant R. Another Consequence of the Warburg Effect? Metabolic Regulation of Na +/H + Exchangers May Link Aerobic Glycolysis to Cell Growth. Front Oncol 2020; 10:1561. [PMID: 32974190 PMCID: PMC7462004 DOI: 10.3389/fonc.2020.01561] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
To adjust cell growth and proliferation to changing environmental conditions or developmental requirements, cells have evolved a remarkable network of signaling cascades that integrates cues from cellular metabolism, growth factor availability and a large variety of stresses. In these networks, cellular information flow is mostly mediated by posttranslational modifications, most notably phosphorylation, or signaling molecules such as GTPases. Yet, a large body of evidence also implicates cytosolic pH (pHc) as a highly conserved cellular signal driving cell growth and proliferation, suggesting that pH-dependent protonation of specific proteins also regulates cellular signaling. In mammalian cells, pHc is regulated by growth factor derived signals and responds to metabolic cues in response to glucose stimulation. Importantly, high pHc has also been identified as a hall mark of cancer, but mechanisms of pH regulation in cancer are only poorly understood. Here, we discuss potential mechanisms of pH regulation with emphasis on metabolic signals regulating pHc by Na+/H+-exchangers. We hypothesize that elevated NHE activity and pHc in cancer are a direct consequence of the metabolic adaptations in tumor cells including enhanced aerobic glycolysis, generally referred to as the Warburg effect. This hypothesis not only provides an explanation for the growth advantage conferred by a switch to aerobic glycolysis beyond providing precursors for accumulation of biomass, but also suggests that treatments targeting pH regulation as a potential anti-cancer therapy may effectively target the result of altered tumor cell metabolism.
Collapse
Affiliation(s)
- Eivind Salmorin Birkeland
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zurich, Switzerland.,Life Science Zurich, Ph.D. Program for Molecular Life Sciences, Zurich, Switzerland
| | - Lisa Maria Koch
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zurich, Switzerland.,Life Science Zurich, Ph.D. Program for Molecular Life Sciences, Zurich, Switzerland
| | - Reinhard Dechant
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
5
|
Jensen SR, Schoof EM, Wheeler SE, Hvid H, Ahnfelt-Rønne J, Hansen BF, Nishimura E, Olsen GS, Kislinger T, Brubaker PL. Quantitative Proteomics of Intestinal Mucosa From Male Mice Lacking Intestinal Epithelial Insulin Receptors. Endocrinology 2017; 158:2470-2485. [PMID: 28591806 DOI: 10.1210/en.2017-00194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/31/2017] [Indexed: 12/16/2022]
Abstract
The goal of the present study was to determine whether loss of the insulin receptor alters the molecular landscape of the intestinal mucosa, using intestinal-epithelial insulin receptor knockout (IE-irKO) mice and both genetic (IRfl/fl and Villin-cre) controls. Quantitative proteomic analysis by liquid chromatography mass spectrometry was applied to jejunal and colonic mucosa from mice fed a normal chow diet and mice fed a Western diet (WD). Jejunal mucosa from IE-irKO mice demonstrated alterations in all intestinal cell lineages: Paneth, goblet, absorptive, and enteroendocrine cells. Only goblet and absorptive cells were affected in the colon. Also, a marked effect of WD consumption was found on the gut proteome. A substantial reduction was detected in Paneth cell proteins with antimicrobial activity, including lysozyme C-1, angiogenin-4, cryptdin-related sequence 1C-3 and -2, α-defensin 17, and intelectin-1a. The key protein expressed by goblet cells, mucin-2, was also reduced in the IE-irKO mice. Proteins involved in lipid metabolism, including aldose reductase-related protein 1, 15-hydroxyprostaglandin dehydrogenase, apolipoprotein A-II, and pyruvate dehydrogenase kinase isozyme 4, were increased in the mucosa of WD-fed IE-irKO mice compared with controls. In contrast, expression of the nutrient-responsive gut hormones, glucose-dependent insulinotropic polypeptide and neurotensin, was reduced in the jejunal mucosa of IE-irKO mice, and the expression of proteins of the P-type adenosine triphosphatases and the solute carrier-transporter family was reduced in the colon of WD-fed IE-irKO mice. In conclusion, IE-irKO mice display a distinct molecular phenotype, suggesting a biological role of insulin and its receptor in determining differentiated cell specificity in the intestinal epithelium.
Collapse
Affiliation(s)
- Stina Rikke Jensen
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Metabolic Disease Research, Novo Nordisk A/S, Måløv DK-2760, Denmark
| | - Erwin M Schoof
- Princess Margaret Hospital Cancer Centre, University Health Network, Ontario M5G 2M9, Canada
| | - Sarah E Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Henning Hvid
- Metabolic Disease Research, Novo Nordisk A/S, Måløv DK-2760, Denmark
| | | | - Bo Falck Hansen
- Metabolic Disease Research, Novo Nordisk A/S, Måløv DK-2760, Denmark
| | - Erica Nishimura
- Metabolic Disease Research, Novo Nordisk A/S, Måløv DK-2760, Denmark
| | | | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
6
|
Shahidullah M, Mandal A, Delamere NA. Src Family Kinase Links Insulin Signaling to Short Term Regulation of Na,K-ATPase in Nonpigmented Ciliary Epithelium. J Cell Physiol 2016; 232:1489-1500. [PMID: 27748508 DOI: 10.1002/jcp.25654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/14/2016] [Indexed: 11/05/2022]
Abstract
Insulin has been shown to elicit changes of Na,K-ATPase activity in various tissues. Na,K-ATPase in the nonpigmented ciliary epithelium (NPE) plays a role in aqueous humor secretion and changes of Na,K-ATPase activity impact the driving force. Because we detect a change of NPE Na,K-ATPase activity in response to insulin, studies were carried out to examine the response mechanism. Ouabain-sensitive rubidium (Rb) uptake by cultured NPE cells, measured as a functional index of Na,K-ATPase-mediated inward potassium transport, was found to increase in cells exposed for 5 min to insulin. The maximally effective concentration was 100 nM. An intrinsic increase of Na,K-ATPase activity evident as a >2-fold increase in the rate of ouabain-sensitive ATP hydrolysis in homogenates obtained from cells exposed to 100 nM insulin for 5 min was also observed. Insulin-treated cells exhibited Akt, Src family kinase (SFK), ERK1/2, and p38 activation, all of which were prevented by a pI3 kinase inhibitor LY294002. The Rb uptake and Na,K-ATPase activity response to insulin both were abolished by PP2, an SFK inhibitor which also prevented p38 and ERK1/2 but not Akt activation. The Akt inhibitor MK-2206 did not change the Na,K-ATPase response to insulin. The findings suggest insulin activates pI3K-dependent Akt and SFK signaling pathways that are separate. ERK1/2 and p38 activation is secondary to and dependent on SFK activation. The increase of Na,K-ATPase activity is dependent on activation of the SFK pathway. The findings are consistent with previous studies that indicate a link between Na,K-ATPase activity and SFK signaling. J. Cell. Physiol. 232: 1489-1500, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mohammad Shahidullah
- Department of Physiology and Ophthalmology and Vision Science, University of Arizona, Tucson, Arizona
| | - Amritlal Mandal
- Department of Physiology and Ophthalmology and Vision Science, University of Arizona, Tucson, Arizona
| | - Nicholas A Delamere
- Department of Physiology and Ophthalmology and Vision Science, University of Arizona, Tucson, Arizona
| |
Collapse
|
7
|
Harazono Y, Kho DH, Balan V, Nakajima K, Hogan V, Raz A. Extracellular galectin-3 programs multidrug resistance through Na+/K+-ATPase and P-glycoprotein signaling. Oncotarget 2016; 6:19592-604. [PMID: 26158764 PMCID: PMC4637307 DOI: 10.18632/oncotarget.4285] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/05/2015] [Indexed: 01/21/2023] Open
Abstract
Galectin-3 (Gal-3, LGALS3) is a pleotropic versatile, 29-35 kDa chimeric gene product, and involved in diverse physiological and pathological processes, including cell growth, homeostasis, apoptosis, pre-mRNA splicing, cell-cell and cell-matrix adhesion, cellular polarity, motility, adhesion, activation, differentiation, transformation, signaling, regulation of innate/adaptive immunity, and angiogenesis. In multiple diseases, it was found that the level of circulating Gal-3 is markedly elevated, suggesting that Gal-3-dependent function is mediated by specific interaction with yet an unknown ubiquitous cell-surface protein. Recently, we showed that Gal-3 attenuated drug-induced apoptosis, which is one of the mechanisms underlying multidrug resistance (MDR). Here, we document that MDR could be mediated by Gal-3 interaction with the house-keeping gene product e.g., Na+/K+-ATPase, and P-glycoprotein (P-gp). Gal-3 interacts with Na+/K+-ATPase and induces the phosphorylation of P-gp. We also find that Gal-3 binds P-gp and enhances its ATPase activity. Furthermore Gal-3 antagonist suppresses this interaction and results in a decrease of the phosphorylation and the ATPase activity of P-gp, leading to an increased sensitivity to doxorubicin-mediated cell death. Taken together, these findings may explain the reported roles of Gal-3 in diverse diseases and suggest that a combined therapy of inhibitors of Na+/K+-ATPase and Gal-3, and a disease specific drug(s) might be superior to a single therapeutic modality.
Collapse
Affiliation(s)
- Yosuke Harazono
- Departments of Oncology and Pathology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA.,Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Dhong Hyo Kho
- Departments of Oncology and Pathology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | | | - Kosei Nakajima
- Departments of Oncology and Pathology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Victor Hogan
- Departments of Oncology and Pathology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Avraham Raz
- Departments of Oncology and Pathology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| |
Collapse
|
8
|
Mori Y, Tomonaga D, Kalashnikova A, Furuya F, Akimoto N, Ifuku M, Okuno Y, Beppu K, Fujita K, Katafuchi T, Shimura H, Churilov LP, Noda M. Effects of 3,3',5-triiodothyronine on microglial functions. Glia 2015; 63:906-20. [PMID: 25643925 DOI: 10.1002/glia.22792] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 01/02/2015] [Indexed: 02/02/2023]
Abstract
L-tri-iodothyronine (3, 3', 5-triiodothyronine; T3) is an active form of the thyroid hormone (TH) essential for the development and function of the CNS. Though nongenomic effect of TH, its plasma membrane-bound receptor, and its signaling has been identified, precise function in each cell type of the CNS remained to be investigated. Clearance of cell debris and apoptotic cells by microglia phagocytosis is a critical step for the restoration of damaged neuron-glia networks. Here we report nongenomic effects of T3 on microglial functions. Exposure to T3 increased migration, membrane ruffling and phagocytosis of primary cultured mouse microglia. Injection of T3 together with stab wound attracted more microglia to the lesion site in vivo. Blocking TH transporters and receptors (TRs) or TRα-knock-out (KO) suppressed T3-induced microglial migration and morphological change. The T3-induced microglial migration or membrane ruffling was attenuated by inhibiting Gi /o -protein as well as NO synthase, and subsequent signaling such as phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK). Inhibitors for Na(+) /K(+) -ATPase, reverse mode of Na(+) /Ca(2+) exchanger (NCX), and small-conductance Ca(2+) -dependent K(+) (SK) channel also attenuated microglial migration or phagocytosis. Interestingly, T3-induced microglial migration, but not phagocytosis, was dependent on GABAA and GABAB receptors, though GABA itself did not affect migratory aptitude. Our results demonstrate that T3 modulates multiple functional responses of microglia via multiple complex mechanisms, which may contribute to physiological and/or pathophysiological functions of the CNS.
Collapse
Affiliation(s)
- Yuki Mori
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Veilleux A, Grenier É, Marceau P, Carpentier AC, Richard D, Levy E. Intestinal Lipid Handling. Arterioscler Thromb Vasc Biol 2014; 34:644-53. [DOI: 10.1161/atvbaha.113.302993] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alain Veilleux
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - Émilie Grenier
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - Picard Marceau
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - André C. Carpentier
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - Denis Richard
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - Emile Levy
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| |
Collapse
|